Show simple item record

dc.contributor.advisorCastro, Carlos 
dc.creatorOrdóñez Herrera, Juan Sebastián 
dc.date.accessioned2014-07-11T00:18:58Z
dc.date.available2014-07-11T00:18:58Z
dc.date.created2014-05-22
dc.date.issued2014 
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/8346
dc.descriptionLa crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
dc.description.abstractThe crisis that erupted in the mortgage market in the United States in 2008 and managed to spread throughout the financial system, demonstrated the level of interconnection that exists between public sector entities and their relationships with the productive sector, leaving highlighted the need to identify and characterize the systemic risk inherent in the system, so that in this way regulators seek both individual as overall system stability. This paper shows, through a model that combines the power of information networks and their suitability for an auto regressive (panel type) spatial model, the importance of incorporating the micro-prudential (proposed Basel II) approach, a variable that captures the effect of being connected with others and making a macro-prudential analysis (proposed Basel III).
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectEconometría Espacial
dc.subjectExternalidad de red
dc.subjectMicro-Prudencial
dc.subjectMacro-Prudencial
dc.subjectRiesgo Sistémico
dc.subject.ddcEconomía 
dc.subject.lembEconometría
dc.subject.lembBanca
dc.subject.lembMicroeconomía
dc.subject.lembMacroeconomía
dc.titleDe lo micro a lo macro prudencial: Un análisis de la supervisión bancaria desde la econometría espacial
dc.typemasterThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeMagíster en Economía
dc.publisher.programMaestría en Economía
dc.publisher.departmentFacultad de Economía
dc.subject.keywordSpatial Econometrics
dc.subject.keywordNetwork Externality
dc.subject.keywordMicro-Prudential
dc.subject.keywordMacro-Prudential
dc.subject.keywordSystemic Risk
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTesis de maestría
dc.rights.accesoAbierto (Texto completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationAcharya, V., & Richardson, M. 2009. Restoring Financial Stability: How to Repair a Failed System. NYU Stern.
dc.source.bibliographicCitationAikman, D., Alessandri, P., Eklund, B., Gai, P., Kapadia, S., Martin, E., Mora, N., Sterne, G., & Willison, M. 2009. Funding liquidity risk in a quantitative model of systemic stability.
dc.source.bibliographicCitationAllen, F., & Babus, A. 2008. Networks in Finance. Wharton School Pub. Chap. 21.
dc.source.bibliographicCitationAllen, Franklin, & Gale, David. 2000. Financial Contagion. Journal of Political Economy, 108, 1-33.
dc.source.bibliographicCitationAmini, H., Cont, R., & Minca, A. 2010. Stress testing the resilience of financial networks.
dc.source.bibliographicCitationAnselin, L. 1980. Estimation methods for spatial autoregressive structures. Regional Science Dissertation & Monograph Series, Program in Urban and Regional Studies, Cornell University.
dc.source.bibliographicCitationAnselin, L. 1988. Spatial econometrics: methods and models. Vol. 4. Springer.
dc.source.bibliographicCitationAnselin, L. 2001. Spatial econometrics. A companion to theoretical econometrics.
dc.source.bibliographicCitationArias, Mauricio, Mendoza, Juan Carlos, & Perez, D. 2010. Applying CoVaR to Measure Systemic Market Risk: the Colombian Case. Reporte de estabilidad financiera banco de la republica de colombia.
dc.source.bibliographicCitationBaltagi, B., Song, S. H., & Koh, W. 2003. Testing panel data regression models with spatial error correlation. Journal of econometrics, 117(1), 123-150.
dc.source.bibliographicCitationBaltagi, B., Egger, P., & Pfa ermayr, M. 2007. A generalized spatial panel data model with random e ects. Tech. rept. Working Paper, Syracuse University.
dc.source.bibliographicCitationBastos, E., & Cont, R. 2010. The Brazilian Interbank Network Structure and Systemic Risk.
dc.source.bibliographicCitationBecher, C., Millard, S., & Soram aki, K. 2008. The network topology of CHAPS Sterling.
dc.source.bibliographicCitationBell, K., & Bockstael, N. 2000. Applying the generalized-moments estimation approach to spatial problems involving micro-level data. Review of Economics and Statistics, 82(1), 72-82.
dc.source.bibliographicCitationBoss, M., Elsinger, H., Summer, M., & Thurner, S. 2003. The Network Topology of the Interbank Market.
dc.source.bibliographicCitationBoyack, K., Klavans, R., & B orner, K. 2005. Mapping the backbone of science. Scientometrics, 64, No 3, 351-374.
dc.source.bibliographicCitationBramoullé, Y., Djebbari, H., & Fortin, B. 2009. Identi cation of peer eff ects through social networks. Journal of Econometrics, 150, 41-55.
dc.source.bibliographicCitationBrunnermeier, M., Gorton, G., & Krishnamurthy, A. 2011. Risk Topography.
dc.source.bibliographicCitationCajueiro, D., & Tabak, B. 2007. The Role of banks in the brazilian interbank market : Does type bank matter?
dc.source.bibliographicCitationCapera, L., G omez, E., Laverde, M., & Morales, M. 2011. Measuring systemic risk in the Colombian fi nancial system: a systemic contingent claims approach. Temas.
dc.source.bibliographicCitationCase, A. 1992. Neighbourhood influence and technological change. Regional science and urban economics, 22, 491-508.
dc.source.bibliographicCitationCastr én, O., & Kavonius, I. 2009. Balance Sheet Interlinkages and Macro-Financial Risk Analysis in the Euro Area. European central bank.
dc.source.bibliographicCitationCastro, C., & Ferrari, S. 2010 (June). Measuring the systemic importance of fi nancial institutions using market information. Tech. rept. Financial stability review National Bank of Belgium.
dc.source.bibliographicCitationChan-Lau, J. 2010a. Balance Sheet Network Analysis of Too-Connected-to-Fail Risk in Global and Domestic Banking Systems. IMF Working Papers.
dc.source.bibliographicCitationChan-Lau, J. 2010b. Regulatory Capital Charges for Too-Connected-to-Fail Institutions: A Practical Proposal. IMF Working Papers.
dc.source.bibliographicCitationCli ff, A., & Ord, J. 1973. Spatial Autocorrelation. Pion, London.
dc.source.bibliographicCitationCorrocher, N., & Zirulia, L. 2009. Me and you and everyone we know: An empirical analysis of local network e ffects in mobile communications. Telecommunications Policy, 33(1), 68-79.
dc.source.bibliographicCitationCrosbie, P., & Bohn, J. 2003. Modeling default risk, Moodys KMV.
dc.source.bibliographicCitationDas, S., & Uppal, R. 2004. Systemic Risk and International Portfolio Choice. The Journal of Finance, Vol. 59, No. 6, 2809-2834.
dc.source.bibliographicCitationDegryse, H., & Nguyen, G. 2007. Interbank Exposures: An Empirical Examination of Contagion Risk in the Belgian Banking System. International Journal of Central Banking.
dc.source.bibliographicCitationDoganoglu, T., & Grzybowski, L. 2007. Estimating network eff ects in mobile telephony in Germany. Information Economics and Policy, 19(1), 65-79.
dc.source.bibliographicCitationDrehmann, M., & Tarashev, N. 2011. Measuring the Systemic Importance of Interconnected Banks.
dc.source.bibliographicCitationDrukker, D., Egger, P., & Prucha, I. 2013. On two-step estimation of a spatial autoregressive model with autoregressive disturbances and endogenous regressors. Econometric Reviews, 32(5-6), 686-733.
dc.source.bibliographicCitationDurlauf, S., & H., Young. 2001. Social Dynamics. MIT: Press. Chap. The new social economics, pages 1-14.
dc.source.bibliographicCitationECB. 2010. Recent advances in modelling systemic risk using network analysis. Tech. rept. European Central Bank.
dc.source.bibliographicCitationEisenberg, L., & Noe, T. 2001. Systemic Risk in Financial Systems. Management Science, 47, No. 2, 236-249.
dc.source.bibliographicCitationElhorst, J. 2003. Speci cation and estimation of spatial panel data models. International regional science review, 26(3), 244-268.
dc.source.bibliographicCitationElsinger, H., Lehar, A., & Summer, M. 2006. Using Market Information for Banking System Risk Assessment.
dc.source.bibliographicCitationErgungor, O., & Thomson, J. 2006. Systemic banking crises. Vol. 23. Emerald Group Publishing Limited.
dc.source.bibliographicCitationEspinosa-Vega, M., & Sole, J. 2010. Cross-Border Financial Surveillance: A Network Perspective.
dc.source.bibliographicCitationEstrada, D., & Morales, P. 2008. La estructura del mercado interbancario y del riesgo de contagio en Colombia. Reporte de estabilidad nanciera banco de la republica de colombia.
dc.source.bibliographicCitationFlannery, M., & Sorescu, S. 1996. Evidence of bank market discipline in subordinated debenture yields: 1983-1991. The Journal of Finance, 51(4), 1347-1377.
dc.source.bibliographicCitationFu, W. 2004. Termination-discriminatory pricing, subscriber bandwagons, and network tra ffic patterns: the Taiwanese mobile phone market. Telecommunications Policy, 28(1), 5-22.
dc.source.bibliographicCitationGalbiati, M., & Soramaki, K. 2010. An agent-based model of payment systems. Journal of Economic Dynamics & Control.
dc.source.bibliographicCitationGauthier, C., Lehar, A., & Souissi, M. 2010. Macroprudential Regulation and Systemic Capital Requirements.
dc.source.bibliographicCitationGeorg, P. 2011 (4). Systemic Risk in Interbank Markets. Ph.D. thesis, Rat der Wirtschaftswissenschaftlichen Fakult at-der-Friedrich-Schiller-Universit at Jena.
dc.source.bibliographicCitationGonzalez, C., & Garcia, A. 2002. El sector fi nanciero de cara al siglo XXI. ANIF. Chap. 3, pages 163-185.
dc.source.bibliographicCitationGorton, G., & Santomero, A. 1990. Market discipline and bank subordinated debt: Note. Journal of Money, Credit and Banking, 22(1), 119-128.
dc.source.bibliographicCitationHelbling, Thomas. 2010. What are externalities? Finance & development, 47(4).
dc.source.bibliographicCitationHoernig, S. 2008. Tari -mediated network externalities: is regulatory intervention any good? Vol.
dc.source.bibliographicCitationHuang, X., Zhou, H., & Zhu, H. 2009. A framework for assessing the systemic risk of major fi nancial institutions. Journal of Banking & Finance, 33(11), 2036-2049.
dc.source.bibliographicCitationIMF. 2009. Global Financial Stability Report. Tech. rept. International Monetary Fund.
dc.source.bibliographicCitationJin, F., & Lee, L. 2013. Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments. Econometrics, 1(1), 71-114.
dc.source.bibliographicCitationJorion, P., & Zhang, G. 2009. Credit Contagion from Counterparty Risk. THE JOURNAL OF FINANCE, LXIV, 2053.
dc.source.bibliographicCitationKambhu, J., Weidman, S., & Krishnan, N. 2007. New Directions for Understanding Systemic Risk. The National Academies Press.
dc.source.bibliographicCitationKapoor, M., Kelejian, H., & Prucha, I. 2007. Panel data models with spatially correlated error components. Journal of Econometrics, 140(1), 97-130.
dc.source.bibliographicCitationKeiler, S., & Eder, A. 2013. CDS Spreads and Systemic Risk-A Spatial Econometric Approach.
dc.source.bibliographicCitationKelejian, H., & Prucha, I. 1998. A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. The Journal of Real Estate Finance and Economics, 17(1), 99-121.
dc.source.bibliographicCitationKelejian, H., & Prucha, I. 1999. A generalized moments estimator for the autoregressive parameter in a spatial model. International economic review, 40(2), 509-533.
dc.source.bibliographicCitationKim, H., & Kwon, N. 2003. The advantage of network size in acquiring new subscribers: a conditional logit analysis of the Korean mobile telephony market. Information Economics and Policy, 15(1), 17-33.
dc.source.bibliographicCitationKoopman, S., Kr aussl, R., Lucas, A., & Monteiro, A. 2009. Credit cycles and macro fundamentals. Journal of Empirical Finance, 16(1), 42-54.
dc.source.bibliographicCitationLaeven, L., & Majnoni, G. 2003. Loan loss provisioning and economic slowdowns: too much, too late? Journal of Financial Intermediation, 12(2), 178-197.
dc.source.bibliographicCitationLee, L. 2007. Identi cation and estimation of econometric models with group interactions, contextual factors and fixed e ffects. Journal of Econometrics, 140, 333{74.
dc.source.bibliographicCitationLee, L.F. 2004. Asymptotic distributions of quasi-maximun likelihood estimators for spatial econometric models. Econometrica, 72, 1899-1926.
dc.source.bibliographicCitationLeón, C. 2012. Implied probabilities of default from Colombian money market spreads: The Merton Model under equity market informational constraints. Borradores de Economía.
dc.source.bibliographicCitationLeón, C., Machado, C., Cepeda, F., & Sarmiento, M. 2011. Too-connected-to-fail Institutions and Payments Systems Stability: Assessing Challenges for Financial Authorities. Borradores de economia Banco de republica de Colombia.
dc.source.bibliographicCitationLeón, Carlos, & Berndsen, Ron J. 2013. Modular scale-free architecture of Colombian fi nancial networks: Evidence and challenges with financial stability in view1. Tech. rept. Banco de la Republica de Colombia.
dc.source.bibliographicCitationLin, X. 2005. Peer eff ects and student academic achivement: an application of spatial autoregressive model with group unobservables. Tech. rept. Ohio State University.
dc.source.bibliographicCitationLiu, M., & Staumy, J. 2010. Systemic Risk Components in a Network Model of Contagion.
dc.source.bibliographicCitationLung-fei Lee, X., & Lin, X. 2010. Speci cation and estimation of social interaction models with network structures. Econometrics Journal, 13, 145176.
dc.source.bibliographicCitationMachado, C., Le on, C., Sarmiento, M., Cepeda, F., Chipatecua, O., & Cely, J. 2010. Riesgo Sist emico y Estabilidad del Sistema de Pagos de Alto Valor en Colombia: An alisis bajo Topolog a de Redes y Simulaci on de Pagos. Borradores de economia Banco de republica de Colombia.
dc.source.bibliographicCitationManski, C.F. 1993. Identi cation of endogenous social eff ects: the reflection problem. Review of Economic Studies, 60, 531-42.
dc.source.bibliographicCitationMarkose, S., Giansante, S., Gatkowski, M., & Shaghaghi, A. 2009. Too Interconnected To Fail: Financial Contagion and Systemic risk in network model od CDS and Other Credit Enhancement Obligations of US banks.
dc.source.bibliographicCitationMart inez, Constanza, & León, Carlos. 2014. The cost of collateralized borrowing in the Colombian money market: does connectedness matter? Tech. rept. Banco de la Republica de Colombia.
dc.source.bibliographicCitationMerton, R. 1974. On the pricing of corporate debt: The risk structure of interest rates*. The Journal of Finance, 29(2), 449-470.
dc.source.bibliographicCitationMárquez, J., & Martinez, S. 2009. A network model of systemic risk: stress testing the banking system. Intelligent Systems In Accounting, Finance And Management, 16, 87-110.
dc.source.bibliographicCitationNewman, M. 2010. Networks: An Introduction. Oxford University Press.
dc.source.bibliographicCitationNiera, E., Yanga, J., Yorulmazera, T., & Alentorn, A. 2007. Network models and financial stability. Journal of Economic Dynamics & Control, 31, 2033-2060.
dc.source.bibliographicCitationon Banking Supervison, Basel Committe. 2010 (December). Basel III: A global regulatory framework for more resilient banks and banking systems. Tech. rept. Bank for international settlements.
dc.source.bibliographicCitationon Banking Supervison, Basel Committe. 2011. The transmission channels between the financial and real sectors: a critical survey of the literature.
dc.source.bibliographicCitationOrd, K. 1975. Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120-126. 27
dc.source.bibliographicCitationPesaran, M. 2006. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012.
dc.source.bibliographicCitationPinksey, J., & Slade, M. 2009. The Future of Spatial Econometrics. Tech. rept. The Pennsylvania State University.
dc.source.bibliographicCitationSignori, D., & Gencay, R. 2012 (March). Economic links and counterparty risk. Tech. rept. Simon Fraser University.
dc.source.bibliographicCitationSobolewski, M., & Czajkowski, M. 2012. Network e ects and preference heterogeneity in the case of mobile telecommunications markets. Telecommunications Policy, 36(3), 197-211.
dc.source.bibliographicCitationSouto, M. 2008. Has the uruguayan nancial system become more resilient to shocks? an analysis adapting the merton framework to a country without equity market data. IMF Occasional Paper.
dc.source.bibliographicCitationThomson, J. 2010. On systemically important fi nancial institutions and progressive systemic mitigation.
dc.source.bibliographicCitationUhde, A., & Heimesho , U. 2009. Consolidation in banking and nancial stability in Europe: Empirical evidence. Journal of Banking & Finance, 33(7), 1299-1311.
dc.source.bibliographicCitationYu, J., de Jong, R., & Lee, L. 2008. Quasi-maximum likelihood estimators for spatial dynamic panel data with fi xed eff ects when both< i> n</i> and< i> T</i> are large. Journal of Econometrics, 146, 118-134.
dc.rights.ccCC0 1.0 Universal
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización.


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/publicdomain/zero/1.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/publicdomain/zero/1.0/

 

Reconocimientos: