Identidad Institucional CRAI
Logo EdocUR
    • English
    • español
    • português
  •  Cargar documentos
  •  Preguntas frecuentes
  • español 
    • English
    • español
    • português
  • Ingresar

Contacto

Twitter

Facebook

Youtube

Ver ítem 
  •   Repositorio Institucional EdocUR
  • Investigación
  • Artículos
  • Ver ítem
  •   Repositorio Institucional EdocUR
  • Investigación
  • Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A lightweight deep learning model for mobile eye fundus image quality assessment

  • Exportar citas ▼
    • Exportar a Mendeley
    • Exportar a BibTex
Thumbnail

Fecha

2020

Autor

Pérez A.D.
Perdomo O.
González F.A.
Metrics

Comparta

Citas

URI

https://doi.org/10.1117/12.2547126
https://repository.urosario.edu.co/handle/10336/22868

Abstract

Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition devices have the advantage of their low cost and easy deployment, however, their main disadvantage is the sacrifice of image quality. This paper presents a deep-learning-based model to assess the eye fundus image quality which is small enough to be deployed in a smart phone. The model was evaluated in a public eye fundus dataset with two sets of annotations. The proposed method obtained an accuracy of 0.911 and 0.856, in the binary classification task and the three-classes classification task respectively. Besides, the presented method has a small number of parameters compared to other state-of-the-art models, being an alternative for a mobile-based eye fundus quality classification system. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only.

Keywords

Bioinformatics ; Classification (of information) ; Deep learning ; Diagnosis ; Image acquisition ; Learning systems ; Medical imaging ; Mhealth ; Quality control ; Smartphones ; Binary classification ; Classification tasks ; Eye fundus ; Learning Based Models ; Quality assessment ; Quality classification ; Reference image ; State of the art ; Image quality ; Classification ; Deep Learning ; Eye fundus ; Mobile AI ; Non-reference Image Quality ; Quality Assessment ;

Enlace a la fuente

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081137400&doi=10.1117%2f12...

Mostrar el registro completo del ítem


Este ítem aparece en las siguientes colecciones

  • Artículos [6080]
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR
 

 

Listar

Todo DSpaceComunidades & ColeccionesTítulosAutoresTipoMateriasDirector de TesisPor fecha de publicaciónEsta colecciónTítulosAutoresTipoMateriasDirector de TesisPor fecha de publicación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR