Show simple item record

dc.contributor.advisorSanchez, Adriana 
dc.contributor.advisorAldana, Ana M. 
dc.creatorBonilla Rojas, Diana Alejandra 
dc.date.accessioned2020-08-20T20:47:31Z
dc.date.available2020-08-20T20:47:31Z
dc.date.created2020-08-07
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/28205
dc.descriptionEn la cuenca del Amazonas, como en la cuenca del Orinoco, los bosques inundables han sido clasificados según las propiedades de los ríos que los inundan en bosques de Várzea (aguas blancas) e Igapó (aguas negras). Adicionalmente, se ha demostrado que estas diferencias fluviales influyen en la composición del suelo de estos bosques, de manera que las Várzeas se caracterizan por tener suelos ricos en nutrientes, mientras que los bosques de Igapó presentan suelos pobres en nutrientes. Para determinar si estas diferencias han impulsado procesos de clasificación ecológica, evaluamos la diversidad funcional arbórea en bosques de Várzea e Igapó y la influencia de los filtros externos e internos en el ensamblaje de comunidades vegetales de cada tipo de bosque. Muestreamos seis rasgos funcionales en dos parcelas de 1 ha ubicadas en Casanare, Colombia, una en un bosque de Várzea y la otra en un bosque de Igapó. Encontramos que existe una diferenciación funcional parcial entre los bosques de Várzea e Igapó, además de una alta divergencia funcional dentro de cada tipo de bosque. También observamos una mayor influencia de los filtros internos en el ensamblaje de comunidades de ambos bosques, respecto a los filtros externos. Estos resultados exaltan la importancia de reconocer la diversidad funcional entre y dentro de los bosques de Várzea e Igapó, a pesar de su baja diversidad taxonómica, así como también, contribuyen a la comprensión del ensamblaje de comunidades y la expresión de rasgos funcionales en suelos ricos y pobres en nutrientes.
dc.description.abstractAbstract. In the Amazon, as well as the Orinoco basin, flooded forests have been classified according to the rivers that flood into Várzea (white water) and Igapó (black water). Furthermore, these river differences have been shown to influence the forest soil composition, so that Várzea is characterized by having nutrient-rich soils while Igapó has nutrient-poor soils. To determine if these differences have driven ecological sorting processes, we evaluated the plant functional diversity of Várzea and Igapó and the influence of external and internal filters on the plant community assembly of each forest. We sampled six functional traits in two, 1 ha plots located in Casanare, Colombia, one in Várzea and the other in Igapó. We found that there is a partial functional differentiation between Várzea and Igapó, and a high functional divergence within each forest. We also observed a greater influence of internal filters on the community assembly of both forest types, compared to external filters. These results contribute to the understanding of community assembly and the expression of functional traits in rich and poor soils, as well as showing the importance of recognizing the functional diversity between and within Várzea and Igapó, despite their low taxonomic diversity.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectdiversidad funcional
dc.subjectensamblaje de comunidades
dc.subjectfiltrado ambiental
dc.subjectfiltrado interno
dc.subjectdisponibilidad de nutrientes
dc.subjectbosques tropicales
dc.subject.ddcBotánica 
dc.subject.ddcEspermatofitas (plantas con semilla) 
dc.titleFunctional divergence between Várzea and Igapó forests: a study of the functional trait diversity of the Orinoquia flooded forests
dc.typebachelorThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeBiólogo
dc.publisher.programBiología
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticas
dc.subject.keywordCommunity assembly
dc.subject.keywordenvironmental filtering
dc.subject.keywordfunctional diversity
dc.subject.keywordinternal filtering
dc.subject.keywordsoil nutrient availability
dc.subject.keywordtropical forests
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTrabajo de grado
dc.rights.accesoAbierto (Texto Completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationBongers F and Popma J (1990) Leaf characteristics of the tropical rain forest flora of Los Tuxtlas, Mexico. Botanical Gazette 151, 354—365.
dc.source.bibliographicCitationCaicedo-Herrera D, Mosquera-Guerra F, Trujillo F, Díaz-Pulido A, Lasso CA, Córdoba D, Morales-Betancourt MA (2018) ‘Áreas clave para la conservación de la biodiversidad dulceacuícola amenazada en Colombia: moluscos, cangrejos, peces, tortugas, crocodílidos, aves y mamíferos.’ (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia) Available at http://hdl.handle.net/20.500.11761/34313
dc.source.bibliographicCitationCárdenas S (2012) ‘Patrones florísticos de los planos de inundación y bosques de tierra firme: efectos de filtros ambientales y azar’ (Bachelor's thesis, Uniandes, Bogotá).
dc.source.bibliographicCitationCornwell WK, Schwilk DW, Ackerly DD (2006) A trait‐based test for habitat filtering: convex hull volume. Ecology 87, 1465—1471.
dc.source.bibliographicCitationDray S and Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of statistical software 22, 1—20.
dc.source.bibliographicCitationFerreira LV and Prance GT (1998) Structure and species richness of low-diversity floodplain forest on the Rio Tapajós, Eastern Amazonia, Brazil. Biodiversity and Conservation 7, 585—596.
dc.source.bibliographicCitationFine PV, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science, 305, 663-665.
dc.source.bibliographicCitationFurch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In ‘The central amazon floodplain: Ecology of a pulsing System. Vol. 126’. (Ed. WJ Junk) pp. 47—67. (Springer-Verlag, Berlin)
dc.source.bibliographicCitationGarnier E, Navas ML, Grigulis K (2016) ‘Plant functional diversity: organism traits, community structure, and ecosystem properties.’ (Oxford University Press).
dc.source.bibliographicCitationGodoy JR, Petts G, Salo J (1999) Riparian flooded forests of the Orinoco and Amazon basins: a comparative review. Biodiversity and Conservation 8, 551—586.
dc.source.bibliographicCitationGómez YA (2017) Influencia de los nutrientes del suelo y otros factores abióticos en la distribución de especies en bosques de Igapó y Várzea, Casanare (Bachelor's thesis, Uniandes, Bogotá) Available at http://biblioteca.uniandes.edu.co/acepto201699.php?id=9918.pdf
dc.source.bibliographicCitationGonzález JS (2015) Dinámica, estructura y diversidad de bosques de galería de la Reserva de Tomo Grande, Vichada (Bachelor's thesis, Uniandes, Bogotá). Available at http://biblioteca.uniandes.edu.co/acepto2015201.php?id=7571.pdf
dc.source.bibliographicCitationGotelli NJ and McCabe DJ (2002). Species co‐occurence: A meta‐analysis of JM Diamond's assembly rules models. Ecology, 83(8), 2091—2096.
dc.source.bibliographicCitationGoulding M (1980) ‘The fishes and the forest: explorations in Amazonian natural history.’ (University of California Press).
dc.source.bibliographicCitationIrion G, de Mello JA, Morais J, Piedade MT, Junk WJ, Garming L (2010) Development of the Amazon valley during the Middle to Late Quaternary: sedimentological and climatological observations. In ‘Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Vol. 210’. (Eds. WJ Junk, MT Piedade, F Wittmann, J Schöngart, P Parolin) pp. 27—42. (Springer, Dordrecht)
dc.source.bibliographicCitationKattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Cornelissen JHC (2011) TRY–a global database of plant traits. Global Change Biology 17, 2905—2935. Available at https://www.try—db.org/TryWeb/Data.php
dc.source.bibliographicCitationLaliberté E and Legendre P (2010) A distance based framework for measuring functional diversity from multiple traits. Ecology 91, 299—305.
dc.source.bibliographicCitationLaliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.
dc.source.bibliographicCitationLasso CA, Usma JS, Trujillo F, Rial A (2010) ‘Biodiversidad de la cuenca del orinoco: bases científicas para la identificación de áreas prioritarias para la conversación y uso sostenible de la biodiversidad.’ (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia) Available at http://hdl.handle.net/20.500.11761/34982
dc.source.bibliographicCitationLavorel S and Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16, 545—556.
dc.source.bibliographicCitationLebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010) Functional traits and environmental filtering drive community assembly in a species‐rich tropical system. Ecology 91, 386—398.
dc.source.bibliographicCitationLohbeck M, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Poorter L, Bongers F (2015) Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PloS one 10, e0123741.Lohbeck M, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Poorter L, Bongers F (2015) Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession. PloS one 10, e0123741.
dc.source.bibliographicCitationLortie CJ, Brooker RW, Choler P, Kikvidze Z, Michalet R, Pugnaire FI, Callaway RM (2004) Rethinking plant community theory. Oikos 107, 433—438.
dc.source.bibliographicCitationMaracahipes L, Carlucci MB, Lenza E, Marimon BS, Marimon Jr BH, Guimarães FA, Cianciaruso MV (2018) How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter-and intraspecific levels in savanna and forest woody plants. Perspectives in Plant Ecology, Evolution and Systematics 34, 17-25.
dc.source.bibliographicCitationMason NW, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112—118.
dc.source.bibliographicCitationMori GB, Schietti J, Poorter L, Piedade MTF (2019) Trait divergence and habitat specialization in tropical floodplain forests trees. PloS One 14, e0212232.
dc.source.bibliographicCitationOksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Solymos P (2019) vegan: Community Ecology Package. R package version 2.5-6.
dc.source.bibliographicCitationOliveira RS, Costa FR, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Guimaraes ZT (2019) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221, 1457—1465.
dc.source.bibliographicCitationPaine CT, Baraloto C, Chave J, Hérault B (2011) Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos 120, 720—727.
dc.source.bibliographicCitationParolin P (2012) Diversity of adaptations to flooding in trees of Amazonian floodplains. Pesquisas-Botânica 63, 7—28.
dc.source.bibliographicCitationParolin P and Worbes M (2000) Wood density of trees in black water floodplains of Rio Jaú National Park, Amazonia, Brazil. Acta Amazonica 30, 441—448.
dc.source.bibliographicCitationParolin PD, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Junk WJ (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review 70, 357—380.
dc.source.bibliographicCitationPérez-Harguindeguy N, Diaz S, Gamier E, Lavorel S, Poorter H, Jaureguiberry P, Urcelay, C (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167—234.
dc.source.bibliographicCitationPoorter L, Rozendaal DM, Bongers F, de Almeida-Cortez JS, Zambrano AMA, Álvarez FS, Bentos, TV (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature ecology & evolution, 3, 928-934.
dc.source.bibliographicCitationPrado‐Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology 104, 817—827.
dc.source.bibliographicCitationPrance GT (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 31, 26—38.
dc.source.bibliographicCitationR Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R—project.org/.
dc.source.bibliographicCitationReich PB (2014) The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto. Journal of Ecology 102, 275—301.
dc.source.bibliographicCitationReich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164, S143—S164.
dc.source.bibliographicCitationReich, P. B. (1993). Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: ‘The blind men and the elephant retold'. Functional Ecology 7, 721—725.
dc.source.bibliographicCitationSchleuter D, Daufresne M, Massol F, Argillier C (2010) A user's guide to functional diversity indices. Ecological Monographs 80, 469—484.
dc.source.bibliographicCitationSchneider CA, Rasband WS, Eliceiri KW (2012) "NIH Image to ImageJ: 25 years of image analysis", Nature Methods 9, 671—675, PMID 22930834.
dc.source.bibliographicCitationSouthwood TR (1977) Habitat, the templet for ecological strategies? Journal of Animal Ecology 46, 337—365.
dc.source.bibliographicCitationSvenning JC (1999) Microhabitat specialization in a species‐rich palm community in Amazonian Ecuador. Journal of Ecology 87, 55—65.
dc.source.bibliographicCitationTaudière A and Violle C (2016) cati: A R package using functional traits to detect and quantify multi‐level community assembly processes. Ecography 39, 699—708.
dc.source.bibliographicCitationThomas E, Alcazar C, Moscoso-Higuita LG, Osorio LF, Salgado-Negret B, Gonzalez M, Ramirez W (2017) The importance of species selection and seed sourcing in forest restoration for enhancing adaptive potential to climate change: Colombian tropical dry forest as a model. Secretariat of the Convention on Biological Diversity.
dc.source.bibliographicCitationTilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77, 350—363.
dc.source.bibliographicCitationVilléger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290—2301.
dc.source.bibliographicCitationViolle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Messier J (2012) The return of the variance: Intraspecific variability in community ecology. Trends in Ecology and Evolution 27, 244—252.
dc.source.bibliographicCitationWilliamson GB and Wiemann MC (2010) Measuring wood specific gravity… correctly. American Journal of Botany 97, 519—524.Williamson GB and Wiemann MC (2010) Measuring wood specific gravity… correctly. American Journal of Botany 97, 519—524.
dc.source.bibliographicCitationWittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MT, Worbes M (2006) Tree species composition and diversity gradients in white‐water forests across the Amazon Basin. Journal of Biogeography 33, 1334—1347.
dc.source.bibliographicCitationWright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Engelbrecht BM (2010) Functional traits and the growth–mortality trade‐off in tropical trees. Ecology 91, 3664—3674.
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.type.documentArtículo
dc.creator.degreetypeFull time
dc.title.TranslatedTitleDivergencia funcional entre los bosques de Várzea e Igapó: un estudio de la diversidad de rasgos funcionales de los bosques inundables de la Orinoquía


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia