Show simple item record

dc.contributor.advisorCorrales Osorio, Adriana 
dc.contributor.advisorGazis, Romina 
dc.creatorRengifo Cajias, Laura 
dc.date.accessioned2021-09-14T12:40:38Z
dc.date.available2021-09-14T12:40:38Z
dc.date.created2021-09-01
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/32421
dc.descriptionLos hongos endofíticos son aquellos que durante todo o parte de su ciclo de vida colonizan los tejidos de la planta formando diferentes relaciones con la planta hospedera que van desde mutualistas hasta patógenas. Se ha descubierto que algunos de estos hongos influyen en el establecimiento de especies pioneras. Se desarrolló un marco teórico preliminar, probado en un pequeño conjunto de especies hospedadoras, para iniciar una conversación sobre las compensaciones presentes en los hongos asociados a las raíces. Para ello, se aislaron hongos de cuatro plantas: Quercus humboldtii, Bambusa sp, Cecropia sp. y Oreopanax parviflorus, identificados molecular y filogenéticamente; se midieron rasgos funcionales importantes para la colonización del huésped. Estos rasgos incluyen la tasa de crecimiento, el diámetro hifal, la coloración hifal, el contenido citoplasmático hifal, el color del micelio y la biomasa. Finalmente, se realizaron análisis estadísticos para identificar las correlaciones entre los rasgos relativos al huésped y al hábitat. Se obtuvieron un total de 41 cultivos de endófitos radiculares de las cuatro especies de plantas, que comprenden veinticinco especies, todas ellas pertenecientes a los Ascomycetes. Todos los aislados, excepto Cadophora sp, presentaron tasas de crecimiento in vitro similares. El análisis de la coloración hifal, que presentó sólo una diferencia marginalmente significativa entre los aislados, sugiere un importante papel de la melanina en el crecimiento de estos hongos. También se encontró una posible relación no lineal entre el diámetro de las hifas y la tasa de crecimiento. Por último, puede haber posibles grupos funcionales caracterizados por una biomasa densa y otra escasa. Nuestros resultados son preliminares; sin embargo, este es un primer paso en la comprensión de la ecología funcional de los endófitos de las raíces asociados a especies de plantas pioneras tropicales.
dc.description.abstractEndophytic fungi are those that throughout or part of their life cycle colonize plant tissues forming different relationships with the host plant ranging from mutualistic to pathogenic. Some of these fungi have been found to influence the establishment of pioneer species. Using a preliminary theoretical framework, tested on a small set of host species, was developed to jump start a conversation about the trade-offs present in root-associated fungi. To this end, fungi were isolated from four plants: Quercus humboldtii, Bambusa sp, Cecropia sp. and Oreopanax parviflorus, identified molecularly and phylogenetically; functional traits important for host colonization were measured. These traits include growth rate, hyphal diameter, hyphal coloration, hyphal cytoplasmic content, mycelial color, and biomass. Finally, statistical analyses were performed to identify correlations among the traits regarding the host and habitat. A total of 41 root endophyte cultures were obtained from the four plant species, comprising twenty-five species, all of them belonging to the Ascomycetes. All the isolates, except for Cadophora sp, presented similar in-vitro growth rates. The analysis of the hyphal coloration, which presented only a marginally significant difference among isolates, suggest an important role of melanin in the growth of these fungi. A potential non-linear relationship between hyphal diameter and growth rate was also found. Finally, there may be possible functional groups characterized by dense and sparse biomass. Our results are preliminary; however, this is a first step in understanding the functional ecology of root endophytes associated with tropical pioneer plant species.
dc.format.extent21 pp.
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.subjectEndófitos de raíz
dc.subjectPlantas pioneras
dc.subjectBosque premontano
dc.subjectAnálisis de la Ecología funcional de los hongos endofíticos
dc.subjectIdentificación molecular de hongos endofíticos
dc.subject.ddcCiencias botánicas 
dc.titleForest root endophytes of pioneer plants from premontane forest in Colombia
dc.typebachelorThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeBiólogo
dc.publisher.programBiología
dc.publisher.departmentFacultad de Ciencias Naturales
dc.subject.keywordRoot endophytes
dc.subject.keywordPioneer plants
dc.subject.keywordPremontane forest
dc.subject.keywordAnalysis of the functional ecology of endophytic fungi
dc.subject.keywordMolecular identification of endophytic fungi
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTrabajo de grado
dc.rights.accesoAbierto (Texto Completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationAbello, F. Klemu, S. 2006. Hongos endófitos: ventajas adaptativas que habitan en el interior de las plantas. Taking from: https://www.redalyc.org/pdf/4499/449945021006.pdf
dc.source.bibliographicCitationAguilar‐Trigueros, C. A., & Rillig, M. C. 2016. Effect of different root endophytic fungi on plant community structure in experimental microcosms. Ecology and Evolution, 6(22), 8149-8158.
dc.source.bibliographicCitationArnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D., & Kursar, T. A. 2000. ¿Are tropical fungal endophytes hyperdiverse? Ecology letters, 3(4), 267-274.
dc.source.bibliographicCitationArroyo Garcia R., Martinez Zapater J.M., Garcia Criado B., Zabalgogeazcoa I. 2002. Genetic structure of natural populations of the grass endophyte Epichloë festucae in semiarid grasslands. Mol Ecol 11, 355-364.
dc.source.bibliographicCitationÁvila de Navia, S. L. Á., & Torres, S. M. E. 2013. Calidad sanitaria del agua del Parque Natural Chicaque. Nova, 11(20), 45-51
dc.source.bibliographicCitationBergmann, J., Weigelt, A., van Der Plas, F., Laughlin, D. C., Kuyper, T. W., GuerreroRamirez, N., ... & Mommer, L. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6(27), eaba3756.
dc.source.bibliographicCitationBlackwell, M. 2011. The Fungi: 1, 2, 3… 5.1 million species?. American journal of botany, 98(3), 426-438.
dc.source.bibliographicCitationCabezas, L., Calderon, C., Medina, L. M., Bahamon, I., Cardenas, M., Bernal, A. J., ... & Restrepo, S. 2012. Characterization of cellulases of fungal endophytes isolated from Espeletia spp. Journal of Microbiology, 50(6), 1009-1013
dc.source.bibliographicCitationChaverri, P., & Gazis, R. O. 2010. Perisporiopsis lateritia, a new species on decaying leaves of Hevea spp. from the Amazon basin in Peru. Mycotaxon, 113(1), 163-169.
dc.source.bibliographicCitationEissenstat, D. M., Wells, C. E., Yanai, R. D., & Whitbeck, J. L. 2000. Building roots in a changing environment: implications for root longevity. The New Phytologist, 147(1), 33-42
dc.source.bibliographicCitationEissenstat, D. M., & Yanai, R. D. 1997. The ecology of root lifespan. Advances in ecological research, 27, 1-60.
dc.source.bibliographicCitationFaeth, S. H., Gardner, D. R., Hayes, C. J., Jani, A., Wittlinger, S. K., & Jones, T. A. 2006. Temporal and spatial variation in alkaloid levels in Achnatherum robustum, a native grass infected with the endophyte Neotyphodium. Journal of chemical ecology, 32(2), 307-324
dc.source.bibliographicCitationFaeth, S. H., & Sullivan, T. J. 2003. Mutualistic asexual endophytes in a native grass are usually parasitic. The American Naturalist, 161(2), 310-325.
dc.source.bibliographicCitationFernandez, C. W., & Koide, R. T. 2013. The function of melanin in the ectomycorrhizal fungus Cenococcum geophilum under water stress. Fungal Ecology, 6(6), 479-486
dc.source.bibliographicCitationGaitán, M. 2006. Hongos endófitos tropicales: conocimiento actual y perspectivas. Taking from: https://revistas.unal.edu.co/index.php/actabiol/article/view/27153/27425
dc.source.bibliographicCitationGardes, M., & Bruns, T. D. 1993. ITS primers with enhanced specificity for basidiomycetes‐ application to the identification of mycorrhizae and rusts. Molecular ecology, 2(2), 113-118.
dc.source.bibliographicCitationGazis, R., & Chaverri, P. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. fungal ecology, 3(3), 240-254
dc.source.bibliographicCitationGamboa-Gaitán, M. A., & Otero-Ospina, J. T. 2016. Colombian vanilla and its microbiota. III. Diversity and structure of the endophytic community. Acta Botanica Hungarica, 58(3-4), 241-256
dc.source.bibliographicCitationGamboa, M. A., & Bayman, P. 2001. Communities of endophytic fungi in leaves of a tropical timber tree (Guarea guidonia: Meliaceae) 1. Biotropica, 33(2), 352-360.
dc.source.bibliographicCitationHawksworth, D. L., & Rossman, A. Y. 1997. Where are all the undescribed fungi?. Phytopathology, 87(9), 888-891
dc.source.bibliographicCitationJumpponen, A. 2001. Dark septate endophytes–are they mycorrhizal? Mycorrhiza, 11(4), 207-211.
dc.source.bibliographicCitationJumpponen, A. R. I., & Trappe, J. M. 1998. Dark septate endophytes: a review of facultative biotrophic root‐colonizing fungi. New Phytologist, 140(2), 295-310
dc.source.bibliographicCitationKearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Thierer, T. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649.
dc.source.bibliographicCitationKong, D., Wang, J., Wu, H., Valverde-Barrantes, O. J., Wang, R., Zeng, H., ... & Feng, Y. 2019. Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications, 10(1), 1-9
dc.source.bibliographicCitationLigges, U., Maechler, M., Schnackenberg, S., & Ligges, M. U. 2018. Package ‘scatterplot3d’. Recuperado de https://cran. rproject. org/web/packages/scatterplot3d/scatterplot3d. pdf
dc.source.bibliographicCitationMartínez Romero, E. D. U. A. R. D. O. 1996. La restauración ecológica. Ciencias, (043).
dc.source.bibliographicCitationMandyam, K. G., & Jumpponen, A. 2015. Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Frontiers in microbiology, 5, 776.
dc.source.bibliographicCitationMéndez-Zavala, A., Contreras-Esquivel, J. C., Lara-Victoriano, F., Rodríguez-Herrera, R., & Aguilar, C. N. 2007. Producción fúngica de un pigmento rojo empleando la cepa xerofilica Penicillium purpurogenum GH-2. Revista mexicana de ingeniería química, 6(3), 267-273
dc.source.bibliographicCitationMiller, M. A., Pfeiffer, W., & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 gateway computing environments workshop (GCE) (pp. 1-8). Ieee
dc.source.bibliographicCitationMiles, L. A., Lopera, C. A., González, S., de García, M. C., Franco, A. E., & Restrepo, S. 2012. Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl, 57(5), 697-710.
dc.source.bibliographicCitationMora, A. M. G., Anaya, J. A., & Dávila, E. Á. 2005. Análisis de fragmentación de los ecosistemas boscosos en una región de la cordillera central de los andes colombianos. Revista Ingenierías Universidad de Medellín, 4(7), 13-27
dc.source.bibliographicCitationNewsham, K. K. 2000. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. The New Phytologist, 144(3), 517-524
dc.source.bibliographicCitationNewsham, K. K. 2011. A meta‐analysis of plant responses to dark septate root endophytes. New Phytologist, 190(3), 783-793.
dc.source.bibliographicCitationNilsson, R. H., Larsson, K. H., Taylor, A. F. S., Bengtsson-Palme, J., Jeppesen, T. S., Schigel, D., ... & Abarenkov, K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic acids research, 47(D1), D259-D264
dc.source.bibliographicCitationNorden, N., Angarita, H. A., Bongers, F., Martínez-Ramos, M., Granzow-de la Cerda, I., Van Breugel, M., ... & Chazdon, R. L. 2015. Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the National Academy of Sciences, 112(26), 8013- 8018
dc.source.bibliographicCitationPiercey, M. M., Graham, S. W., and Currah, R. S. 2004. Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol. Res. 108, 955–964. doi: 10.1017/S0953756204000528
dc.source.bibliographicCitationRana, K. L., Kour, D., Sheikh, I., Dhiman, A., Yadav, N., Yadav, A. N., ... & Saxena, A. K. 2019. Endophytic fungi: biodiversity, ecological significance, and potential industrial applications. In Recent advancement in white biotechnology through fungi (pp. 1-62). Springer, Cham.
dc.source.bibliographicCitationRedman, R. S., Dunigan, D. D., & Rodriguez, R. J. 2001. Fungal symbiosis from mutualism to parasitism: who controls the outcome, host or invader? New Phytologist, 151(3), 705-716
dc.source.bibliographicCitationRivera Ospina & Córdoba García. 1998. Guía ecológica Parque Natural Chicaque. Jardín Botánico de Bogotá. Ttaking from: http://www.chicaque.com/files/9413/6683/6794/Guia_Ecologica.PDF
dc.source.bibliographicCitationRosa, L. H. 2021. Neotropical Endophytic Fungi: Diversity, Ecology, and Biotechnological Applications. Springer Nature.
dc.source.bibliographicCitationRodriguez, R. J., White Jr, J. F., Arnold, A. E., & Redman, A. R. A. 2009. Fungal endophytes: diversity and functional roles. New phytologist, 182(2), 314-330.
dc.source.bibliographicCitationSantos, S. G. D., Silva, P. R. A. D., Garcia, A. C., Zilli, J. É., & Berbara, R. L. L. 2017. Dark septate endophyte decreases stress on rice plants. brazilian journal of microbiology, 48, 333-341.
dc.source.bibliographicCitationSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. doi:10.1038/nmeth.2089
dc.source.bibliographicCitationSikes, B. A., Hawkes, C. V., & Fukami, T. 2016. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology, 97(2), 484-493.
dc.source.bibliographicCitationStamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313
dc.source.bibliographicCitationSánchez-Fernández, R. E., Sánchez-Ortiz, B. L., Sandoval-Espinosa, Y. K. M., Ulloa-Benítez, Á., Armendáriz-Guillén, B., García-Méndez, M. C., & Macías-Rubalcava, M. L. 2013. Hongos endófitos: fuente potencial de metabolitos secundarios bioactivos con utilidad en agricultura y medicina. TIP Revista especializada en Ciencias Químico-Biológicas, 16(2), 132-146
dc.source.bibliographicCitationSchardl, C. L., Young, C. A., Moore, N., Krom, N., Dupont, P. Y., Pan, J., ... & Farman, M. L. 2014. Genomes of plant associated Clavicipitaceae. Advances in Botanical Research, 70, 291-327.
dc.source.bibliographicCitationTruong, C., Gabbarini, L. A., Corrales, A., Mujic, A. B., Escobar, J. M., Moretto, A., & Smith, M. E. 2019. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytologist, 222(4), 1936-1950.
dc.source.bibliographicCitationVannier, N., Bittebiere, A. K., Mony, C., & Vandenkoornhuyse, P. 2020. Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecology, 44, 100907.
dc.source.bibliographicCitationVandermeer J, et al. 2004. Multiple basins of attraction in a tropical forest: Evidence for nonequilibrium community structure. Ecology 85(2):575–579.
dc.source.bibliographicCitationWilcox, B. A., & Murphy, D. D. 1985. Conservation strategy: the effects of fragmentation on extinction. The American Naturalist, 125(6), 879-887
dc.source.bibliographicCitationYakti, W., Kovács, G. M., & Franken, P. 2019. Differential interaction of the dark septate endophyte Cadophora sp. and fungal pathogens in vitro and in planta. FEMS microbiology ecology, 95(12), fiz164
dc.source.bibliographicCitationYakti, W., Andrade-Linares, D. R., Ngwene, B., Bitterlich, M., Kovács, G. M., & Franken, P. 2019. Phosphate nutrition in root–fungus interactions. Endophytes for a Growing World, 120
dc.source.bibliographicCitationYakti, W., Kovács, G. M., Vági, P., & Franken, P. 2018. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecology & Diversity, 11(5-6), 637-648
dc.source.bibliographicCitationYakti, W., Kovács, G. M., Vági, P., & Franken, P. 2018. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecology & Diversity, 11(5-6), 637-648.
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.type.documentArtículo
dc.creator.degreetypeFull time
dc.title.TranslatedTitleHongos endófitos asociados a raíces de plantas pioneras del bosque premontano en Colombia
dc.source.instnameUniversidad del Rosario
dc.source.reponameRepositorio Institucional EdocUR
dc.creator.degreeLevelPregrado


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-SinDerivadas 2.5 Colombia