

DEPARTMENT: Blue Skies

Holistic Workload Scaling:
A New Approach to
Compute Acceleration in
the Cloud

Workload scaling is an approach to accelerating

computation and thus improving response times by

replicating the exact same request multiple times and

processing it in parallel on multiple nodes and

accepting the result from the first node to finish. This

is not unlike a TV game show, where the same

question is given to multiple contestants and the

(correct) answer is accepted from the first to respond.

This is different than traditional strategies for

parallelization as used in, say, MapReduce

workloads, where each node runs a subset of the

overall workload. There are a variety of strategies that

trade off metrics such as cost, utilization, performance, and interprocessor

communication requirements. Performance modeling can help determine optimal

approaches for different environments and goals. This is important, because poor

performance can lead to application and domain-specific losses, such as e-commerce

conversions and sales.1 Performance modeling and analysis plays an important role in

designing and driving the selection of resource scaling mechanisms. Such modeling

and analysis is complex due to time-varying workload arrival rates and request sizes,

and even more complex in cloud environments due to the additional stochastic variation

caused by performance interference due to resource sharing across co-located tenants.

Moreover, little is known on how to multi-scale, i.e., dynamically and simultaneously

Juan F. Pérez
Universidad del Rosario
Bogotá, Colombia

Lydia Y. Chen
IBM Research Zurich
Rüschlikon, Switzerland

Massimo Villari
University of Messina, Italy

Rajiv Ranjan
Newcastle University, UK

Editor:
Rajiv Ranjan
rranjans@gmail.com

20
IEEE Cloud Computing Copublished by the IEEE CS and IEEE ComSoc

2325-6095/18/$33.00 ©2018 IEEEJanuary/February 2018

 IEEE CLOUD COMPUTING

scale resources vertically, horizontally, and through workload scaling. In this article, we

first demonstrate the effectiveness of multi-scaling in reducing latency, and then discuss

the performance modeling challenges, particularly for workload scaling.

A study from Amazon estimates1 a latency delay of 100 ms can cause a one percent sales drop. A
recent study from Akamai1 shows that a one second delay in page response can result in 7% loss
in e-commerce conversions. These numbers illustrate the relevance of finding novel solutions to
the long standing and critical challenge of reducing and/or guaranteeing the latency of interactive
applications, such as web services, in a cost-effective way. Traditionally, the fundamental diffi-
culty lies in the workload volatility, i.e., time-varying request arrival rates and varying request
sizes being served by resources that may already be partially loaded. Cloud computing, with its
unique ability to scale resources on demand, offers a powerful engineering solution to tackle the
workload variability, but possibly by incurring additional costs due to pay-per-use pricing. The
advancement of virtualization technologies makes a wide range of resources readily available
upon users’ requests, e.g., virtual machines, CPU cores, and docker images, and “serverless com-
pute APIs” which can be triggered to react to changes in the workload.

However, the downside of the cloud is that the performance of virtual resources may not be sta-
ble2 due to the underlying hardware, colocated applications, virtualization solutions, and network
congestion spikes. For example, the performance of web services can be significantly degraded
by CPU or network hungry neighbor VMs due to the resource contention.3 Such issues become
even more prominent when moving into multitenant clouds, where the degree of resource shar-
ing increases significantly. The impact of this problem is more tangible for the tail latency, e.g.,
95th or 99th percentile, which can grow much larger than the average latency, hindering the us-
ers’ quality of experience significantly. The pitfall of resource sharing presents itself as a chal-
lenge to manage and model interactive applications4,5 as the service rate per virtual resource is no
longer constant making the service times become even more volatile.

Figure 1. Scaling choices for interactive applications on the cloud.

21January/February 2018 www.computer.org/cloud

 BLUE SKIES

To defend the latency against the workload variability, particularly the arrival pattern, a plethora
of prior art2,3 develops auto-scaling solutions along the vertical and horizontal directions. Verti-
cal scaling increases/decreases virtual resources per virtual machine, e.g., the number of virtual
cores, whereas horizontal scaling increases/decreases the number of virtual machines. The core
principle behind these solutions is to scale the resources according to the workload demands and
the latency target, often with a focus on the average value. While resource scaling can cost-effec-
tively fulfill the average latency target for interactive services, it falls short in curtailing the tail
latency due to the high variability per virtual resource.

Consequently, workload scaling has emerged as an alternative to manage the tail performance at
scale,6 specifically targeting scenarios where servers have time-varying processing speeds as in
the cloud. Quite differently from resource scaling, workload scaling deliberately increases the
workload by cloning incoming requests and simultaneously processing them on different virtual
or physical servers. A reply can thus be sent to the user as soon as the first clone completes exe-
cution, that is, the fastest clone determines the request processing time. The advantage of work-
load scaling thus lies in making the most of the available resources by executing the same
request on several servers and using the fastest to respond. The drawback of workload scaling is
the additional load introduced by the clones, requiring underutilized servers or elastic resources
to be available. This solution thus requires careful use as it could potentially harm the applica-
tion performance if used in peak-load conditions.

In this article, we first explain the advantages and limitations of scaling resources and workloads
through empirical examples of web services. We then discuss key modeling challenges found
when capturing vertical, horizontal, and workload scaling, with a focus on the latter as it is the
least studied.

THE LANDSCAPE OF SCALING SOLUTIONS
In this section we show the limits of vertical and horizontal scaling and how these can be com-
bined with workload scaling to robustly manage the tail latency. We focus on the latency mean
and 95th percentile as key performance metrics, and employ web applications hosted in the
cloud, modifying the number of cores per VM (vertical scaling) and the number of VMs (hori-
zontal scaling). We close this section by highlighting the limitations of these solutions.

Vertical Resource Scaling. In Figure 2, we show the latency 95th percentile observed for RU-
BiS, a web shopping benchmark, on a single VM at a private cloud where a neighboring VM
workload is injected to emulate inference. Requests are generated at a constant arrival rate, i.e.,
100 requests per second, while the number of virtual cores increases from two to six cores, one at
a time every 6 minutes. One can clearly see that the tail latency decreases with the increasing
number of virtual cores, but with a decaying marginal gain. This is because the processing time,
i.e., latency, follows a 1/n rule where n is the number of cores. It will be apparent that the latency
improvement between 5 and 6 virtual cores is quite small, compared to the difference between 2
and 3 cores. The effective capacity per VM is not linearly proportional to the number of virtual
cores per VM, even though the price does increase linearly with the number of cores. In fact,
even the largest relative gain in latency (obtained when moving from 2 to 3 cores) is not propor-
tional to the increase in cost. Thus, increasing the number of cores may have a limited impact
and may not be cost effective. Further, increasing the number of cores does not offer a solution
to the larger latency due to the interference caused by the neighboring VMs.

22January/February 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

Figure 2. The
tail latency of
RUBiS
request when
increasing the
number of
allocated
virtual cores,
under a
constant
arrival rate of
100 requests
per second.

Horizontal Resource Scaling. In Figure 3, we show the improvement in the average latency of
a popular web knowledge application, MediaWiki,7 as the number of VMs increases. Two types
of VMs are considered, namely wimpy and brawny, which consist of 2 and 4 virtual cores, with
2 and 4 GB RAM, respectively, to serve a load of 10 requests per second. We observe a similar
trend as for vertical scaling: the latency decreases with the increasing number of VMs but the
marginal gain decreases even as the cost increases. The best latency provisioning wimpy VMs
(5) is around 138 ms, whereas provisioning 5 brawny instances results in an average latency as
low as 120 seconds. Moreover, brawny VMs achieve lower latency than wimpy VMs for any
given number of instances. However, the improvement is definitely less than half even though
the number of virtual resources doubles and the prices also doubles according to the standard
market practice, e.g., Amazon EC2. One may thus conclude that using a sufficient number of
brawny instances, i.e., 5, one can achieve the target latency of 120 ms, whereas even a high num-
ber of wimpy instances fails to achieve such a target. If we combine horizontal scaling of wimpy
VMs with a workload scaling factor of two a surprising result occurs. Upon arrival of requests,
we replicate them once and send each replicas to two different VMs. The latency is determined
by the fastest request among the two replicas. One can see that a sufficiently large number of
wimpy instances, i.e., 5 VMs, can achieve an average latency as low as 115 ms, which is lower
than the target and better than the best performance achieved with brawny instances.

Figure 3. The average latency of
hosting MediaWiki in cloud under
three scaling strategies: (i) adjusting
wimpy VMs only, (ii) adjusting
brawny VMs only, and (iii) adjusting
wimpy VMs with a replication factor
of two.

At a first order of analysis,
the latency of the system
can be modeled by the the-
ory of order statistics,
which describes among
other things the expected
value of the minimum of k

samples taken from a given distribution. For example, the expected value of the minimum of k
samples taken from a uniform distribution on [0,1] is 1/(k+1). In the real world, such a simple
model is insufficient and performance modeling is required, because we also note that when the
number of wimpy instances is low, 2 instances or less, replicating queries results in a latency
worse than without request replication. This can be explained by the extra load introduced by the

23January/February 2018 www.computer.org/cloud

 BLUE SKIES

replicated requests, and indicates that enabling workload scaling without sufficient resources can
result in more harm than performance advantages.

Workload Scaling. As shown in the previous example, and in agreement with prior art, specula-
tively replicating requests is an effective strategy to strengthen system dependability8 and to im-
prove the latency,9 particularly its high percentiles. Workload scaling policies in interactive
systems can be grossly classified by the issuing time of the replicated requests and by the cancel-
ing policy on the remaining redundant requests. Replicated requests can be issued proactively
upon the arrival of requests or reactively after observing performance degradation so as to mini-
mize the processing overhead. Upon receiving the first result from replicated requests/jobs, the
majority of replication policies leave the rest of replicas in the system due to the overhead of ter-
minating requests, while a few studies show the benefits of terminating requests for certain
benchmarks.6 Additional details on these policies are provided in the section on Research Chal-
lenges and Open Issues.

Table 1. Comparisons of the analytical models on replication.

Optimal Workload Scaling. Though the prior art demonstrates the effectiveness of workload
scaling, little is known on determining the optimal level of scaling or replication. The overhead
of a high replication level can overturn the benefit of returning the first-completed request.
Moreover, it also depends on the metrics of interests, i.e., the optimal level for mean latency may
not be the same for the 95th or 99th percentiles. Herein, we show the performance of a Me-
diaWiki cluster hosted on Amazon EC2, subject to different levels of workload scaling. This
cluster has seven t1.micro instances: six running the MediaWiki stack and one used as central
queue to dispatch the requests. Figure 4 depicts the mean and tail latency with different percen-
tiles when applying between 1 and 3 replicas for an arrival rate of 1.33 requests per second.
Clearly, replication is effective in reducing the latency tail, with reductions close to 15% with 2
replicas. However, introducing a third replica hurts the tail even if it improves the mean latency.
This highlights the importance of developing analytic models that are able to compute key la-
tency metrics, both mean and distribution, under workload scaling.

Figure 4. Different latency metrics under workload scaling only:
no replication, two replicas and three replicas.

24January/February 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

Principle and Limitation of Multi-Scaling. The main idea behind workload scaling is to in-
crease the likelihood that requests are processed on the fastest servers. This could be determined
a priori by a scheduling and load balancing strategy that sniffs the speed of servers via different
performance indicators. In contrast, workload scaling defeats the variability by trying out multi-
ple servers simultaneously, determining the fastest server a posteriori. A common criticism is
therefore the high processing overhead introduced by redundant requests. In fact, the prerequi-
sites for workload scaling to be an effective solution are (i) high variability of server speeds
across VMs over time, (ii) somewhat low system load, and (iii) a sufficient number of servers
available on a cost-effective basis. In the case where all the request clones are processed in full,
the total load introduced by proactive replication is simply the baseline load multiplied by the
replication factor. Being able to cancel the request clones (after the first one finishes) and reac-
tively spawning the replicas can reduce the overhead. The number of available servers not only
constraints the maximum number of workload scaling levels, i.e., the number of replicas cannot
exceed the number of available servers, but also implicitly requires data availability. For exam-
ple, when deploying the MediaWiki stack on multiple VMs, one shall ensure the all database en-
tries are replicated on each VM, otherwise requests can only be served by a subset of VMs that
contain the requested data. Hence, in addition to workload and resource scaling, data content
scaling and data access network scaling are additional considerations yet to be addressed the
multi-scaling in the cloud. Further details on this and other key aspects in modeling workload
and multi-scaling are treated in the next section.

RESEARCH CHALLENGES AND OPEN ISSUES
In this section we delve into the challenges of modeling multi-scaling for software applications
in the cloud, existing solutions and open problems. Rather than considering problems that are
common to the modeling of software applications in general we focus on those key features that
are more prominent when modeling multiscaling solutions. We provide a summary of these key
features in related work in Table I. In the following we detail those features from the perspective
of workload scaling that implicitly requires resource scaling.

Request Canceling Policy
When introducing workload scaling, multiple clones of a request are issued and processed. Since
it is sufficient to receive a single response from any of these clones, it is in principle possible
(and desirable) to kill or cancel all remaining clones when the first one completes service. Can-
celing is particularly appealing as it limits at least a portion of the additional load introduced by
the workload scaling mechanism. As a result, most modeling works,4,10 assume that request can-
celing is adopted, and in many cases the cancellation is assumed to have zero cost.

Canceling is also appealing from a modeling point of view and it is central in the few analytical
results available for workload scaling. For instance, canceling allows Joshi and colleagues10 to
reduce a multi-server setup to a single-server one and to provide approximate solutions. Also, the
solution to the Markov chain model proposed by Gardner et.al.4 relies on the canceling assump-
tion. One key reason why canceling simplifies the analysis is that all clones of a request finish at
the same time, such that the minimum service time among all clones of a request determines the
service and departure times of all clones.

However, canceling request clones is not always feasible as it requires incorporating into the ap-
plication a functionality that is not necessarily available. Also, in “fast” distributed applications,
where the request processing times are very short, canceling requests may be infeasible as the
signaling delays may be too long for the signals to arrive before the processing completes. From
a modeling perspective there may be stochastic variation in the delays for a cancellation signal to
arrive across variably congested or distant network links to different nodes. Thus, in many appli-
cations one needs to account for the possibility that clones cannot be canceled or that the cancel-
lation has a non-negligible cost.

25January/February 2018 www.computer.org/cloud

 BLUE SKIES

Leaving all clones to execute until each of them if fully processed means that the system remains
busy a much larger fraction of time than when canceling is in place. In other words, if each re-
quest is cloned (on average) r times the offered load increases r times. Thus, workload scaling
without canceling will often require more resources than with canceling, sometimes many more,
and its performance advantage is therefore limited to systems facing a low-to-moderate load, as
has been shown for instance in Vulimiri et.al.9, Qiu et.al.8, Pérez et.al.5.

The operation without clone canceling has also proven more difficult for modeling and analysis.
In fact, the analytical results available are limited to scenarios with fairly strict assumption, such
as the 2-server system with a centralized queue, Poisson arrivals, and exponential processing
times considered in Lee et.al.12. An approximate analysis method proposed in Vulimiri et.al.9
consists of assuming that all servers operate independently, receiving a fraction of the total traf-
fic augmented by the workload scaling factor r, computing the latency for each server and ob-
taining the latency of a request as the minimum of the latency of r independent random variables,
each holding the latency of a single server. The proposal in Vulimiri et.al.9 exploited the fact that
the latency offered by a single server with exponentially-distributed processing times and Pois-
son arrivals is itself exponentially distributed, whereas in Qiu et al.13 a similar argument is used
for phase-type distributed processing times.

Load Balancer Scaling Awareness
In a distributed setup the load balancer plays the key role of forwarding the incoming requests to
the available servers. When horizontal scaling is introduced, the load balancer needs to stay
aware of the changing set of resources, and appropriately modify its routing policy to incorporate
and remove target resources in real time. In addition, if workload scaling is introduced, the load
balancer can be further involved in properly allocating the clones of a request to the target re-
sources. For instance, it is desirable if not mandatory that clones of the same request are pro-
cessed by different physical servers to exploit the benefits of workload scaling, as otherwise
copies of the same request would simply contend for resources at the same server.

As a result, from a modeling standpoint, the awareness of the load balancer needs to be consid-
ered explicitly as this vastly affects the performance of the scaling mechanism14. In the case of a
scaling-unaware load balancer, a distributed server may receive multiple copies of the same re-
quest, which impacts its arrival stream creating batch arrivals and therefore impacts the latency
negatively. Instead, this scenario is not possible in a scaling-aware load balancer, where arrivals
to a server occurs as singletons and with the same timestamps as the request arrivals to the load
balancer.

One further consideration in a distributed setup is that, in case all servers are busy, the incoming
requests could either queue at the load balancer or immediately dispatched to an appropriately
chosen server (e.g., following the least-connections rule). This decision typically depends on the
type of application and the ratio between the transfer delays and the request processing times. If
transfer times are significant, immediately dispatching the request is preferred to avoid additional
delays. In either case, this choice must be capture by the model, especially when workload scal-
ing is introduced. With the queueing-at-the-load-balancer option and workload scaling, it is pos-
sible for the load balancer to dispatch the clones of a request to the next available server as long
as the reply for that request has not been received. In other words, if a request is quickly pro-
cessed and copies of that request are still queueing at the load balancer, it is possible to remove
those copies from the queue and avoid unnecessary processing. This is not possible if the load
balancer immediately dispatches all copies to the target servers. Whereas exact numerical models
exist for the former case11, the latter option has proven more difficult due to the multi-dimen-
sionality of the problem (many servers each with its own queue) and the close connection that
exists among them since the request latency is given by the clone that finished first, in any of the
servers.

The final issue to consider, mainly due to evolution of container-based microservices application
architectures, is that the underlying load-balancer can either operate at transport layer (L4, re-
quest agonistic) or application layer (L7, request aware). In the case of transport layer (L4) load
balancer, the incoming requests are distributed across web and/or app servers without necessarily
analyzing the composition of the request type. On the other hand, the application layer (L7) load

26January/February 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

balancer balances the requests across web and/or app servers more intelligently after analyzing
the HTTP and/or HTTPS request headers. In the case of a scaling servers connected to the re-
quest agnostic (L4) load balancer, the load balancer only needs to be aware of the contact end-
point of new servers as these have exact replicas of the data-sets and files. Instead, this scenario
is not possible in a request aware (L7) load balancer, as the servers manage different data-sets
and files (e.g., an image server vs. an account server). As a result of this, scaling in the context of
L7 the load balancer will require both the contact end-point of the new servers as well as the type
of request that they can serve, to be configured within the load-balancer at run-time. In summary,
such diversities in load-balancing approaches further complicate the scaling and replication of
web services in the cloud for improving end-to-end request latency.

Request Processing Times
As in general software application modeling, appropriately capturing the request processing
times has a large impact in the accuracy of the latency predictions obtained by the model. The
more general models are however more limited in the analyses that can be performed, in many
cases requiring approximated methods. Thus, for multi-scaling, as in general software applica-
tion modeling, many more results are available for simpler assumptions on the processing times
(exponentially distributed) than for more general assumptions.

Beyond the distribution of the processing times, one key issue in modeling workload scaling is
recognizing that clones of the same request may have similar processing times. For instance, if
the processing time is dominated by the search time of data items and each request has a list of
data items to retrieve, it is natural that all its copies have similar data retrieval and therefore
overall processing times. This behavior can be captured by representing the processing times of
the clones of a request as correlated random variables, in contrast to the usual assumption of in-
dependent processing times.

Introducing this correlation is however difficult as standard queueing models used to represent
software applications assume independent request processing times. Even those models that as-
sume correlated processing times typically assume a general correlation structure for all requests
processed by the system. Instead, in the case of workload scaling the processing times of the
clones of the same request can be heavily correlated whereas the processing times of different
requests may still be fairly independent. The majority of modeling work still assumes independ-
ent service times, except for Qiu.et.al.8.

Application Topology and tier-specific workload multi-scaling
The vast majority of existing works in workload scaling focuses on relatively simple applications
where the whole functionality is contained in a single box. As a number of these boxes is availa-
ble, a request clone can be forwarded to and processed by any of these boxes, simplifying the
modeling and analysis. However, many applications do not fall within these simple assumptions.
This and the following subsection consider two common cases where it is not possible to assume
that a request clone can be processed by any application server.

Here we focus on the case where the application servers are actually split among groups (e.g.
web tier, app tier, database tier) that provide different functionality, as in the common multi-tier
architecture. In this setup a number of new questions arise regarding to workload scaling and
modelling. For instance, if a request is replicated at the first tier (the one first hit by any incom-
ing request) its clones generate additional processing requirements at all the application tiers.
Further, clones could be generated at any tier and their impact therefore affects all tiers down-
stream from the one that implements the cloning, and the number of clones grows as the product
of the replication factor applied at each tier. For instance, in a 3-tier application, if tier 2 uses
cloning factor 2 (creates 1 additional clone) and tier 3 uses cloning factor 3 (creates 2 additional
clones), tier 1 will not see any additional load, tier 2 will see its load doubled, while tier 3 will
see its load multiplied by a factor of 6 since each of the 2 clones in tier 2 generates requests to
tier 3, each of which is cloned 3 times. Moreover, as each application tier has different workload

27January/February 2018 www.computer.org/cloud

 BLUE SKIES

behavior and resource requirements, it is important to develop tier specific workload scaling
models.

To the best of our knowledge, the only work that explicitly considers workload scaling and mod-
elling for a multi-tier application is sPARE14, which proposes an algorithm to determine the best
cloning levels at each tier explicitly considering the multiplicative impact of cloning at multiple
tiers.

Performance Characterization
The vast majority of the existing work tends to focus on modelling the performance (e.g, request
processing latency, memory utilization, CPU utilization, request processing throughput) of
multi-tier applications (as noted above) on cloud datacenters that provide hypervisor-based virtu-
alization technologies. Hypervisors enable cloud providers to create unique virtual machines
(VMs) that share a set of physical hardware resources (CPU, memory, network, and disk). The
hypervisor-based virtualization has many advantages (such as stronger security context), but at
the cost of performance overhead, as each VM has its own Operating System (OS) image. To
narrow the gap between performance of applications on virtualized and non-virtualized physical
resources, container-based (e.g., Docker, LXC) cloud virtualization solutions have evolved in the
last 5 years. Although containers are becoming an attractive choice for deploying applications in
the cloud, very limited modelling techniques exist15 in the literature that can appropriately distin-
guish and reason about the differences in the performance overhead between hypervisor-based
and container-based infrastructures. For instance, hypervisors provide each VM with its own re-
sources, while Container engine (equivalent of hypervisor) share a single host’s resources among
multiple containers (roughly equivalent to VMs) via cgroup and namespace mechanisms. Con-
sidering another example, the run-time performance (e.g. request processing latency) of a con-
tainerized web or database microservice not only depends on the resource configurations (e.g.,
CPU Cores, memory size) allocated to its cgroup but also on whether the underlying physical
host is hypervisor-based or is hypervisor-free. In the case where containerized web services are
deployed on hypervisor-based cloud resources, one would need to undertake following multi-
level modelling across each application-tier including: (i) container-level and (ii) VM-level.

Data Availability
As described in the previous subsection, when modeling workload scaling it is common to as-
sume that a replica clone can be forwarded to any of the application servers. Even if the model
explicitly considers the application tiered architecture, or if the application has a single tier, a
specific request may only be processed by a subset of all servers. This is the case when the appli-
cation considered, or one of its tiers, serves data items stored across a number of distributed
nodes such that (each of) the items required to fulfill a request are available in just a few of the
nodes.

Incorporating data availability in modeling workload scaling introduces too the issue of data
popularity, as this makes the request arrival rates to be much larger for popular data items than
for non-popular ones. Thus, whereas introducing cloning for unpopular data items may have lit-
tle to no effect, cloning requests for popular data items must consider the availability of enough
servers holding that item to fully exploit the benefits of workload scaling as well as to avoid po-
tential server overloads. As of now, this topic has not been explicitly considered in the literature
on modeling workload scaling.

Reliability
Most analyses of workload scaling have focused on the performance benefits of this strategy, as
it has proven effective in reducing latency. However, workload scaling has the potential of im-
proving reliability in failure. Consider for instance a request that is cloned and its two copies are
sent to two different servers. If one of the servers fails, the request clone sent to the other server
can still complete processing and the reply can be sent back to the user without requiring any ad-
ditional steps. Or, for error-prone systems, a voting mechanism can determine the correct result

28January/February 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

from, say, a majority of the correct and incorrect results received. Workload scaling is thus able
to boost both performance and reliability. Evaluating workload scaling across both of these per-
spectives simultaneously still remains largely unexplored, with few exceptions such as Qiu and
Pérez16.

Performance Metrics
As workload scaling is mainly put forward as a method of reducing response time at the possible
expense of higher resource requirements, models are typically geared towards obtaining latency
metrics. In many cases the metric of interest is the average latency9,4,5. However, workload scal-
ing can be particularly effective to limit the tail latency, which makes obtaining the latency dis-
tribution (or its high percentiles) necessary to assess this potential benefit. Several works11,5 have
therefore focused on deriving models to obtain the latency distribution. Finally, one metric that
has proven very useful9,8 to assess when to activate a workload scaling mechanism is the thresh-
old load, that is, the maximum load at which introducing one additional clone remains beneficial
without congesting or overloading the total system. Obtaining this metric allows for the design
of adaptive controllers that increase/decrease the cloning intensity according to the observed
load, such that cloning is deactivated under peak loads to avoid overloads whereas time periods
with low loads (valleys) can benefit from heavy cloning.

CONCLUSION
As we have seen, a number of recent works consider workload scaling a mechanism to latency
management. A few of them further attempt to answer the fundamental question of the optimal
number of replicas under various system assumptions (request canceling policy, load-balance
awareness, etc.). Although the number of servers is a usual input to the proposed models, almost
no work explores the resource and workload scaling jointly, except Qiu and Pérez11, Pérez et.al.5
. Among the latter, Qiu and Pérez11 consider a stationary workload and is validated via simula-
tions only. Instead, DuoScale5 considers both horizontal resource and workload scaling and its
results are experimentally validated on a testbed subject to a dynamic workload. To the best of
our knowledge, there is no modeling work jointly exploring the three dimensions of horizontal
resource scaling, vertical resource scaling, and workload scaling.

ACKNOWLEDGEMENTS
The research presented in this paper has been supported by the Swiss National Science
Foundation National Research Programme “Big Data” (NRP 75) (project 407540 167266).

REFERENCES
1. K. Metrics, blog; https://blog.kissmetrics.com/loading-time.
2. M. Björkqvist, L.Y. Chen, and W. Binder, “Opportunistic Service Provisioning in the Cloud,”

Proceedings of the IEEE 5th International Conference on Cloud Computing (CLOUD 12), 2012, pp.
237–244.

3. R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance interference effects
for QoS-aware clouds,” Proceedings of the 5th European conference on Computer Systems
(EuroSys 10), 2010, pp. 237–250.

4. K. Gardener et al., “Reducing latency via redundant requests: Exact analysis,” ACM SIGMETRICS,
vol. 43, no. 1, 2015, pp. 347–360.

5. J.F. Pérez et al., “Dual scaling vms and queries: Cost-effective latency curtailment,” Proceedings
of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS 18), 2017,
pp. 988–998.

6. J. Dean and L.A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2, 2013,
pp. 74–80.

29January/February 2018 www.computer.org/cloud

 BLUE SKIES

7. S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,” Proceedings of the 36th
International Conference on Very Large Data Bases (PVLDB 10), 2010, pp. 330–339.

8. Z. Qiu et al., “Cutting latency tail: Analyzing and validating replication without canceling,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 11, 2017, pp. 3128–3141.

9. A. Vulimiri et al., “Low latency via redundancy,” Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies (CoNEXT 13), 2013, pp. 283–294.

10. G. Joshi, E. Soljanin, and G.W. Wornell, “Proceedings of the 53rd Annual Allerton Conference on
Communication, Control, and Computing,” Efficient replication of queued tasks for latency
reduction in cloud systems (Allerton 15), 2015, pp. 107–114.

11. Z. Qiu and J.F. Pérez, “Evaluating the effectiveness of replication for tail-tolerance,” Proceedings
of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid
15), 2015, pp. 443–452.

12. K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant requests with cancellation
overheads,” Proceedings of the 53rd Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2015, pp. 99–106.

13. Z. Qiu, J. Pérez, and P. Harrison, “Variability-aware request replication for latency curtailment,”
Proceedings of the 35th Annual IEEE International Conference on Computer Communications
(INFOCOM 16), 2016.

14. R. Birke et al., “sPARE: Partial replication for multi-tier applications in the cloud,” IEEE
Transactions on Services Computing, 2017; doi.org/10.1109/TSC.2017.2780845.

15. M. Fazio et al., “Open issues in scheduling microservices in the cloud,” IEEE Cloud Computing,
vol. 3, no. 5, 2016, pp. 81–88.

16. Z. Qiu and J.F. Pérez, “Enhancing reliability and response times via replication in computing
clusters,” Proceedings of the 34th Annual IEEE International Conference on Computer
Communications (INFOCOM 15), 2015, pp. 1355–1363.

AUTHOR BIOS
Juan F. Pérez is an assistant professor at Universidad del Rosario, Colombia, Department
of Applied Mathematics and Computer Science. He received a PhD degree in Computer
Science from University of Antwerp, Belgium. His research interests center around the per-
formance analysis of computer systems, especially on cloud and cluster computing and op-
tical networking. Contact him at juanferna.perez@urosario.edu.co.

Lydia Y. Chen is a research staff member at the IBM Zürich Research Lab, Switzerland.
She received a PhD degree in Operations Research and Industrial Engineering from the
Pennsylvania State University. Her research interests include performance evaluation for
datacenters and big data systems. She has served on several technical program committees
in various performance and network conferences. She is an IEEE senior member. Contact
her at yic@zurich.ibm.com.

Massimo Villari an associate professor of computer science at the University of Messina.
His research interests include cloud computing, Internet of Things, big data analytics, and
security systems. Villari has a PhD in computer engineering from the University of Mes-
sina. He’s a member of IEEE and IARIA boards. Contact him at mvillari@unime.it.

Rajiv Ranjan is a reader in the School of Computing Science at Newcastle University, UK;
chair professor in the School of Computer, Chinese University of Geosciences, Wuhan,
China; and a visiting scientist at Data61, CSIRO, Australia. His research interests include
grid computing, peer-to-peer networks, cloud computing, Internet of Things, and big data
analytics. Ranjan has a PhD in computer science and software engineering from the Univer-
sity of Melbourne. Contact him at raj.ranjan@ncl.ac.uk or http://rajivranjan.net.

30January/February 2018 www.computer.org/cloud

