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Labor's Shares – Aggregate and Industry: 
Accounting for Both in a Model of  

Unbalanced Growth with Induced Innovation 
 

 
Abstract: The relative stability of aggregate labor's share constitutes one of the great 
macroeconomic ratios.  However, relative stability at the aggregate level masks the 
unbalanced nature of industry labor's shares – the Kuznets stylized facts underlie those of 
Kaldor.  We present a two-sector – one labor-only and the other using both capital and 
labor – model of unbalanced economic development with induced innovation that can 
rationalize these phenomena as well as several other empirical regularities of actual 
economies.  Specifically, the model features (i) one sector ("goods" production) 
becoming increasingly capital-intensive over time; (ii) an increasing relative price and 
share in total output of the labor-only sector ("services"); and (iii) diverging sectoral 
labor's shares despite (iii) an aggregate labor's share that converges from above to a value 
between 0 and unity.  Furthermore, the model (iv) supports either a neoclassical steady-
state or long-run endogenous growth, giving it the potential to account for a wide range 
of real world development experiences.  
 
JEL Codes: O11, O30, O41 
 
Keywords: Labor's Share, Factor Shares, Development, Biased Technical Change, 
Capital Intensity 
 

 2



I.  INTRODUCTION 

 Aggregate labor's share displays no upward or downward trend over time.  This is 

one of Nicholas Kaldor's [1961] stylized facts of economic growth and has endured 

across time and economies.  However, underlying this Kaldor fact are trends in broad, 

industry-level labor's shares that are part of the Simon Kuznets [1965] stylized facts of 

economic development.  In general, balanced growth in the aggregate masks unbalanced 

growth at the industry-level. 

 For example, Figure 1 displays U.S. aggregate labor's share from 1958 through 

1996.  Labor's share remained between 65 and 70 percent of the entire period.  However, 

Figure 2 displays major industry labor's shares for agriculture, manufacturing and 

services over the same period; and Figure 3 displays the same trends for those industries' 

shares in total value-added.  (Table 1 also presents summary statistics associated with the 

data used in Figures 2 & 3.)  Manufacturing and agriculture labor's shares have been 

decreasing, while services labor's share remains stable or increases slightly.  At the same 

time, manufacturing and agriculture value-added shares have decreased as services value-

added share has increased markedly.1

 Considering cross-sections of both developing and developed economies, 

Echevarria [1997] summarized a set of useful stylized facts (partially enumerated below). 

 1.  The value-added share of agriculture in inversely related to total value-added; 

the services share of value-added is positively related to total output. 

 2.   The relative price of services positively related to total output. 

 3.  The employment share of agriculture decreases as output increases; the 

employment share of services increases as output increases 
                                                 
1 Similar stylized facts for the U.S. were reported by Kongsamut, Rebelo and Xie [2001]. 
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 4.  Labor's share's relation to total output appears to be positive. 

 The belief that labor's share is generally higher in richer countries has been 

recently called into question.  Gollin [2002] demonstrated that, once labor income for the 

self-employed is treated properly, labor's shares appear approximately the same across 

economies – "nothing . . . to suggest that there are systematic differences between rich 

and poor countries in factor shares" [p. 471].  Furthermore, even not-adjusting the 

employee compensation data, Echevarria [1997, p. 435] suggested that the positive 

relationship between labor's share and total output may have diminished over time (e.g., 

consider the recent U.S. experience).  Thus a plausible alternative to "4." above is: 

 4*.  Labor's share appears to have no relationship to total output; or a weak 

inverse relationship at most. 

 In other words, unbalanced growth stylized facts "1.", "2.", and "3." underlie the 

balanced growth fact "4*.".  Table 2 presents a more detailed perspective of this 

summarization, including at the 2-digit SIC level U.S. industries' changes in labor's 

shares and value-added shares, and their contributions to changes in aggregate labor's 

share, for the 1958 to 1996 period.   

 In this paper we present a model that begins to account for the stylized facts of 

both balanced and unbalanced growth.  The model is a two-sector – one sector that is 

labor-only; the other sector uses both labor and capital – model with induced innovation 

that features (i) one sector ("goods" production) becoming increasingly capital-intensive 

over time; (ii) an increase in the relative price and share in total output of a labor-only  

sector ("services" production); and (iii) diverging sectoral labor's shares despite (iii) a 

relatively stable aggregate labor's share that converges from above to a value between 0 

 4



and unity.  Furthermore, the model (iv) supports either a neoclassical steady-state or 

long-run endogenous growth. 

 To our knowledge this is the first model of induced innovation with these 

features, though other types of growth models have also attempted to account for both 

Kuznets and Kaldor facts.  Therefore Section II positions this paper in terms of the 

existing literature.  The model is presented in Section III.  Sections IV and V discuss 

long-run growth paths and transitional dynamics respectively.  Section VI concludes. 

 

II. MODELS OF BOTH BALANCED AND UNBALANCED GROWTH 

 Recent years witnessed a resurgence of growth models seeking to account for the 

unbalanced nature of development at the industry-level while remaining consistent with 

balanced growth in the aggregate. For example, Kongsamut, Rebelo and Xie [2001] 

focused on changes in the marginal rate of substitution in consumption between different 

sectors' outputs.2  They posited a representative agent with preferences, 

  
( ) ( )[ ]

dt
SSMAA

eU tttt

σ

σθγβ
ρ

−
−−−

=
−∞

−∫ 1
1

1

0

, 

where A, M, and S are interpreted as agricultural goods, manufactured goods, and 

services respectively; 0>A  and 0>S  are subsistence consumption of food and home 

production of services; parameters ×, σ, γ, β, θ are strictly positive and β + γ + θ = 1. 

                                                 
2 Other examples include Murphy, Shleifer and Vishny [1989], Matsuyama [1992], Echevarria [1997], 
Laitner [2000], Caseli and Coleman [2000] and Gollin, Parente and Rogerson [2002]. 
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With these preferences, the income elasticity of substitution is less than unity for A, unity 

for M, and greater than unity for S.  As the economy grows, output and employment 

shares of A, M, and S decrease, remain constant, and increase respectively.3

 Acemoglu and Guerrieri [2006], alternatively, demonstrated that, given different 

capital intensities in different sectors, unbalanced growth accompanies capital deepening 

if the sectors' outputs are gross complements in consumption.  Specifically, outputs from 

two sectors enter a consumption aggregate, 

  ( )
11

2

1

1 1
−−−

⎥
⎦

⎤
⎢
⎣

⎡
−+=

ε
ε

ε
ε

ε
ε

γγ YYY , 

where ε < 1 and 0 < γ < 1; and Y1 and Y2 are sectoral outputs produced according to, 

   and , 11 1
1111

αα −= KLBY 22 1
2222
αα −= KLBY

where the BB

                                                

i's are positive; Li and Ki are labor and capital in sector i; and α1 > α2. 

As capital accumulates, the relative price of the more capital-intensive sector's good falls.  

As this relative price falls, both the other sector's capital stock and employment shares 

both converge towards unity.  Aggregate labor's share converges to a constant from 

below.  (However, as each sector is Cobb-Douglas the sectoral labor's shares are 

constant.)  Furthermore, in experiments with the calibrated model, even after 500 years 

aggregate labor's share only increases from 62.5 to 65 percent. 

 Finally, Ngai and Pissarides [2006] focused on different exogenous total factor 

productivity (TFP) growth rates across sectors.  Specifically, outputs from m sectors enter 

a consumption aggregate, 

 
3 Though the model achieves balanced growth, the evolution of aggregate labor's share need not be 
(approximately) balanced depending on the range of values covered during the transition. 
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  ( ) ( )
( )1
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1
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=
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⎜⎜
⎝

⎛
= ∑

εε
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where θ = 1, ε < 1, and ∑ωi = 1 and outputs are produced according to sectoral 

production functions, 

  ( ) ( ) mmmmmiiiiii cn,knFAkmin,knFAc −=≠∀= &    and        , 

where the nis and kis are employment shares and capital to labor ratios; F is neoclassical 

and  is exogenous for each i and not necessarily identical across sectors. In this 

model, since goods are gross complements in consumption, employment shares and 

relative prices are inversely-related to TFP growth rates while growth in the aggregate 

can be balanced.   

A/Ai
&=γ

 To our knowledge, the model presented in Section III below is the only model of 

induced innovation that accounts for a wide range of both Kuznets and Kaldor facts.4, 5 

We interpret labor-only and capital-using sectors as, respectively, services and goods 

industries.  Increasing labor productivity in goods production due to labor-saving 

innovations is accompanied by an increasing share of labor employed in the services 

industries.  If endogenous growth is achieved, this uneven productivity and labor supply 

growth across industries leads towards a zero manufacturing labor's share and a services 

labor's share of unity: "deindustrialization".  Furthermore, the physical output of goods 

                                                 
4 Acemoglu [2003] presented an induced innovation model where capital- or labor-augmenting technical 
change is available at the firm level and firms use capital or labor in production.  This model can support 
(net) labor-augmentation of technology at the aggregate level and balanced growth with constant aggregate 
labor's share.  Our induced innovation model can be contrasted to Acemoglu's in that, while still accounting 
for a stable aggregate labor's share, labor-augmenting technical change is not required at any level.  As 
well, Acemoglu's model is not designed to account for Kuznet's facts in general or the evolution of industry 
labor's shares specifically.  
5 Studies of labor-saving innovations in relation to growth and development generally constitute a 
substantial literature.  Early examples are Kennedy [1964], Samuelson [1965], Drandakis and Phelps 
[1966]; more recent examples include Acemoglu [2002], Boldrin and Levine [2002], Hornstein et al [2004] 
and Zeira [1998].  
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grows perpetually while the services output remains constant.  But, due to diminishing 

marginal utility and the ever-increasing relative scarcity of services, the relative price of 

services is ever-increasing (the celebrated Baumol-Bowen [1966] effect).  These 

offsetting effects allow for aggregate labor's share to converge towards a constant, 

positive value.6

 

III. A TWO-SECTOR MODEL OF UNBALANCED GROWTH WITH INDUCED INNOVATION 

 Assume an economy with two sectors – one with a constant technology using 

only labor and one using both labor and capital.7, 8 Labor-saving innovations can be 

pursued in the capital-using sector.    

 We assume that there exists a set of technologies, differentiated by the elasticity 

of output with respect to capital, on the interval (0, 1).9
   At any instant, every technology 

is available but the adoption of a technology (i.e., innovation) is costly.  The cost to 

innovation is increasing in its capital intensity.  The productivity of an innovation 

depends on the accumulated capital stock and, likewise, the productivity of capital 

                                                 
6 Hawtrey [1931, pp. 55-56] describes an uncannily similar story: "There may be a general over-
production of factory products.  Modern methods of mass production tend to produce this result.  Satiety of 
demand for such products might be reached, and the result might be the displacement of a large amount of 
redundant labor. [. . .] It has been happening visibly in the [U.S.] ever since [WWI].  The numbers 
employed in factories have been shrinking [while] the numbers employed in distribution and in rendering 
all the multifarious individual services [. . .] have been growing.  It may be mentioned that in this division 
of tendencies agriculture is to be classed with manufacturing.  Labor in agriculture is being displaced by 
machinery [. . . .] We may be approaching a state of society in which the mere production of any desired 
commodity becomes almost as easy and cheap as picking it up from the ground, and all the hard work will 
be put into the business of discovering the needs of consumers, specifying the appropriate products, and 
then [. . .] making them available for sale."  
7 Capital and labor are broad categories meant to encompass reproducible (e.g., both physical and human 
capital) and non-reproducible (e.g., raw labor and land) inputs. 
8 The model below builds off of Zuleta [2005]. Other ways of modeling factor saving innovations can be 
found in Zeira [2006] and Peretto and Seater [2005]. 
9 Assuming that all technologies "exist" at all times is for simplicity and does not matter for our results if 
we interpret the required investments for innovation as providing for the discovery of more capital 
intensive-methods.  See below. 
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depends on the capital-intensity of the technology.  This creates a tradeoff between 

investment in capital and capital-intensity. 

 Assume many identical agents and no population growth.  There are no 

externalities in the model so we can speak of either a social planner or a representative 

agent (RA) solving the problem10, 

(1)  , ( )∫
∞

−

0

Clogemax tρ

where ρ > 0 and C is consumption.11  Consumption is a Cobb-Douglas aggregate of two 

types of consumption goods, 

(2)    0 < λ < 1. λλ −= 1
XY CCC

The RA is endowed with a single unit of labor at every instant. 

 Production in the labor-only sector is, 

(3)  , XX BLCX ==

where B is an efficiency parameter and LX is the sector's employment share.  We think of 

this sector as the services industry. 

 The second sector uses both labor and capital (K) in production: 

(4)  , αα −=+= 1
YY LAKICY

where I is investment and LY = (1 - LX ).  The output produced by the Y sector can be 

consumed or invested.  We think of this capital-intensive sector as a goods industry. 12   

                                                 
10 For a general model of endogenous growth under perfect competition see Boldrin and Levine [2005]. 
11 Time arguments are omitted for ease of exposition. 
12 One was to think about the distinction is articulated by Baumol [1967, pp. 415]: one type of production 
in which "labor is primarily an instrument" (towards goods) and one in which "labor is an end in itself" (as 
services).    
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 The investment from the Y sector can be devoted to capital deepening or to 

adopting more capital intensive production methods.  Intuitively, to undertake labor-

saving innovations some fraction of investment, 0 < (1 – ξ ) < 1, must be allocated 

towards the installation of new production methods, reorganization of existing productive 

structures, and replacement/refurbishing of obsolete capital.13  Considering K broadly, 

the increment (1 – ξ) can also be thought of in terms of training for and adjustment to 

previously unused production methods. 

 The evolution of K as a function of the remaining fraction of investment, ξ, is, 

(5)  . IK ξ=&

The entire spectrum of technologies, α = [0,1], is available at every instant.  However, 

labor-saving innovations are costly in terms of foregone K.  Specifically, 

(6)  ( )( )Iξαα −−= 11& . 

Equation (6) embodies several desirable properties.  First, 

  ( ) 11 =+− αα  

so ( )αα +& 's maximum value is unity (consistent with constant returns to scale).  Second, 

  ( ) 01 <−−=
∂
∂ ξ
α
α& , 

so it becomes increasingly costly to increase α as it approaches unity.  Finally, 

  ( ) ( ) 01
1

≥−=
−∂
∂ α

ξ
α& ; 

                                                 
13 As opposed to the representative agent, competitive equilibrium framework, we could have, at the 
expense of significantly more complexity, modeled monopolistic firms trying to innovate under 
uncertainty.  We do not suspect that the main results, as far as Kuznets and Kaldor facts, would be affected, 
and it seems desirable to focus on the simplest case at first. 
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so positive investment in installation/reorganization/replacement is never 

counterproductive.14

 Of note, Klyuev [2005] presented a model where relatively high capital intensity 

in a manufacturing sector yields both the Baumol-Bowen effect and an increasing 

employment share in services.  Based on the greater capital intensity, capital 

accumulation alone drives the results.  Klyuev's noted that his motivation for focusing on 

capital accumulation alone was in part that models assuming faster TFP growth in 

manufacturing than in services counterfactually predict a decreasing employment share 

for services.  By incorporating labor-saving innovations, our two sector model reconciles 

the idea of faster technical change and a decreasing employment share in manufacturing 

(i.e., "deindustrialization" – see Baumol et al [1989] and Rowthorn and Ramaswamy 

[1999]).   

 At each instant the RA is confronted by the state of the economy (α and K) and 

makes choices (LY,, CY, I, and ξ).15  The current-value Hamiltonian16 is, 

(7)  
( ) ( ) ( )( )

( )[ ]
( )( )( )[ ]YY

YY

YY

CLAK

CLAK

LBCH

−−−

+−

−−+=

−

−

αα

αα

ξαθ

ξθ

λλ

1
2

1
1

11

1log1log
 

where θ1 = π1eρt and θ2 = π2eρt  and π1 and π2 are the shadow prices of capital and "capital-

intensity."  The first-order conditions for maximization are,   

(8)  ( )( ) 011H
21 =−−−−=

∂
∂ αξθξθλ

YY CC
, 

                                                 
14 Seater [2005] presented a growth model that similarly has a Cobb-Douglas specification with an evolving 
parameter.  However, the parameter evolution in Seater's model is exogenous; also his model is a one-
sector model.  Young [2004] considered parameter changes in the Cobb-Douglas specification of a real 
business cycle model.  
15 Because LX is simply whatever labor remains after the allocation to LY, and because LX determines CX 
entirely, the representative agent's problem can be phrased entirely in terms of production and consumption 
of Y. 
16 We ignore corner solutions for ease of exposition. 
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(9)  
( ) ( ) ( ) 0

1
1111

H

2
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⎝

⎛
−
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−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+⎟⎟

⎠
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⎜⎜
⎝

⎛
−
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∂
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L
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(10)  ( ) ( )( ) 01H 1
2

1
1 =−−−−=

∂
∂ −−

YYYY CLAKCLAK αααα αθθ
ξ

, 

(11)  ( )( ) 11
11

2
11

1

.

1 11H ρθθααξθξαθθ αααα =+−−+=+
∂
∂ −−−− &

YY LAKLAK
K

 

(12)  ( )( )[ ]

( )( )
2

2
1

2

1
21

.

2

1

ln11

H

ρθ
θξθ

αξθξθ

θ
α

αα

αα

=+−−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

=+
∂
∂

−

−

&
YY

Y
Y

CLAK

L
KLAK , 

and we immediately note, from (10), that, 

(13)  ( )tαθθ −= 121 . 

 

IV. LONG-RUN GROWTH PATHS 

 A defining property of this model is the value α which converges to.   

With the Cobb-Douglas production function, 

(14)  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

YL
KK ln1 αα  or 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

Y

Y

L
KK

L
KK

ln1

ln
α  . 

Totally differentiating (14) and manipulating leads to the expression, 

(15)  ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

Y

Y

Y L
L

K
K

L
KK

&&
& 1ln1 2αα . 
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The equations (14) and (15) give us insights into the model's steady-state properties. 

 

PROPOSITION 1. The model can support either a neoclassical steady-state where 

0=====
K
K

C
C

C
C

L
L

Y

Y

X

X

Y

Y
&&&&&

α
α , 0 ≤ α < 1, and 0 < LY < 1; or endogenous growth 

where 0  and  0 >====
K
K

C
C

C
C

L
L

Y

Y

X

X

Y

Y
&&&&&

α
α , α = 1, and LY = 0. 

  

By (15), if 0=α&  and 0 ≤ α < 1, then it must be the case that, 

(16)  
Y

Y

Y L
L

K
K

L
K &&

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1ln0     or K = 0. 

A steady-state with K = 0 is possible and, if  in the long-run (which must be the 

case for 0 ≤ L

0=YL&

Y ≤ 1), then it must also be the case that in general . 0=K&

 On the other hand, if we allow that α converges to unity then (15) is still valid 

when .  Specifically, the optimal capital growth condition for this model is,0>K& 17

(17)  ⎟
⎠
⎞

⎜
⎝
⎛ −= −−

K
CLAK

K
K Y

Y
ααξ 11

&
. 

It can be demonstrated that the ratio of CY to K goes to ρ, so with α = 1,  as long as 

ρ < A. 

0>K&

 So there are two basic types of long-run equilibrium that the model can support.    

In the former case, a true steady-state (in all the variables' levels) is achieved; in the later 

                                                 
17 Detailed derivations of the optimal dynamic equations are provided in Appendix A.  
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case, the production of Y in the economy converges to "AK" and endogenous growth is 

achieved.18

 What do these two long-run possibilities imply for aggregate labor's share 

(LSH)?19

(18)  ( )
( ) yL

LSH
αα

α
+−

−
=

1
1 . 

 

PROPOSITION 2. Aggregate labor's share, LSH, achieves a steady-state value greater than 

or equal to 0 and less than unity; if endogenous growth is achieved then 0 < LSH 

< 1. 

 

In a neoclassical steady-state there are two determinants of LSH: α and LY.  LY determines 

how labor is split between the Y sector (where labor's share is 1 – α) and the X sector 

(where labor's share is always unity).  The partial derivatives are, 

(19)  
( )[ ]21 y

y

L

LLSH
ααα +−

−=
∂

∂  ( )
( )[ ]21

1

yy LL
LSH

αα
αα

+−

−
−=

∂
∂ , 

which are both negative. 

                                                 
18 The baseline endogenous growth models of this type were provided by Jones and Manuelli [1990] and 
Rebelo [1991]. 
19 For calculating aggregate labor income and output for this economy, we must consider sectoral products 
valued in terms of their marginal utilities.  So labor income is 

( ) ( ) ( )y
y

yy
y

LB
LB

LLAK
C

−•
−
−

+•− −− 1
1
11 1 λαλ ααα  and total income is 

( ) ( )
( ) ( y

y
y

y
LB

LB
ALK

C
−

−
−

+− 1
1
11 )λλ αα .  Expression (5.5) is a simplification of the ratio of the two 

magnitudes. 
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 When endogenous growth results, (18) cannot be evaluated at α = 1 and LY = 0 

and, instead, the limiting value must be considered.  We can do this by exploiting the fact 

that Cobb-Douglas preferences imply, 

(20)  
λ

λ
−

=
1XX

YY

CP
CP , 

where PY and PX are the prices of Y and X in terms of marginal utilities.  As LY 

approaches 0, labor income approaches PXCX.  LSH then becomes, 

  ( )
YXX

Y

XX

YYYYXX

XX

C
I

CP
IP

CP
CPICPCP

CPLSH

λ
λ

λ
λ

−
+

−
+

=
++

=
++

=

11
1

1

1

1 . 

which simplifies to, 

(21)  

YC
I

LSH
λ

λ

+

−
=

1

1 . 

Given that I/CY is constant in the long-run20, (21) is a constant between 0 and 1 despite 

the growing capital to labor ratio in endogenous growth. 

 

PROPOSITION 3. In endogenous growth the relative price of services, PX/PY, increases 

while its relative share in value-added equals aggregate labor's share. 

 

As well, because  and , by (20) P0>YC& 0=XC& X/PY must grow at the same rate as CY.  

So the economy displays an ever-increasing relative price of services – a widely-

                                                 
20 In the long run AKY =  and 

ρ
1

=
YC

K
 so 

ρ
ρ−

=
A

C
I

Y
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recognized feature of many real economies (e.g. De Gregorio et al. [1994] and Baumol 

and Bowen [1966]).  This ever-increasing relative price of services, along with the ever-

decreasing share of services in "physical" output, results in a constant long-run value-

added share for services (SSH).21  Specifically, in the long-run 

(22)  LSH
A

SSH =

−
+

=

ρλ
λ

1
1

1 . 

This connection between SSH and LSH is tied to share of total labor employed in the 

services sector going to unity.  

 We also note that, during endogenous growth, the growth rates of CY and K are 

identical while 
Y

Y

C
C

C
C &&

λ= .  Evaluating (5.4) at α = 1 then implies that, 

(23)  ρ−== A
K
K

C
C

Y

Y
&&

 and ( )ρλ −= A
C
C& . 

Aggregate consumption grows more slowly than the capital stock, broadly conceived. 

 Finally, we call attention to an interesting counterfactual implication of the model 

and argue that it is understandable given the highly stylized framework.  The marginal 

product of capital converges to a constant, but the marginal value product of capital goes 

to zero as the relative price of Y sector output goes to zero; the rate of physical 

investment becomes constant while the value of that investment goes to zero.  We suspect 

that this is an artifact of production in the X sector (with its increasing relative price) 

being entirely void of capital and productivity growth.  Relaxing the restrictions on the X 

sector and deriving new implications of the marginal value product of capital (and, ergo, 

                                                 
21 "Physical" here – though perhaps vague in terms of services – is meant to distinguish between shares in 
the total X + Y as opposed to shares in value as determined by relative prices.  
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the interest rate) is called for in future work but goes beyond the issues of factor shares 

and relative prices that we wanted to account for in the present work.   

 

V. TRANSITIONAL DYNAMICS 

 In this section we elaborate on the transition of the model economy to either a 

neoclassical steady-state or endogenous growth path.  Recall the expression for changes 

in α is given by (15).  The relationship between capital accumulation and the sectoral 

allocation of labor is fundamental to the dynamics of α.   

 The expression for capital accumulation,(17), can be set against the expression for 

optimal sectoral labor growth, 

(24)  ( )
( )

( )

( )
⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩
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⎬
⎫

⎩
⎨
⎧

−−⎟
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⎝
⎛

−
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⎠
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⎜
⎝
⎛ −+

+⎟
⎠
⎞

⎜
⎝
⎛ −−−⎟
⎠
⎞

⎜
⎝
⎛ −+

−
−

=

−−

KLL
K

KLAK
I
KK

KL
K
I

L
L

YY

Y
Y

Y

.

Y

1
1

2

2

1
1

11

α
ααα

ραααα

α

αα

. 

Starting from any initial, positive (  ), K grows and Lρα αα −−− 11
YLAK Y falls, both 

changes exerting negative influences on the marginal product of capital.  On the other 

hand, α increases and exerts a positive influence on the marginal product of capital. 

 Like a standard growth model, diminishing returns imply that the incentives for 

investments (in both capital and capital intensity) vanish as ( ) 

approaches zero.  Whether the economy settles into a neoclassical steady-state or 

achieves endogenous growth depends on whether α converges to unity before 

( ) converges to 0. 

ρα αα −−− 11
YLAK

ρα αα −−− 11
YLAK

 We now employ the above dynamics to describe the evolution of LSH.   
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PROPOSITION 4. Aggregate labor's share, LSH, converges to its steady-state value from 

above. 

 

Equation (18) can be rewritten as, 

(25)  
YL

LSH

α
α
−

+
=

1
1

1 , 

such that the dynamics of LSH depend on the sign of 
Y

Y

L
L&&&

+
−

+
α

α
α
α

1
 which is always 

non-negative.22  Starting from below the economy's steady-state/endogenous growth 

path, aggregate labor's share converges to its long-run, constant value from above.  This 

is not inconsistent with the pattern of U.S. labor's share pictured in Figure 1.23  

Furthermore, during the transition labor's share in the Y sector falls while it remains 

constant (at unity) in the X sector.  This is the case despite the fundamental role that the X 

sector, with its time-invariant labor's share, plays in preventing aggregate labor's share 

from going to zero.  

 Despite LSH's transitional decrease, the X sector's share of the economy's output 

(in terms of value) increases.   

 

PROPOSITION 5. Services share in value-added, SSH, converges from below to its steady-

state value. 

                                                 
22 The proof of this claim is in Appendix C.  Some claims below that are also left unproved in the text are 
demonstrated in previous and subsequent Appendices. 
23 Beyond the U.S. evidence is mixed on this point.  (See the discussion in Section I.  Gollin [2002] 
suggested that there is no relationship between the level of labor's share and the level of economic 
development.)  Also, Torrini [2005] reported that Italy's labor's share declined from the mid-1970s through 
the mid-1990s; and Garrido Ruiz [2005] reported that Spain's labor's share increased from 1955 through 
2005. 

 18



 

The share of services is, 

(26)  ( )ICPCP
CPSSH

YYXX

XX

++
= , 

which is notably identical to the expression for LSH during long-run endogenous growth 

(but not for LSH in general).  Expression (26) can, as in Section IV, be manipulated into, 

(27)  

YC
I

SSH
λ

λ

+

−
=

1

1  . 

I/CY decreases during the transition, so SSH increases. 

 One additional implications of interest is that the growth rate of consumption may 

increase during the transition to endogenous growth.  Given that ρα αα −= −− 11
Y

Y

Y LAK
C
C& , 

it can be shown that the growth rate of  is, ααα −− 11
YLAK

(28)  ( ) ( ) ( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −⎥
⎦

⎤
⎢
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⎡
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Y

Y

ααα 1111
&&&

, 

which is non-negative as long as K > LY.  Furthermore, from (20) we know that, 

(29)  
P
P

C
C

C
C

Y

Y

X

X
&&&

−= , 

where P = PX/PY.  Given the Cobb-Douglas preferences, 

(30)  ( )
P
P

C
C

C
C

Y

Y
&&&

λ−−= 1 . 

Since the relative price of X is increasing, it follows that 
Y

Y

C
C

C
C &&

λ> .  Also, 
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(31)  ( ) ( )Y

Y

Y

Y

L
L

C
C

C
C

−
−−=

•

1
1 λλ

&&
. 

The growth rate of CY is increasing during the transition; the time derivative of the second 

component is, 

(32)  
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L
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d λ

, 

which is a term of second-order importance. 

 Furthermore, it can be demonstrated that (i) for any 0>λ  there exists a stock of 

capital K~  such that if KK ~>  then ( ρλ −≤ A
C
C& ); and (ii) if  

2
1

≥λ  then 

( ρλ −≤ A
C
C& ).  Since (31) holds and the growth rate of CY is increasing towards its 

long-run rate of (A – ρ) in endogenous growth, (i) and (ii) represent conditions where 

( )ρλ −≤
−

− A
L

L

Y

Y

1

.

.    

 Is an increasing, transitional growth rate of consumption counterfactual?  While 

not consumption precisely, Table 3 presents average growth rates of per capita GDP for 

various (now-developed) countries for various sub-periods from 1700 to 2000.  There are 

several countries (including the U.S.) for which the average growth rate is monotonically 

increasing from earlier to later sub-periods.  Overall there is little to indicate that an 

increasing growth rate is in stark contrast to the real-world experiences.    
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VI. CONCLUSIONS 

 The process of economic development is famously characterized by certain great 

macroeconomic ratios, e.g. capital to output ratios, the return to capital, and labor's share.  

These ratios display surprising stability that transcends both time and economies.  In the 

case of aggregate labor's share, this is all the more surprising given the trends of industry 

labor's shares and industry shares in aggregate output.  Kuznets facts underlie Kaldor 

facts; balanced growth in the aggregate masks unbalanced growth at the industry level. 

 In this paper we develop a two-sector model of unbalanced economic 

development in the spirit of the induced innovation literature.  One sector allows for 

innovations that increase the capital intensity of production, naturally raising capital's 

share in that sector's physical product.  However, the second (labor-intensive) sector 

maintains a constant marginal physical product of labor, attracting an increasing portion 

of the available labor supply.  Because the labor-intensive sector can have no long-run 

growth in physical product, the relative price of its output increases over time, so the 

marginal value product of labor increases.  This effect maintains a non-zero labor's share 

even when the innovative sector achieves long-run, "AK"-type growth in physical 

product. 

 Our model provides a framework for interpreting several empirical regularities of 

real economies: (i) manufacturing industries becoming increasingly capital-intensive over 

time despite (ii) an increase in the relative price and share in total value-added of service 

industries; (iii) aggregate labor's share displaying a horizontal trend despite (iv) 

individual industry labor's shares that seem to evolve independently of one another.  

Furthermore, because the model can attain a neoclassical steady-state or long-run, 
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endogenous growth, it has the potential to account for a wide range of real world 

development experiences. 
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FIGURE 1.  US AGGREGATE LABOR'S SHARE: 1958 - 1996 

Notes: Calculated from aggregation of 35 industries' data.  At the industry level, 
 

calculations are of labor's share of value added.  At the aggregate level, industries 
weighted by their share of total value added. 
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FIGURE 2.  SELECT MAJOR U.S. INDUSTRY LABOR'S SHARES 

Notes: Data from 35-KLEM database.  Methodology described in Jorgenson et. al. 
[1987]; recreated from Young [2006].  Agriculture is "Agriculture" industry.  
Manufacturing includes "Food and Kindred Products," Tobacco," "Textile Mill 
Products," "Apparel," "Lumber and Wood," "Furniture and Fixtures," "Paper and Allied," 
"Chemicals," "Petroleum and Coal Products," "Rubber and Miscellaneous Products," 
"Leather," "Stone, Clay and Glass," "Primary Metal," "Fabricated Metal," "Non-
electrical," "Motor Vehicle," "Transportation Equipment and Ordinance," "Instruments," 
and "Miscellaneous Manufacturing" industries.  Services include "Services," "Trade," and 
"Finance, Insurance and Real Estate" industries.   
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FIGURE 2.  SELECT MAJOR U.S. INDUSTRY VALUE-ADDED SHARES 

Notes: Data from 35-KLEM database.  Methodology described in Jorgenson et. al. 
[1987]; recreated from Young [2006].  Agriculture is "Agriculture" industry.  
Manufacturing includes "Food and Kindred Products," Tobacco," "Textile Mill 
Products," "Apparel," "Lumber and Wood," "Furniture and Fixtures," "Paper and Allied," 
"Print, Publishing & Allied," "Chemicals," "Petroleum and Coal Products," "Rubber and 
Miscellaneous Products," "Leather," "Stone, Clay and Glass," "Primary Metal," 
"Fabricated Metal," "Non-electrical Industry," "Electrical Industry," "Motor Vehicle," 
"Transportation Equipment and Ordinance," "Instruments," and "Miscellaneous 
Manufacturing" industries.  Services include "Services," "Trade," and "Finance, 
Insurance and Real Estate" industries.   
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TABLES 

TABLE 1 – SUMMARY STATISTICS FOR THREE U.S. INDUSTRY GROUPS 
 

 
 
Statistic for 

 
Agriculture 

 

 
Manufacturing 

 
Services 

Labor's Share    
Mean 0.645 0.722 0.661 
σ 0.066 0.021 0.020 
ρx,Agriculture 1.000 0.235 -0.510 
ρx,Manufacturing 0.235 1.000 0.037 
ρx,Services -0.510 0.037 1.000 
Δ1958,1996 -0.203 -0.079 0.015 
Value-Added 
Share 

   

Mean 0.034 0.285 0.463 
σ 0.009 0.023 0.041 
ρx,Agriculture 1.000 0.758 -0.781 
ρx,Manufacturing 0.758 1.000 -0.964 
ρx,Services -0.781 -0.964 1.000 
Δ1958,1996 -0.034 -0.045 0.117 

Notes: Data from 35-KLEM database.  Methodology described in Jorgenson et al (1987).  
Agriculture is "Agriculture" industry. Manufacturing includes "Food and Kindred 
Products," Tobacco," "Textile Mill Products," "Apparel," "Lumber and Wood," 
"Furniture and Fixtures," "Paper and Allied," "Print, Publishing & Allied," "Chemicals," 
"Petroleum and Coal Products," "Rubber and Miscellaneous Products," "Leather," 
"Stone, Clay and Glass," "Primary Metal," "Fabricated Metal," "Non-electrical Industry," 
"Electrical Industry," "Motor Vehicle," "Transportation Equipment and Ordinance," 
"Instruments," and "Miscellaneous Manufacturing" industries.  Services include 
"Services," "Trade," and "Finance, Insurance and Real Estate" industries. 
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TABLE 2–CHANGE IN INDUSTRY LABOR'S AND VALUE-ADDED SHARES AND INDUSTRY 
CONTRIBUTIONS TO AGGREGATE LABOR'S SHARE CHANGE: 1958 – 1996 

 
 
 
Industry  

 
 

Description 

 
Change in    

Labor's Share 

 
Change in 

Value- 
Added Share 

 
Contribution to 
Agg. Labor's 
Share Change 

1 Agriculture -0.203 -0.034 -0.031 
2 Metal Mining -0.027 -0.001 -0.001 
3 Coal Mining -0.095 -0.002 -0.002 
4 Oil and Gas Extraction -0.032 -0.007 -0.003 
5 Non-metallic Mining -0.124 -0.001 -0.001 
6 Construction 0.022 -0.020 -0.016 
7 Food & Kindred Products -0.187 -0.006 -0.008 
8 Tobacco -0.160 0.001 0.000 
9 Textile Mill Products -0.066 -0.003 -0.003 
10 Apparel -0.093 -0.008 -0.008 
11 Lumber and Wood -0.069 -0.002 -0.002 
12 Furniture and Fixtures -0.064 -0.001 -0.001 
13 Paper and Allied -0.046 -0.002 -0.002 
14 Print., Publishing & Allied -0.042 0.002 0.001 
15 Chemicals -0.034 0.005 0.002 
16 Petroleum & Coal Products -0.206 0.002 0.000 
17 Rubber & Misc. Prod. 0.001 0.003 0.002 
18 Leather -0.364 -0.003 -0.003 
19 Stone, Clay, Glass 0.097 -0.006 -0.003 
20 Primary Metal 0.104 -0.016 -0.010 
21 Fabricated Metal -0.177 -0.008 -0.009 
22 Non-electrical Industry -0.040 0.001 -0.001 
23 Electrical Industry -0.179 0.004 -0.001 
24 Motor Vehicles 0.018 -0.001 -0.001 
25 Transp. Equip & Ord.  0.023 -0.008 -0.007 
26 Instruments 0.023 0.004 0.004 
27 Misc. Manufacturing -0.216 -0.002 -0.002 
28 Transportation 0.064 -0.019 -0.010 
29 Communications -0.062 0.003 0.000 
30 Electrical Utilities 0.010 -0.002 -0.001 
31 Gas Utilities -0.061 -0.002 -0.001 
32 Trade 0.000 -0.044 -0.034 
33 Fin., Ins. & Real Estate  0.006 0.033 0.015 
34 Services 0.074 0.128 0.104 
35 Government Enterprises -0.158 0.014 0.005 

Notes: Calculated from 35 annual industries' data, 1958 – 1996.  Labor's share is that of 
annual value added. Aggregate labor's share is calculated as a weighted average of 
industry labor's shares with industry shares in total value-added as weights.  From top to 
bottom, shaded regions indicate agriculture, manufacturing, and services industries. 
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TABLE 3–LONG HISTORICAL AVERAGE GROWTH RATES OF PER CAPITA GDPS (PERCENTS) 
 

Country 

 
1700-1820
 

1820-1850
 

1850-1900
 

1900-1950 
 

1950-2000 
 

Austria  0.17 1.02 1.12 0.50 3.50
Belgium  0.12 1.13 1.42 0.77 2.69
Denmark  0.17 1.10 1.08 1.68 2.42
Finland  0.17 0.51 1.22 1.89 3.10
France 0.18 1.14 1.18 1.22 2.83
Germany  0.14 0.94 1.49 0.53 3.23
Italy  0.01 0.63 0.56 1.36 3.42
Netherlands  -0.12 0.85 0.74 1.13 2.60
Norway  0.09 0.59 1.36 2.15 3.11
Sweden  0.17 0.24 1.38 1.95 2.27
Switzerland  0.17 1.04 1.91 1.74 1.83
United Kingdom  0.26 1.05 1.32 0.87 2.16
Total 12 Western 
Europe  0.16 0.97 1.24 0.98 2.81
Australia  0.22 4.56 1.43 1.23 2.16
New Zealand  0.00 3.57 2.68 1.36 1.31
Canada 0.62 1.29 1.58 1.85 2.27
United States  0.73 1.21 1.65 1.71 2.20
Total Western Offshoots  0.77 1.29 1.66 1.69 2.19
Notes: Numbers recreated from Madison (2003).  All numbers are percentages.  Shaded 
boxes indicate countries and country groups where the average growth rate is increasing 
monotonically from earlier to later sub-periods.  
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Appendix A: Model Derivations 

The basic framework of the model consists of, 
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(A.5)      0 < ξ < 1,   and  IK ξ=&

(A.6)  ( )( )ξαα −−= 11& . 

The current-value Hamiltonian is, 
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The necessary condition derived from the Hamiltonian are, 
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From (A.10) we have θ1 = θ2(1 – α) so that (A.8) can be rewritten, 
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Combining the above with θ1 = θ2(1 – α): 

(A.13)  

( )

( )
1

12
2

1

1
1

1
1
1

1
1
1

−

−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=

α
α

α
α

αλθ

αλθ

A
L
K

L

A
L
K

L

YY

YY
. 

Differentiating with respect to time: 
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Combining (A.13) with ( )αθθλ
−== 121
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Putting the above into growth rates and exploiting the fact that, by (A.14), 
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Combing θ1 = θ2(1 – α) with (A.11) yields, 
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which, using (A.5) and (A.6), then becomes, 
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Combing θ1 = θ2(1 – α) with (A.12) yields, 
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implying, with (A.16), that, 
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Rearranging (A.18) and using (A.20) yields, 
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Differentiating (A.20) with respect to time: 
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Combining (A.22) with (A.6) and rearranging: 
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Using (A.21) and (A.23) along with (A.5) and (A.6) results in, with good deal of 
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Appendix B: Claim: αξ ≥ . 

 From (A.24) we can state that, 
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Call A: numerator and B: denominator. 

 Claim B1: If B>0 and A>0 then B>A. 

If B > 0 then 
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Finally,  
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 Claim B2: If B<0 and A<0 then B<A. 

Proof: 

If B < 0 then, 
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Having demonstrated B1 and B2, the general claim that αξ ≥  is established. 
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Appendix C: Claim: Labor's share converges from above to a positive value. 

 Labor's share is, 
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Furthermore, if we combine (C.4) with (A.15), 
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Therefore, the condition can be written as follows 
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then condition (C.9) holds. 

So it suffices to prove that 
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So a sufficient condition is 1≥K . 
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Appendix D: Claim: There exists a K~  such that ∀ KK ~
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⎛
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ρ
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⎠

⎞
⎜⎜
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⎛
ρ
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⎛
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α
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Combining equation (4.1) from the main text and (D.1) yields,  
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1
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Rearranging: 
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Appendix E: Claim: 
1−
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⎞
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K  increases as K increases. 

 Consider a function, 
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Differentiating with respect to time: 
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The above can be combined with (4.2) from the main text to yield, 
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Using equation (4.1) and rearranging: 
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Using (A.23) and (A.5) we can rewrite the above condition as, 
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We already know that ξα ≤  so it remains to prove that,      
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Appendix F: Claim: There exists a K** such that for any initial K0 > K**,  0>
C
C& . 

 Define ( )KKK ,~max** = . From the previous two propositions it follows that for 

any initial capital stock K0> K** the optimal growth rate of consumption is positive. 
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Rearranging, 
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Therefore it suffices to prove that, 
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So it suffices to prove that, 
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Therefore, 
(i) For any 0>λ  there exists a stock of capital K~  such that if KK ~>  then 

( )ρλ −≤ A
C
C&

 

(ii) If  
2
1

≥λ  then ( )ρλ −≤ A
C
C&

. 
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