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ARTICLE INFO ABSTRACT

Article history: Background: To investigate differences in pathogenesis, diagnosis and resistance pathways between HIV-1

Available online 7 May 2013 subtypes, an accurate subtyping tool for large datasets is needed. We aimed to evaluate the performance of
automated subtyping tools to classify the different subtypes and circulating recombinant forms using pol,

Keywords: the most sequenced region in clinical practice. We also present the upgraded version 3 of the Rega HIV sub-

HIV-1 typing tool (REGAV3).

Subtypes Methodology: HIV-1 pol sequences (PR + RT) for 4674 patients retrieved from the Portuguese HIV Drug

g:ﬁ;ﬁ"ﬁi Resistance Database, and 1872 pol sequences trimmed from full-length genomes retrieved from the Los Ala-

Phylogenetic analysis mos database were classified with statistical-based tools such as COMET, jpHMM and STAR; similarity-

CRF based tools such as NCBI and Stanford; and phylogenetic-based tools such as REGA version 2 (REGAv2),
REGAvV3, and SCUEAL. The performance of these tools, for pol, and for PR and RT separately, was compared
in terms of reproducibility, sensitivity and specificity with respect to the gold standard which was manual
phylogenetic analysis of the pol region.
Results: The sensitivity and specificity for subtypes B and C was more than 96% for seven tools, but was var-
iable for other subtypes such as A, D, F and G. With regard to the most common circulating recombinant
forms (CRFs), the sensitivity and specificity for CRFO1_AE was ~99% with statistical-based tools, with phy-
logenetic-based tools and with Stanford, one of the similarity based tools. CRFO2_AG was correctly identi-
fied for more than 96% by COMET, REGAV3, Stanford and STAR. All the tools reached a specificity of more
than 97% for most of the subtypes and the two main CRFs (CRFO1_AE and CRF02_AG). Other CRFs were iden-
tified only by COMET, REGAv2, REGAv3, and SCUEAL and with variable sensitivity. When analyzing
sequences for PR and RT separately, the performance for PR was generally lower and variable between
the tools. Similarity and statistical-based tools were 100% reproducible, but this was lower for phyloge-
netic-based tools such as REGA (~99%) and SCUEAL (~96%).
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Conclusions: REGAv3 had an improved performance for subtype B and CRFO2_AG compared to REGAv2 and
is now able to also identify all epidemiologically relevant CRFs. In general the best performing tools, in
alphabetical order, were COMET, jpHMM, REGAv3, and SCUEAL when analyzing pure subtypes in the pol
region, and COMET and REGAv3 when analyzing most of the CRFs. Based on this study, we recommend
to confirm subtyping with 2 well performing tools, and be cautious with the interpretation of short

sequences.

© 2013 The Authors. Published by Elsevier B.V. Open access under CCRY-NC-ND license

1. Introduction

At the end 0of 2011 there were 34 million of people living with hu-
man immunodeficiency virus (HIV) (UNAIDS-WHO, 2012). Most
infections are caused by HIV type 1 group Major (HIV-1 group M),
which can be further classified into several clades based on genetic
diversity. To date, nine distinct subtypes named A-D,F-H, ], K (Rob-
ertson et al., 2000) and 58 Circulating Recombinant Forms (CRFs)
(http://www.hiv.lanl.gov/; accessed March 2013) have been identi-
fied. While subtype B has been widely studied and is predominant in
North America, Europe and Australia, it only causes approximately
10 percent of the infections globally (Hemelaar et al., 2011), while
subtype Cis causing nearly half of global infections, followed by sub-
type A with 12% of global infections (Hemelaar et al., 2011). In addi-
tion, infections with recombinant forms such as CRFs and unique
recombinant forms (URFs) have been increasing over the past dec-
ades and are now responsible for a total of 20% of the global infec-
tions. The distribution of infections caused by CRFs varies
regionally; for example, while CRFO2_AG (8% global infections) is
mostly prevalent in West and Central Africa, CRFO1_AE (5% global
infections) is more frequent in South and East Asia (Hemelaar
et al., 2011). Additionally, CRFO6_cpx has been identified in West
Africa and some European countries, BC recombinants such as
CRF07_BC are frequent in China, and BF recombinants, particularly
CRF12_BF, prevail in Brazil and Argentina (Hemelaar et al., 2011).

Due to the fast pace of evolution and frequent recombination of
HIV-1 (Jetzt et al., 2000; Mansky and Temin, 1995), accurate subtyp-
ing of the growing arsenal of genetic data arising from epidemiolog-
ical and antiretroviral resistance studies has become increasingly
challenging. Importantly, different HIV-1 clades show differences
in pathogenesis and present distinct resistance pathways, which in
turn may lead to different clinical outcomes. For example, subtype
D seems to be more transmissible and is associated with faster dis-
ease progression (Baeten et al., 2007). Moreover, subtypes A, C, Fand
G have some natural polymorphisms in Protease (PR) and Reverse
transcriptase (RT) which contribute to resistance in subtype B
(Abecasis etal.,2006; Brenner et al., 2006; Camacho and Vandamme,
2007; Martinez-Cajas et al., 2008; Wainberg and Brenner, 2010).
However, it is often difficult to compare epidemiological and clinical
impact studies since different subtyping methods are used and the
classification of HIV-1 clades frequently seems to differ according
to the method employed (Hue et al., 2011).

Although the gold standard for classification of HIV-1 is based on
phylogenetic analysis of full-length genome sequences (Robertson
etal., 2000), this method is not widely used in clinical settings. Since
most available data are derived from genotypic assays for resistance
to PR and RT inhibitors and this region has proven to contain enough
phylogenetic signal (Snoeck et al., 2002 ), manual phylogenetic anal-
ysis (MPhy) on pol region can be safely used to identify subtypes
(Pasquier et al., 2001; Yahi et al., 2001). However, for large datasets,
automated tools are needed since manual subtyping is cumbersome.
There are three main types of automated tools based on the method
used to assign an HIV-1 clade to a query sequence. First, similarity-
based tools include the NCBI subtyping tool (Rozanov et al., 2004),
Stanford (Liu and Shafer, 2006), Geno2pheno (Beerenwinkel et al.,
2003) and EuResist (http://engine.euresist.org/data_analysis/viral_-

sequence/new). Second, statistical-based tools use partial matching
compression algorithms such as COntext-based Modeling for Expe-
ditious Typing ~-COMET- (Struck et al., 2010), position-specific scor-
ing matrices plus a statistical model such as STAR (Myers et al., 2005)
or jumping profile Hidden Markov Models such as jpHMM (Schultz
et al,, 2009). Finally, there are phylogenetic-based tools such as
REGA (Alcantara et al., 2009; de Oliveira et al., 2005) and SCUEAL
(Kosakovsky Pond et al., 2009).

A major objective of this paper was to compare the latest Rega sub-
typing tool with other available tools. The Rega subtyping tool has as
philosophy to use phylogenetic analysis in order to take into account
the epidemiological and evolutionary relationships among subtypes,
such that it approaches the gold standard to classify subtypes (Rob-
ertson et al., 2000). The algorithms used in earlier versions of REGA
have been previously described (Abecasis et al., 2010; de Oliveira
etal., 2005). REGA subtyping tool version 2 (REGAv2) had a high num-
ber of unassigned sequences, in part because of the limited number of
CRFs included in the reference dataset (Holguin et al., 2008), and the
philosophy to achieve a high specificity at the cost of sensitivity. To
overcome these limitations, the new REGA subtyping tool version 3
(REGAv3) uses an improved decision-tree algorithm geared towards
increasing the recognition of pure subtypes and recombinants (see
further details http://bioafrica.mrc.ac.za:8080/rega-genotype-3.0.2/
hiv/typingtool/decisiontrees). The reference dataset has also been im-
proved to include more divergent strains per subtype and to classify
up to CRF47_BF (See further details http://bioafrica.mrc.ac.za:8080/
rega-genotype-3.0.2/hiv/typingtool/method).

In this paper we aim to determine the performance of REGAv3
in the identification of HIV-1 clades, and to compare its sensitivity,
specificity and reproducibility with its previous version REGAv2
and six other publicly available automated subtyping tools (CO-
MET, jpHMM, NCBI, SCUEAL, Stanford and STAR). Another goal of
this paper was to give guidance as to which HIV-1 subtyping tool
would be better for use in a clinical and a surveillance context.

2. Material and methods
2.1. Study population and subtyping tools

With the objective of emphasizing the classification of preva-
lent non B subtypes, we used two datasets (see Fig. 1). The clinical
dataset was retrieved from the Portuguese Resistance database and
consisted of 4676 pol sequences obtained for routine resistance
testing and pooled from 22 Portuguese hospitals, (mean length:
1295 bp; min: 993 bp, max: 1311 bp). Sequences were obtained
by population sequencing using the ViroSeq 2.0 toolkit (Abbott
Laboratories, Abbott Park, IL, USA). (Sequences are available
through Euresist http://www.euresist.org). The Los Alamos dataset
herein named as LANL dataset, was retrieved using the following
search criteria: “subtype” AND genomic region: “complete gen-
ome” AND “one sequence per patient” and we excluded CRFs that
could not be shown to have epidemiological relevance and with
less than 5 full length genome sequences at the time the analyses
were initiated (CRFO3_AB, CRF04_cpx, CRFO5_DF, CRFO8_BC,
CRF09_cpx, CRF10_CD, CRF11_cpx, CRF13_cpx, and all CRFs later
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Fig. 1. Methodology of this study. (A) Analyses performed on both datasets as was explained in Section 2. (B) Manual phylogenetic analysis performed on both datasets.
Abbreviations: MPhy: Manual Phylogenetic analysis, LANL: Los Alamos database, NJ: Neighbor joining, HKY: HKY model (Hasegawa, Kishino, Yano), GTR + I" + I: General time
reversible model + Gamma + Proportion of invariant sites, bts: bootstrap, %: percentage.

than CRF15_01B) (Hemelaar et al., 2011). As a result, the LANL
dataset included 1872 pol sequences (1300 nts), that were
trimmed from full genome sequences publicly available in Los Ala-
mos database (http://www.hiv.lanl.gov/; Date of access: October
2011) (accession numbers are shown in the supplementary mate-
rial number 6). In addition, each sequence of the LANL dataset was
divided in PR (mean length: 300 nts) and RT (mean length:
1000 nts) with the objective of evaluating the differences in the
performance for identifying PR and RT separately.

Only sequences that passed the quality control check were in-
cluded: the quality of the sequences was evaluated by using the
quality tool of Los Alamos database (available in http://www.hiv.-
lanl.gov/content/sequence/QC/index.html) and the parameters of
Stanford database which are: a maximum number of four for PR
and six for RT stop codons + frame-shifts + unpublished AA inser-
tions or deletions + highly ambiguous nucleotides (B,D,H,V,N)
(Rhee et al., 2006). As a result, 2 sequences were rejected from
the clinical dataset, and the final number of sequences was 4674.

Both datasets were analyzed by the following 8 subtyping tools:
COMET version 2 (http://comet.retrovirology.lu), jpHMM (http://
jphmm.gobics.de/submission_hiv.html), NCBI subtyping tools using
the reference dataset from 2009 (http://www.ncbi.nlm.nih.gov/pro-
jects/genotyping/formpage.cgi), Stanford HIVdb version 6.0.10
(http://sierra2.stanford.edu/sierra/servlet/]JSierra?action=sequence-
Input), SCUEAL (http://www.datamonkey.org/dataupload_scu-
eal.php), STAR (http://www.vgb.uclac.uk/starn.shtml), REGAv2
(http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html)
and REGAv3 (http://www.bioafrica.net/typing-v3/hiv).

2.2. Standardization of assignments and manual phylogenetic analysis

Comparison between subtyping tools required standardization
of the assignments by different subtyping tools. Thus, 1) sub-sub-
types were not taken into account; 2) “A-ancestral” and “A3 sub-

type” were assigned as A; 3) the assignment “-like” in REGAv3
which is the clustering with a pure subtype outside of the refer-
ence cluster with bootstrap >70%, was considered as the subtype
or CRF identified by the tool; 4) assignments “complex” or “recom-
binant” in SCUEAL and REGAv3 were considered recombinants; 5)
different subtypes assigned by Stanford to the RT and PR were con-
sidered as evidence of recombination.

Each sequence from the clinical and LANL datasets was classified
as concordant (all tools agreed on the assignment) or discordant (at
least one tool had a different assignment than the other tools) based
on the results of the 8 subtyping tools (see Fig. 1). The MPhy of concor-
dant sequences was performed by using the 2008 Los Alamos curated
subtypes and CRFs reference dataset (available at http://www.hiv.-
lanl.gov/content/sequence/NEWALIGN/align.html), the sequences
were aligned with ClustalW (Thompson et al., 1994) and, if needed,
the alignment was minimally edited with BioEdit (Hall, 1999). Since
assignment for concordant sequences is less problematic than for dis-
cordant sequences, and since the dataset is so huge, we opted for a fast
Neighbor-joining (NJ) method with 1000 bootstrap replicates and a
simple substitution model (HKY85), which we call fast MPhy. Such
method has been proven useful for subtyping (Gouy et al., 2010; Po-
sada and Crandall, 2001), and it saves computation time. A query se-
quence was assigned to a particular clade if it clustered
monophyletically inside that clade with bootstrap support >70% (Hil-
lis and Bull, 1993; Pasquier et al., 2001; Yahi et al., 2001). Otherwise,
the query sequence was considered discordant.

The discordant sequences were further analyzed with the 2008
Los Alamos curated subtypes and CRFs reference dataset comple-
mented with more and curated full-genome sequences available
for each subtype in the database using a maximum of 15 sequences
per subtype (available in http://www.hiv.lanl.gov/content/se-
quence/HIV/COMPENDIUM/compendium.html). To optimize sub-
type classification of the discordant sequences (Kuhner and
Felsenstein, 1994; Leitner et al., 1996), we used as gold standard a
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slow MPhy using Maximum Likelihood trees with 1000 bootstrap
replicates and the best-fitting nucleotide substitution model (in this
case GTR + 1 + I') (Posada, 2008; Tamura et al., 2011). If the query se-
quence clustered monophyletically inside a clade with bootstrap
support >70% it was assigned that clade, otherwise the sequence
was further screened for recombination using SimPlot with a win-
dow size of 300 nts in steps of 20 nts (Lole et al., 1999). For the se-
quences with no signal for recombination, the sequence was
assigned the clade with the highest similarity in SimPlot, and for
all such sequences the majority of windows reached >70% bootstrap
support. If there was a signal for recombination, the sequence was
called unique recombinant form (URF), and the putative recombi-
nant fragments were analyzed separately. A putative recombinant
fragment with a phylogenetic signal >0.9 using TREEPUZZLE analysis
was assigned a pure subtype or CRF if it clustered inside the respec-
tive subtype or CRF clade with >70% bootstrap support (Hillis and
Bull, 1993; Schmidt et al., 2002), otherwise the fragment was called
unclassified (U) (Robertson et al., 2000).

The analyzed region for CRFO1_AE and CRF14_BG is lacking a
recombination breakpoint. We considered the pol region in the LANL
dataset as correctly assigned to these two CRFs, since that assignment
is based on the full genome. Such confirmation of breakpoints outside
the pol region is not available for the clinical dataset, and this can cast
doubt on the accurate assignment based on concordance between the
tools and confirmed only by fast MPhy as described above. Therefore,
in addition to fast MPhy for concordant sequences, all sequences that
were assigned by any of the subtyping tools as either these CRFs or the
parent pure subtype (even when concordant) were also analyzed
with slow MPhy (Guindon et al., 2010), which included all complete
genomes of the CRF and parent pure subtype as reference sequences.
In order to be considered CRF, the sequence should cluster inside the
CRF reference cluster with more than 70% of bootstrap support (Hillis
and Bull, 1993; Schmidt et al., 2002), otherwise it was considered the
parent pure subtype. Finally, to verify these assignment, all sequences
thus assigned subtype G or CRF14_BG were pooled with all full gen-
ome CRF14_BG and full genome subtype G sequences from LANL,
and a single unrooted tree was constructed using RAXML (Stamatakis,
2006) (supplementary Fig. 3). We found a big discrepancy between
the different analyses for CRF14_BG and subtype G, and therefore,
for the clinical dataset only, CRF14_BG and subtype G were pooled
and analyzed together as a single ‘subtype’ called “CRF14_BG or G".
Tools were considered to correctly assign these sequences when they
scored either CRF14_BG or subtype G. We did not encounter problems
with CRFO1_AE, this was absent in our clinical dataset, and all subtype
A sequences were confirmed not to be CRFO1_AE.

2.3. Sensitivity, specificity, reproducibility and statistical analysis

The reference standard was MPhy of the pol region for the clin-
ical dataset and the full-length genome assignment confirmed with
MPhy of the pol region for the LANL dataset (the latter two were
100% concordant). Then we calculated the sensitivity with the for-
mula TP/TP + FN and specificity with the formula TN/TN + FP (Ba-
noo et al., 2010), where TP = true positives, FP = false positives,
TN = true negatives, FN = false negatives.

To assess the reproducibility, we created a random subset of
100 sequences extracted from the clinical and LANL datasets that
contained pure subtypes and CRFs and then ran this dataset 10
times with each tool (see Fig. 1). The reproducibility was, by defi-
nition, the percentage of times the same results were obtained
when a subtyping tool was used 10 times on the same sequence,
then the average of these percentages was calculated for the 100
sequences (Banoo et al., 2010). For G and CRF14_BG, only LANL se-
quences were used. If for a specific tool there were any discordant
results between the runs, the entire clinical and LANL datasets
were evaluated with that tool. The percentage of reproducibility

was then calculated for this entire dataset, but again excluding G
and CRF14_BG from the clinical dataset.

We evaluated the performance of the tools in the clinical, LANL,
and clinical + LANL datasets (herein named as overall dataset). Sta-
tistical significance of the difference between subtyping tools was
evaluated with McNemar's test. The statistical analysis was calcu-
lated using R version 2.12.1.

3. Results
3.1. Subtype distribution of the datasets

Two sequences were excluded from the clinical dataset according
to the quality assessment criteria (Rhee et al., 2006). The distribution
of subtypes in the datasets is shown in Tables 1-3 according to the
MPhy of the pooled clinical and LANL datasets (herein named as over-
all dataset) (the distribution of subtypes according to the clinical or
the LANL dataset separately is shown in supplementary Tables 2
and 3 respectively, phylogenetic trees for the clinical and the LANL
datasets are in supplementary material Figs. 1 and 2). With regard
to the non-B subtypes and the most common CRFs, despite the inclu-
sion of two datasets, there was a limited number of H, ], K, CRFO6_cpx,
CRF07_BC, CRF12_BF and CRF14_BG sequences to reliably evaluate
the performance of the subtyping tools, yet the results are still listed
in the tables. The CRF13_cpx, CRF18_cpx, CRF25_cpx and CRF27_cpx
were also found in the clinical dataset (see supplementary Table 2),
but these CRFs had a very low prevalence and not enough full genome
sequences were found in LANL at the time of the collection of data to
reliably assess the performance of the tools for these CRFs, but we in-
cluded the results in supplementary materials (supplementary Ta-
ble 2). We did not evaluate the performance of the subtyping tools
for CRFs that are not contributing substantially to the epidemic or that
are poorly assigned. That is also why REGAv3 does not score all CRFs
reported to date (see information about the epidemiological, geo-
graphical and recombination information in http://bioafri-
ca.mrc.ac.za/CRFs/CRFs.php). For the clinical dataset, subtype G and
CRF14_BG were pooled into a special class “G or CRF14_BG.”

3.2. Performance of the subtyping tools for pure subtype assignment

We evaluated the performance on the overall dataset, the clin-
ical separately and the LANL dataset separately. Since we did not
find many differences between the results of these datasets, we
only show the performance of the overall dataset (see the perfor-
mance of the tools for the clinical or the LANL dataset separately
in supplementary Tables 2 and 3, respectively). However, we found
some discrepancies in the results for subtype A when we compared
the two results of the clinical and the LANL datasets. For example,
subtype A in the LANL dataset was 100% accurately classified by
COMET, jpHMM and REGAV2 but the values in the clinical dataset
were 76.5%, 86%, and 73%, respectively.

The sensitivity of each of the subtyping tools was more than 96%
for subtype B and 98% for subtype C except for NCBI, which had low-
er values in both datasets (Tables 1-3, see details in supplementary
Tables 2 and 3). However the results were variable for other sub-
types. For instance, COMET, jpHMM, and REGAv3 had a sensitivity
of more than 90% for subtype A. jpHMM and REGAv3 obtained sen-
sitivities of 100% for subtype D and subtype F, respectively. REGAv3,
Stanford and STAR classified correctly subtypes H, ], K, although the
number of sequences available was limited. Noteworthy, the speci-
ficity for all pure subtypes was more than 98% (Tables 1-3).

3.3. Performance of the subtyping tools for Recombinant Forms

COMET, jpHMM, REGAv2, REGAv3, Stanford and STAR had sen-
sitivities and specificities around 99% for the classification of
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Table 1
Performance of statistical-based subtyping tools.
Statistical-based tools
Total | COMET jpHMM STAR

Subtype Sens 95% Cl Spec 95% Cl Sens 95% Cl Spec 95% Cl Sens 95% Cl Spec 95% ClI
A 226 91.2 87.4-949 99.9-100 94.7 91.8-97.6 99.8 99.7-99.9 50.4 43.9-57.0 - 100-100
B 3023 | 99.1 98.8-99.5 | 99.8 99.6-99.9 99.0 98.7-994 99.6 99.4-99.8 | 97.6 97.0-98.1 99.6 99.4-99.8
C 628 99.7 99.2-100 100-100 100-100 100-100 | 99.8 99.5-100 100-100
D 69 97.1 93.1-100 100-100 100-100 100-100 89.9 82.7-97.0 100-100
F 129 89.1 83.8-94.5 100-100 92.2 87.6-96.9 100-100 89.1 83.8-94.5 100-100
LANL G* 34 85.1-100 | 99.5 99.0-99.7 97.1 84.7-99.9 994 98.9-99.7 73.5 55.6-87.1 | 99.4 98.9-99.7
H 11 90.9 73.9-100 100-100 90.9 73.9-100 100-100 100-100 100-100
J 6 50.0 10.0-90.0 100-100 100-100 100-100 100-100 100-100
Kt 2 100-100 100-100 100-100 100-100 100-100 100-100
CRFO1_AET 169 99.4 98.3-100 100-100 100-100 100-100 | 98.8 97.2-100 100-100
CRF02_AG 272 96.3 94.1-986 99.9-100 NA NA NA NA 96.0 93.6-98.3 | 99.7 99.5-99.8
CRFO6_cpx 28 50.0 31.5-68.5 100-100 NA NA NA NA NA NA NA NA
CRFO7_BCY} 10 90.0 55-100 100-100 NA NA NA NA NA NA NA NA
CRF12_BFf} 5 36.0-100 100-100 NA NA NA NA NA NA NA NA
LANL CRF14_BG* 11 81.8 47.8-96.8 | 99.8 99.6-99.9 NA NA NA NA NA NA NA NA
Clinical G+CRF14_BG# | 1571 | 98.7  98.2-99.3 | 99.9 99.8-100 98.3 97.7-99 | 99.2 98.9-99.5 | 953 94.2-96.3 | 99.6 99.4-99.8

The sensitivity (Sens) and specificity (Spec) are reported for statistical-based tools. The values with 100% of performance are highlighted in dark gray; the values with more
than 90% of performance are colored in light gray. *The values for G and CRF14_BG are based on the LANL dataset only. 'These subtypes of CRFs only were available in the
LANL dataset. ‘The 1571 sequences G and CRF14_BG of the clinical dataset were pooled as a single category. Abbreviations: n: sample, cpx: complex, LANL: Los Alamos dataset,

NA: Not applicable, URF: Unique recombinant form.

Table 2
Performance of similarity-based subtyping tools.

Similarity-based tools
Total | NCBI STANFORD
Subtype Sens 95% ClI Spec 95% ClI Sens 95% ClI Spec 95% ClI
A 226 | 655 59.3-71.7 99.9-100 63.3 57.0-69.6 99.9-100
B 3023 | 847 83.4-859 | 98.8 98.4-99.1 | 983 97.9988 99.0 | 98.7-99.4
C 628 | 924 90.3-94.4 000 100-100 | 98.9  98.1-99.7 G0N 99.9-100
D 69 | 79.7 70.2-89.2 J00M0Y 100-100 | 91.3  84.7-98.0 [HOON 100-100
F 129 | 87.6 81.9933 | 99.9 99.9-100 71.3 63.5-79.1 00N 100-100
LANL G* 34 | 471 29.8-64.9 [HOOIOY 99.7-100 [ 97.1  84.7-99.9 | 99.4  98.9-99.7
H 11 100-100 |00 100-100 [H000N 100-100 [HEOIGN 100-100
J 6 28.9-100 000N 100-100 00N 100-100 [000Y 100-100
Kt 2 100-100 4000 100-100 #0004 100-100 [HEON 100-100
CRFO1_AET 169 69.9-82.7 | 99.7 99.4-100 JH000Y 100-100 & 99.6 | 99.3-99.9
CRFO2_AG 272 42.6-54.5 | 99.8  99.7-99.9 | 989 97.7-100 | 98.0 97.6-98.3
CRFO6_cpx 28 68.0-96.3 | 99.3  99.1-99.5 NA NA NA NA
CRFO7_BCt 10 59.0-100 000N 100-100 NA NA NA NA
CRF12_BFt 5 36.0-100 000N 100-100 NA NA NA NA
LANL CRF14_BG* 11 61.5-100 | 99.5 99.1-99.7 NA NA NA NA
Clinical G+CRF14_BG# | 1571 99.5-100 | 98.8  98.4-99.2 | 97.5 | 96.7-98.3 [ 98.9 | 98.5-99.2

The sensitivity (Sens) and specificity (Spec) are reported for similarity-based tools. The values with 100% of performance are highlighted in dark gray; the values with more
than 90% of performance are colored in light gray. *The values for G and CRF14_BG are based on the LANL dataset. "These subtypes of CRFs only were available in the LANL
dataset. ‘The 1571 sequences G and CRF14_BG of the clinical dataset were included in the total. Abbreviations: n: sample, cpx: complex, LANL: Los Alamos dataset, NA: Not

applicable, URF: Unique recombinant form.

CRFO1_AE (see Tables 1-3, supplementary material Table 3). How-
ever, the absence of a recombination breakpoint in the pol region
makes the classification of this CRF challenging by the subtyping
tools (see Fig. 2) (Carr et al., 1996). Therefore, COMET and REGAv3
used other assignments; for example, COMET classified one se-
quence as “01_AE (check for 15_01B)” and REGAv3 identified 99%
(168/169) as “HIV Subtype A (CRFO1_AE).” On the other hand, SCU-
EAL and NCBI classified independently CRF15_01B and CRFO1_AE,
with sensitivity dropping to 84% and 76%, respectively.

The sensitivity and specificity was more than 96% using COMET,
REGAV3, Stanford and STAR for CRFO2_AG, while NCBI and SCUEAL

had values below 50% for sensitivity. In most of the cases, NCBI
misclassified some CRFO2_AG as CRF30_0206 or CRF36_cpx
whereas SCUEAL identified CRFO2_AG sequences as “complex”.
Regarding CRFO6_cpx, REGAv3 had the highest sensitivity using
17 and 11 sequences in the clinical and LANL datasets respectively.
In the clinical dataset low prevalent CRFs were also found, for in-
stance, CRF25_cpx was identified 100% by REGAv3 in 9 sequences
(see supplementary Table 2), CRF18_cpx was classified with 100%
of sensitivity with NCBI, REGAv3 and SCUEAL in 3 sequences. Only
REGAv2 and REGAv3 correctly identified both sequences of
CRF13_cpx and both sequences of CRF27_cpx, respectively. On
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Table 3
Performance of phylogeny-based subtyping tools.

Phylogenetic tools
Total | REGAV2 REGAV3 SCUEAL
Subtype Sens 95% Cl Spec 95% Cl Sens 95% Cl Spec 95% Cl Sens 95% ClI Spec 95% Cl
A 226 | 898 859-93.3 OO 99.9-100 | 956  92.9-98.3 OGN 99.9-100 858 81.3-90.4 | 99.9  99.9-100
B 3023 [ 973 96.7-97.8 | 99.8 99.7-99.9 | 99.2  98.9-99.5 | 99.3 99.0-99.5 | 963 | 957-97.0 | 99.9 99.5-99.9
c 628 | 99.8  99.5-100 100-100 [I60ION 100-100 100-100 | 99.0 | 98.3-99.8 100-100
D 69 | 841 75.4-92.7 100-100  88.4  80.9-93.0 100-100 | 957  90.8-100 100-100
F 129 | 93.8 | 89.6-98.0 100-100 100-100 100-100  89.9  84.7-95.1 100-100
LANL G* 34 85.1-100 | 99.4 98.9-99.7 85.1-100 | 99.4 98.9-99.7 | 97.1 | 84.7-99.9 | 99.9  99.6-100
H 11 73.9-100 100-100 100-100 100-100 | 90.9  73.9-100 100-100
J 6 100-100 100-100 100-100 100-100 - 100-100 100-100
K+ 2 100-100 100-100 100-100 100-100 100-100 100-100
CRFO1_AEt 169 98.3-100 100-100 | 99.4  98.3-100 100-100 840  78.5-89.5 100-100
CRF02_AG 272 59.0-70.4 99.9-100 | 989 | 97.7-100 100-100  33.8  28.2-39.4 100-100
CRFO6_cpx 28 63.493.8  99.7 99.699.9 964  89.6-100 | 99.5 99.3-99.6 464  28.0-64.9 100-100
CRFO7_BC* 10 59.0-100 100-100 - 59.0-100 - 100-100  40.0  9.6-70.4 100-100
CRF12_BF} 5 28.0-100 100-100 36.0-100 100-100  80.0  28.0-100 100-100
LANL CRF14_BG* 11 30.9-88.9 99.7-100 727 39.1.937 | 99.9 99.7-100 81.8 47.896.8  99.9 99.6-99.9
Clinical G+CRF14_BG# | 1571 98.3-99.3 | 99.8 99.6:99.9 | 99.8  99.6-100 | 98.9 98.6:99.3 | 97.6 | 96.9-98.4  99.7 99.5-99.9

The sensitivity (Sens) and specificity (Spec) are reported for phylogenetic-based tools. The values with 100% of performance are highlighted in dark gray; the values with more
than 90% of performance are colored in light gray. *The values for G and CRF14_BG are based on the LANL dataset. "'These subtypes of CRFs only were available in the LANL
dataset. ‘The 1571 sequences G and CRF14_BG of the clinical dataset were included in the total. Abbreviations: n: sample, cpx: complex, LANL: Los Alamos dataset, NA: Not
applicable, URF: Unique recombinant form, REGAv3: REGA subtyping tool version 3, REGAv2: REGA subtyping tool version 2, URF: Unique recombinant form.

the other hand, the LANL dataset included other prevalent CRFs
such as CRFO7_BC and CRF12_BF. A 100% of 10 sequences of
CRF07_BC were identified correctly using NCBI, REGAv2 and, RE-
GAv3. Similarly, a 100% of 5 sequences of CRF12_BF were correctly
classified by COMET, NCBI and REGAv3.

A CRF was never assigned when the sequence clustered signifi-
cantly with a CRF but outside of the reference clade. In this way,
potential CRFs can have been assigned URF; however there is no
safe way to assign such a sequence to a CRF in absence of the full
genome. To overcome this potential limitation, the sequences as-
signed in this way as URF were further analyzed with the slow
Mphy and the CRFs’ reference dataset complemented with all cu-
rated full genome CRF sequences of Los Alamos database, and with
SimPlot. We found that we had not missed any true CRFs and that
all sequences that had been assigned URFs were truly URFs with
unassigned fragments such as CRF06_cpx/U recombinant (23%,
79/336). Other frequent URFs in the clinical dataset were various
B/G recombinants (35%, 118/336), followed by other recombinants
with unassigned fragments such as G/U recombinant (9%, 31/336)
and B/U recombinant (5%, 16/336). The performance of the subtyp-
ing tools was not evaluated for URFs because of the limited number
of sequences available and the complexity to evaluate recombi-
nants when tools such as COMET, Stanford and STAR do not show
the recombination breakpoints (Liu and Shafer, 2006; Myers et al.,
2005; Struck et al., 2010).

3.4. Performance of the subtyping tools for G and CRF14_BG

When confronted with the discrepancy in manual phylogenetic
assignment for CRF14_BG and subtype G in the clinical dataset, as
described in methods, we decided to only use the LANL dataset to
calculate the performance on these two subtypes, because the polre-
gion was trimmed from full genomes which is the only way to safely
assign CRFs that lack a breakpoint in the here analyzed pol region
(see Fig. 2) (Delgado et al., 2002). The sensitivity for subtype G was
more than 97% for all the tools, except NCBI and STAR in the LANL
dataset. The first had a sensitivity of 47% because of misclassification
of some subtype G sequences as CRF14_BG or CRF43_02AG (see
Fig. 2). STAR had 73% of sensitivity due to “unassigned” sequences.

The specificity for subtype G was more than 99% for all the tools.
Regarding CRF14_BG, COMET and SCUEAL classified 9 out of 11 se-
quences correctly followed by REGAv2 and REGAv3, which classified
8 out of 11 sequences as “Subtype G (CRF14_BG)".

To evaluate the discordances between the tools, the fast and
slow MPhy procedures and the manual phylogenetic analysis of
subtype G and CRF14_BG sequences in a single tree, as described
in methods, we retrieved the envelope (env) sequences from the
Portuguese resistance database. We found 44 sequences (C2-V5 re-
gion of the gp120, mean length: 500 nts) from the same patients
whose pol sequence was included in this study, 28 had their pol se-
quence classified as G using slow MPhy, and 16 as CRF14_BG. 4 sub-
types B env sequences belonged to patient isolates classified as G in
pol, similarly 6 subtype G env sequences belonged to patient iso-
lates classified as CRF14_BG in pol. In addition, we determined
how the Portuguese sequences clustered with respect to all full
genome G/CRF14_BG sequences available from the Los Alamos
database. All Portuguese G or CRF14_BG clinical sequences formed
a monophyletic cluster within subtype G including all CRF14_BG
full genomes, but the Portuguese clinical sequences, assigned as
CRF14_BG and G by slow MPhy were paraphyletic with each other,
suggesting that there may be a problem with the assignment of
CRF14_BG and this CRF may in fact consist of more than one CRF
with very similar breakpoints (see supplementary material Fig. 3).

Using slow Mphy, 951 sequences were considered subtype G
and in more than 96% of the cases these were also classified sub-
type G by jpHMM, REGAv2, REGAv3 and Stanford (in alphabetical
order and see supplementary material Table 2), however, the tools
also assigned many of these sequences to CRF14_BG; with the
exception of COMET and SCUEAL. Using slow Mphy, 620 sequences
were considered CRF14_BG, and again, COMET and SCUEAL had the
highest agreement with slow MPhy, but these values were just 62%
and 56%, respectively. Given that we did no longer consider the
slow MPhy reliable for subtype G and CRF14_BG, these perfor-
mance statistics are also not reliable. We therefore chose to pool
the subtype G and CRF14_BG sequences from the Portuguese clin-
ical database, as they were assigned by slow MPhy, and compute
the performance of the tools on the combined class “G or
CRF14_BG"“.The sensitivity was above 99% for NCBI and REGAv3,
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Fig. 2. Frequent problems with the classification of CRFs. (A) Adapted from the Los Alamos database available in http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/
CRFs.html. The dashed lines delineate the region that is used for resistance testing and for the current performance analysis. The CRFO1_AE and CRF15_01B are entirely
subtype A in the pol gene, similarly CRF14_BG and CRF43_02G are entirely subtype G in this region. This complicates the identification since it is difficult to discriminate the
parent pure subtypes from the CRFs in geographic areas where the CRFs originated. (B) An example analysis by SCUEAL. The query sequence of the genomic region pol has no
evidence of recombination and it clusters with CRF15_01B. However, this pol gene is from a full-length genome sequence assigned as CRFO1_AE. It is possible that it concerns
here a CRFO1_AE that was very closely related to the founder of CRF15_01B. (C) An example analysis by REGAv3. The query sequence is the pol region trimmed from a full-
length genome sequence assigned as CRF14_BG. In the pure subtype analysis it has a high support with subtype G and in the CRF analysis it has a high support with
CRF14_BG. The algorithm classified it as G. This might be due to the fact that the sequence did not cluster reliably within the CRF14_BG clade. (D) Example of the assignment
“complex” by SCUEAL. The assignment of the full genome is CRF02_AG but the tool identified it as a G, CRFO1_AE, CRFO2_AG, A ancestral recombinant.

mentary data (supplementary Tables 4 and 5). When analyzing PR
separately, COMET and jpHMM showed similar performance as for
pol with regard to pure subtypes and the CRFO1_AE from the LANL
dataset. However, the sensitivities varied for the other tools. For in-
stance, Stanford and STAR had a better sensitivity for subtype A,
but NCBI a worse sensitivity for subtypes A, C, F, and G. Stanford
and STAR had similar sensitivities for CRFO2_AG but other tools

followed by COMET, jpHMM, and REGAv2 with more than 98%
while specificity was around 99% for all the tools.

3.5. Performance of the subtyping tools for PR and RT separately

The performance of the tools on PR and RT separately was only
evaluated on the LANL dataset and the results are shown in supple-
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had a lower performance like COMET, NCBI, REGA and SCUEAL.
With regard to RT sequences, in general, the performance of the
subtyping tools was the same as for the pol sequences, again using
the LANL dataset only. The exceptions included tools with im-
proved sensitivity such as NCBI for subtypes B, D and G; REGAv3
for CRFO2_AG, Stanford for subtypes A, F and STAR for subtype G.
However, SCUEAL had decreased sensitivity for subtype CRFO2_AG
(supplementary Table 4).

3.6. Performance of REGAv3 versus the previous version REGAv2

The performance of REGAv3 was better than REGAv2 for sub-
types B (p = 0.01), and CRFO2_AG (p = 0.001) in the genomic region
pol in both datasets (see Tables 1-3 and supplementary Tables 2
and 3). In the case of CRFO2_AG, for instance, the changes in the
decision tree for REGAv3 improved sensitivity by properly assign-
ing CRFO2_AG sequences that were classified as “check the boot-
scan” by REGAv2.

We compared the new term “-like” of REGAv3 with MPhy. “Sub-
type B-like” corresponded to subtype B in 28 sequences analyzed
with the MPhy, while 8 were B/U recombinants and 2 were B/G
recombinants. In the case of “subtype G-like”, the MPhy showed
1 subtype G, 3 recombinants G and one CRFO6_cpx. “Subtype Al-
like” and “Subtype F1-like” were identified in 2 and 4 sequences,
respectively, but in both cases the MPhy showed these were A
and F subtypes.

We also evaluated the performance for PR and RT separately but
only using the LANL dataset. In the analysis of RT, REGAv3 had
higher sensitivity than REGAv2 for subtype B (98.8 versus 91.9).
However, the performance in PR was variable (see supplementary
Table 5) because the REGA subtyping tool algorithm is different for
sequences shorter than 800 nts. In short sequences, the criteria are
based on clustering only and potential recombination is not ana-
lyzed. This is because the window size for recombination analysis
in REGA is chosen as 400 nts to avoid losing too much phylogenetic
signal (Strimmer and von Haeseler, 1997) and recombination is
scanned in steps of 50 nts, such that no meaningful recombination
signal can be obtained for such short sequences. REGAv3 correctly
identified only 54% of the subtype A sequences, which is better
than the 45% with REGAv2, but the sensitivity for subtype B de-
creased from 86% to 73% when comparing REGAv2 versus REGAv3.
There was no difference between the tools for subtype C and G. The
lack of phylogenetic signal in the short fragment of PR significantly
reduced the sensitivity of the tool, for instance REGAv2 had a sen-
sitivity of 27% and REGAv3 had 24% for subtype F; while none of
the subtypes D, CRFO1_AE and CRF02_AG sequences analyzed were
properly identified.

3.7. Reproducibility of HIV-1 subtyping tools

COMET, jpHMM, NCBI, Stanford, and STAR were 100% reproduc-
ible. Subtyping tools based on phylogenetic methods such as RE-
GAv2, REGAv3 and SCUEAL were reproducible with values of
99.2% (95% CI: 99.10-99.26), 99.2% (95% CI: 99.15-99.30) and
96.4% (95% Cl: 96.27-96.60), respectively. When the clinical and
LANL datasets were independently analyzed, the reproducibility
did not change significantly; for instance, the reproducibility for
REGAvV2 was 99.1% and 99.5%, for REGAv3 98.8% and 99.7%, and
for SCUEAL 95.4% and 98.1%, respectively.

For REGAv2 and REGAv3, most of the non-reproducible results
were related to subtype B. For example, when the sequence was
subtype B, the tool might classify it as subtype B, or as “check the
report” or “B/D recombinant” (for details see also Supplementary
Table 1). In this paper we considered “subtype-like” as belonging
to the subtype (or CRF) identified by the tool for REGAv3. If “sub-
type-like” would be considered discordant, then the sensitivity of

REGAv3 would go down (from 99.2% to 97.8% for subtype B, the
assignment with the highest number of -like assignments), and
the reproducibility would go up (from 98.9% to 99.2%). For SCUEAL,
the non-reproducible results were related mainly to subtype B and
CRF02_AG. For instance, subtype B was sometimes classified as “B/
D recombinant” by the tool, and CRF02_AG was frequently assigned
as “complex”.

4. Discussion

In the present study, we compared and described the perfor-
mance of the phylogenetic based automated HIV-1 subtyping tool
REGAVvV3, its previous version REGAv2, and six other commonly
used automated HIV-1 subtyping tools: one other phylogenetic
based tool, SCUEAL; three statistical-based tools, COMET, jpHMM
and STAR; and two similarity based tools, NCBI and Stanford. We
used only the pol (PR +RT) region that is usually sequenced for
drug resistance testing (Thompson et al., 2012; Vandamme et al.,
2011), since this generates the largest datasets for which these
tools are designed. This restriction was also made since tools such
as SCUEAL and Stanford cannot assign sequences outside this re-
gion (Kosakovsky Pond et al., 2009; Liu and Shafer, 2006). In addi-
tion, we analyzed with phylogenetic analysis two datasets; one
dataset was derived from clinical samples and another from the
Los Alamos database (available in http://www.hiv.lanl.gov/). We
used the clinical data from Portugal because it is one of the Euro-
pean countries with the highest proportion of non B-subtypes
(Abecasis et al., 2008, 2013). Since phylogenetic analysis of full-
length genomes is the gold standard to define the current subtypes
(Robertson et al., 2000), we also used the assignment of the pol re-
gion confirmed with MPhy and trimmed from full-length genomes
of pure subtypes and the most common CRFs from the Los Alamos
database, with the aim to better evaluate the performance of auto-
mated subtyping tools on all epidemic subtypes and CRFs.

Our primary aim was to evaluate the new subtyping tool RE-
GAv3 versus other available tools. REGAv3 identified subtype B,
most of the non-B pure subtypes and the most frequent CRFs with
a sensitivity and specificity of more than 96% in the pol region. The
classification of REGAv3 for subtype B and CRFO2_AG has improved
compared to REGAv2; additionally, with an updated algorithm and
reference dataset, REGAv3 is designed to identify most of the epi-
demic CRFs. Consequently, REGAv3 performs equally well as other
tools, such as COMET and jpHMM, which also had high sensitivity
and specificity for classifying most of the pure subtypes and such
as COMET, Stanford and STAR for classifying CRFO1_AE and
CRF02_AG.

Concerning some previous reports that suggested a low perfor-
mance of REGAv2 compared with other subtyping tools (Holguin
et al., 2008; Yebra et al., 2010b), it is pertinent to add that these
discrepancies were almost exclusively due to unassigned reports,
and not due to wrong assignments (Yebra et al., 2010b). The num-
ber of unassigned sequences was reduced in REGAv3 compared to
REGAV2, by introducing the term "like". Although 74% of the se-
quences assigned as “like” were classified as a pure subtype by
the MPhy in our analysis, 26% of the samples showed evidence of
recombination; therefore, this terminology “like” is indeed useful,
as it alerts the user to further verify these sequences. This helps to
reduce the number of inaccurate assignments, while also reducing
the number of unassigned sequences. Thus, REGAv3 uses the “sub-
type-like” assignment to indicate the most likely subtype for a par-
ticular strain, and at the same time to caution for potential
discrepancies, thereby increasing the usefulness of the tool both
for epidemiological statistical purposes where it is important to
have as few as possible unassigned sequences, and for situations
where correct assignment is more important.
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One of the aims of the study was to give guidance as to which
tool would perform well in a context of HIV-1 surveillance activi-
ties where the overall prevalence and spread of the epidemic is
important to estimate (Hemelaar et al.,, 2011). We showed that
no subtyping tool is able to classify all HIV-1 clades with a 100%
accuracy, and we highlighted the difference in performance of
the tools according to the subtype (or CRF) or the region analyzed
such as PR, RT or PR + RT, such that our results can be directly com-
pared with other studies (Holguin et al., 2008; Loveday et al., 2006;
Yebra et al., 2010b). In general, our findings corroborate that phy-
logenetic-based, statistical-based tools and the similarity-based
tool Stanford perform well for the most frequent subtypes world-
wide such as B and C (Gifford et al., 2006; Hemelaar et al., 2011;
Kosakovsky Pond et al., 2009; Myers et al., 2005; Schultz et al.,
2009; Struck et al., 2010). However for other important clades such
as A, D, F, G, CRFO1_AE, CRF02_AG, COMET and REGAv3 correctly
identified most strains while the remaining tools failed much more
often.

Since we only had the pol region of the clinical dataset, we can-
not exclude that other regions of the genome belong to other sub-
types or CRFs, as has been reported in other cohorts (Abecasis et al.,
2011; Njouom et al., 2003). However, overall, the performance of
the tools was similar for the clinical and the LANL dataset, suggest-
ing that for most subtypes and CRFs, our performance evaluation is
valid. The exception is the assignment of subtype A and CRFO6_cpx.
For example, COMET correctly identified subtype A in 76% of the
sequences from the clinical dataset and 100% of the LANL dataset,
similarly this tool also identified only 18% of the CRFO6_cpx in the
clinical dataset and 100% in the LANL dataset (see supplementary
Tables 2 and 3). The reason for this discrepancy has not been fur-
ther investigated, but we suspect that by not taking into account
the evolutionary relationship of the sequences, statistical-based
tools like COMET are prone to overfitting on the training dataset
(LANL).

Another reason for variation in the performance of subtyping
tools is the analysis of PR and RT separately (Holguin et al., 2008;
Loveday et al., 2006). Most of the tools had similar performance
for the RT and the pol region. However, with regard to the PR re-
gion separately, statistical-based tools such as COMET and jpHMM
had a higher performance than the other tools. These disagree-
ments, for instance with REGA, occurred because short sequences

with low phylogenetic signal were frequently reported as “unas-
signed” (Holguin et al., 2008). The philosophy of REGA is to avoid
assigning sequences with low phylogenetic signal, with the aim
to avoid false conclusions about evolutionary relationships (Revell
et al., 2008; Strimmer and von Haeseler, 1997). Consequently, the
user must be aware that short sequences require further examina-
tion to be correctly classified.

Current definitions of some subtypes and CRFs contribute to
problems with the performance of automated tools. For example,
the relationship between CRFO2_AG and its parental strain A and
G is still a matter of debate (Abecasis et al., 2007; Kosakovsky Pond
et al., 2009; Zhang et al., 2010). For other CRFs, such as CRFO2_AG,
CRFO7_BC, CRFO8_BC, CRF12_BF, and CRF17_BF, atypical break-
points were found in the sequences assigned to these CRFs in the
Los Alamos database (Zhang et al., 2010), suggesting perhaps a
wrong assignment in this database. In fact, the proper assignment
of several CRFs can be disputed, for example when the recombi-
nant region is so small that there is not sufficient phylogenetic sig-
nal for classification (e.g. around 100 nts for CRF12_BF, CRF20_BG,
CRF35_A1D, CRF41_CD). Finally, several CRFs are so closely related
to each other (e.g. CRF20_BG, CRF23_BG and CRF24_BG) that auto-
mated tools have great difficulty to discriminate between them. A
thorough re-analysis of all CRFs is therefore urgently needed.

The absence of breakpoints in the region of study was another
frequent cause of misclassifications; for instance CRFO1_AE was
classified as CRF15_01B (Tovanabutra et al.,, 2003) (see Fig. 2)
and G was classified as CRF14_BG. There was no problem with
the evaluation of the CRFO1_AE pol sequences, but we had to ques-
tion either the value of the manual phylogenetic analysis as gold
standard for CRF14_BG, or the definition of CRF14_BG itself. The
clinical dataset is derived from the country where this CRF origi-
nated, and the prevalence of the parent subtype G and of CRF14_BG
as defined by manual phylogenetic analysis was very high. How-
ever we had access to env sequences from several patient isolates
that were included in the pol dataset, and for several of these, there
was discordance with the pol assignment, as has been reported be-
fore (Abecasis et al., 2011). In a joined phylogenetic analysis of all G
and CRF14_BG sequences, the CRF14_BG sequences were not
monophyletic but were spread among the subtype G sequences,
and this was also the case for the LANL full genome CRF14_BG se-
quences. As a result, and only for the clinical dataset, we pooled

Table 4
Operational characteristics of subtyping tools.
Characteristics Tools
Phylogenetic Similarity Statistical
REGAvV3 REGAv2 SCUEAL NCBI STANF COMET jpHMM STAR
Analysis of full genomes + + — + — + + +
Exact recombination breakpoints + — + * - - + —
Intra-subtype recombination - — + — — — _ _
Latest CRF that can be analyzed® CRF47_BF  CRF14_BG  CRF43_02G  CRF43_02G  CRF02_AG CRF49_cpx CRFO1_AE  CRF02_AG
Batch analysis online 1000 1000 500 1 >100% 10 Mb § 5 500
Waiting job queue — — + — — — _ _
Average time for 500 sequences’ ~5h ~4h ~3h - ~5 min sec ~2-7h || ~15 min
Average time for 1 sequence™* ~min ~min ~min sec sec sec sec-min sec
Part of resistance analysis - - - — + — — —
Phylogenetic signal analysis + + — - - - - —
Summary table report + — + - _ _ _ _
Graphical visualization of results + + + + - - + +
Position of sequence according to HXB2 reference  + + — — - + -
Download additional files (csv, txt, fasta, etc.) + + + + + + +

*NCBI report shows an approximation of the breakpoints. 'Some CRFs are excluded from the analysis, such as those with a limited number of strains available in LANL, or
where the pol region cannot be discriminated from other CRFs (see http://bioafrica.mrc.ac.za/CRFs/CRFs.php). *Stanford is able to analyze up to 100 sequences at a time
(character limit: 600,000). However there are other options to analyze more sequences. 8 COMET accepts files with a maximum size of 10 Mb (around 8000 sequences
PR+RT).'jpHMM has the option to download a command line program without limit of batch analysis. In addition, there is an option to speed up the program."We ran 500
sequences with pure subtypes and CRFs five times in different days. Then we calculated the average time. **We ran 5 times a recombinant, the average time for analysis of 1
sequence is about 1 min for phylogenetic-based tools and seconds for the other tools. Abbreviations: (+) characteristic available in the tool, (—) characteristic not available,

(h) hours, (min) minutes, (sec) seconds.
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CRF14_BG and subtype G in a single, but separate, classification
“CRF14_BG or G".

Phylogenetic-based subtyping tools had lower reproducibility
than similarity-based tools or statistical-based tools and the se-
quences causing this problem were not consistent across tools.
The bootstrapping procedure in the tree-based algorithms is
responsible for this lower reproducibility. Bootstrapping is a ran-
dom process of resampling (Abecasis et al., 2010; Hillis and Bull,
1993), and each bootstrap sample is a different sample. For a more
robust assignment, it would be needed to perform 1000 bootstrap
samples, but this would cost too much computer time, and the
phylogenetic-based tools are already slow. Other causes for the
lower reproducibility were the introduction of new thresholds in
the bootscan support of REGAv3 and the term “complex” in SCU-
EAL. This led sometimes to misidentification especially of subtype
B as B/D recombinant because of the high similarity between these
subtypes in the pol region (Leitner et al., 1995; Robertson et al.,
2000).

Other considerations that influences the widespread use of sub-
typing tools are the operational characteristics (see Table 4). For
example, the analysis of a bulk of sequences usually takes more
time with phylogenetic-based tools than statistical-based tools
(Abecasis et al., 2010; Kosakovsky Pond et al., 2009; Struck et al.,
2010), and this is important for any application in a context of a
large dataset. On the other hand, for the surveillance of the HIV-
1 epidemic it is sometimes important to have information on
recombination breakpoints, which are only shown in phyloge-
netic-based tools and jpHMM (Kosakovsky Pond et al., 2009;
Schultz et al., 2009).

Although we included prevalent epidemiological non-B sub-
types and CRFs, we acknowledge the limited number of samples
available for subtypes H, ], K, CRFO6_cpx, CRFO7_BC and CRF12_BF,
which prevents us from drawing firm conclusions for these sub-
types and CRFs. We also did not evaluate all available tools, since
many are based on similarity, and some have as their main objec-
tive the evaluation of antiretroviral resistance rather than subtyp-
ing (Beerenwinkel et al., 2003). We included the two most
commonly used similarity-based tools, NCBI and Stanford (Rhee
et al., 2006; Rozanov et al., 2004).

Other factors, that influence the performance of subtyping tools,
are the high recombination rate of HIV-1 (Mansky and Temin,
1995) and human migration as determinants of global HIV dynam-
ics (Rambaut et al., 2004). HIV-1 recombination increases the com-
plexity and frequency of recombinant forms (Zhang et al., 2010),
while migration has driven the dissemination of subtypes to new
regions and established new epidemics (Pybus and Rambaut,
2009). As a consequence the subtyping tools should be regularly
updated, especially tools which do not consider the intrinsic bio-
logically relevant evolutionary relationships like statistical or sim-
ilarity-based tools. The analysis of an epidemic where many
subtypes or new CRFs are prevalent must be identified with CO-
MET or phylogenetic-based tools that have an updated reference
dataset (de Oliveira et al., 2005; Kosakovsky Pond et al., 2009;
Struck et al., 2010).

5. Conclusions and recommendations

To our knowledge, this is the first study with an extensive com-
parison between subtyping tools, and manual phylogenetic analy-
sis in PR, RT, PR + RT in two large datasets: a clinical dataset and a
LANL dataset in which pol region was trimmed from full-length
genomes. The performance of the new REGAv3 to identify subtype
B and CRF02_AG in the pol region was much better than with RE-
GAv2. REGAv3 had a very good performance in classifying pure
subtypes, similar to that of COMET, jpHMM and SCUEAL, and it

was also very good at identifying CRFs in the pol region, compara-
ble to the best other tool, COMET. REGAv3 and COMET are cur-
rently the best available tools to automatically subtype HIV-1
sequences, however recombination breakpoint analysis is not pos-
sible with COMET. The performance of jpHMM is comparable but
this tool has the big disadvantage that it does not classify CRFs, ex-
cept for CRFO1_AE.

We could draw some general recommendations from this anal-
ysis to use in future surveys of HIV-1 genetic diversity. First, auto-
mated tools might be useful for subtyping large pol datasets that
are used in clinical and surveillance settings (Gifford et al., 2006;
Kosakovsky Pond et al., 2009). Nevertheless, if accuracy is impor-
tant, for example in individual patient follow-up or in detailed epi-
demiological analyses, it is necessary to use at least two subtyping
tools whose overall performance is high in the genetic region ana-
lyzed such as COMET and REGAv3. This methodology has been pre-
viously used in different studies that required stringent analyses of
large datasets (Faria et al., 2011; Hue et al., 2011; Jacobs et al.,
2009; Yebra et al., 2010a). This comes at the cost of speed, which
is determined by the slower of the two tools, the phylogenetic-
based tool. The discordant sequences between the two tools can
then be analyzed using manual phylogenetic analysis, still the gold
standard. Second, for very short sequences such as PR, tools like
COMET are recommended given that REGAv3 will give a consider-
able number of unassigned sequences, but only if accuracy is not a
big issue. Therefore, we insist that for short sequences with low
phylogenetic signal, such as PR, manual phylogenetic analysis is
still needed (Strimmer and von Haeseler, 1997). Third, subtyping
is often done in the context of an individual patient follow-up,
using PR + RT sequences that are available from resistance geno-
typing. Thus it is often the case that resistance and subtyping are
analyzed together in the clinical settings. Stanford does provide
this information; however, the main goal of Stanford is to provide
an accurate algorithm of resistance rather than subtyping (http://
hivdb.stanford.edu/DR/asi/releaseNotes/index.html#hivdb_sub-
typing). If this tool is used, analysis of subtypes A, F and CRFs
should be complemented with other statistical-based or phyloge-
netic-based tools. For example, REGAv3 is also on the same web-
site. Fourth, the use of at least two automated tools to classify
subtypes in the patient follow-up could also be useful, for example,
for clinical collaborators that have little experience with manual
analysis. However, if superinfection is suspected, phylogenetic
analysis should be carried out (Ntemgwa et al., 2008).
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