
 

DEPARTMENT: Blue Skies 

Holistic Workload Scaling: 
A New Approach to 
Compute Acceleration in 
the Cloud 

Workload scaling is an approach to accelerating 

computation and thus improving response times by 

replicating the exact same request multiple times and 

processing it in parallel on multiple nodes and 

accepting the result from the first node to finish. This 

is not unlike a TV game show, where the same 

question is given to multiple contestants and the 

(correct) answer is accepted from the first to respond. 

This is different than traditional strategies for 

parallelization as used in, say, MapReduce 

workloads, where each node runs a subset of the 

overall workload. There are a variety of strategies that 

trade off metrics such as cost, utilization, performance, and interprocessor 

communication requirements. Performance modeling can help determine optimal 

approaches for different environments and goals. This is important, because poor 

performance can lead to application and domain-specific losses, such as e-commerce 

conversions and sales.1 Performance modeling and analysis plays an important role in 

designing and driving the selection of resource scaling mechanisms. Such modeling 

and analysis is complex due to time-varying workload arrival rates and request sizes, 

and even more complex in cloud environments due to the additional stochastic variation 

caused by performance interference due to resource sharing across co-located tenants. 

Moreover, little is known on how to multi-scale, i.e., dynamically and simultaneously 
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scale resources vertically, horizontally, and through workload scaling. In this article, we 

first demonstrate the effectiveness of multi-scaling in reducing latency, and then discuss 

the performance modeling challenges, particularly for workload scaling.  

A study from Amazon estimates1 a latency delay of 100 ms can cause a one percent sales drop. A 
recent study from Akamai1 shows that a one second delay in page response can result in 7% loss 
in e-commerce conversions. These numbers illustrate the relevance of finding novel solutions to 
the long standing and critical challenge of reducing and/or guaranteeing the latency of interactive 
applications, such as web services, in a cost-effective way. Traditionally, the fundamental diffi-
culty lies in the workload volatility, i.e., time-varying request arrival rates and varying request 
sizes being served by resources that may already be partially loaded. Cloud computing, with its 
unique ability to scale resources on demand, offers a powerful engineering solution to tackle the 
workload variability, but possibly by incurring additional costs due to pay-per-use pricing. The 
advancement of virtualization technologies makes a wide range of resources readily available 
upon users’ requests, e.g., virtual machines, CPU cores, and docker images, and “serverless com-
pute APIs” which can be triggered to react to changes in the workload. 

However, the downside of the cloud is that the performance of virtual resources may not be sta-
ble2 due to the underlying hardware, colocated applications, virtualization solutions, and network 
congestion spikes. For example, the performance of web services can be significantly degraded 
by CPU or network hungry neighbor VMs due to the resource contention.3 Such issues become 
even more prominent when moving into multitenant clouds, where the degree of resource shar-
ing increases significantly. The impact of this problem is more tangible for the tail latency, e.g., 
95th or 99th percentile, which can grow much larger than the average latency, hindering the us-
ers’ quality of experience significantly. The pitfall of resource sharing presents itself as a chal-
lenge to manage and model interactive applications4,5 as the service rate per virtual resource is no 
longer constant making the service times become even more volatile. 

 
Figure 1. Scaling choices for interactive applications on the cloud. 
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To defend the latency against the workload variability, particularly the arrival pattern, a plethora 
of prior art2,3 develops auto-scaling solutions along the vertical and horizontal directions. Verti-
cal scaling increases/decreases virtual resources per virtual machine, e.g., the number of virtual 
cores, whereas horizontal scaling increases/decreases the number of virtual machines. The core 
principle behind these solutions is to scale the resources according to the workload demands and 
the latency target, often with a focus on the average value. While resource scaling can cost-effec-
tively fulfill the average latency target for interactive services, it falls short in curtailing the tail 
latency due to the high variability per virtual resource. 

Consequently, workload scaling has emerged as an alternative to manage the tail performance at 
scale,6 specifically targeting scenarios where servers have time-varying processing speeds as in 
the cloud. Quite differently from resource scaling, workload scaling deliberately increases the 
workload by cloning incoming requests and simultaneously processing them on different virtual 
or physical servers. A reply can thus be sent to the user as soon as the first clone completes exe-
cution, that is, the fastest clone determines the request processing time. The advantage of work-
load scaling thus lies in making the most of the available resources by executing the same 
request on several servers and using the fastest to respond. The drawback of workload scaling is 
the additional load introduced by the clones, requiring underutilized servers or elastic resources 
to be available. This solution thus requires careful use as it could potentially harm the applica-
tion performance if used in peak-load conditions. 

In this article, we first explain the advantages and limitations of scaling resources and workloads 
through empirical examples of web services. We then discuss key modeling challenges found 
when capturing vertical, horizontal, and workload scaling, with a focus on the latter as it is the 
least studied. 

THE LANDSCAPE OF SCALING SOLUTIONS 
In this section we show the limits of vertical and horizontal scaling and how these can be com-
bined with workload scaling to robustly manage the tail latency. We focus on the latency mean 
and 95th percentile as key performance metrics, and employ web applications hosted in the 
cloud, modifying the number of cores per VM (vertical scaling) and the number of VMs (hori-
zontal scaling). We close this section by highlighting the limitations of these solutions. 

Vertical Resource Scaling. In Figure 2, we show the latency 95th percentile observed for RU-
BiS, a web shopping benchmark, on a single VM at a private cloud where a neighboring VM 
workload is injected to emulate inference. Requests are generated at a constant arrival rate, i.e., 
100 requests per second, while the number of virtual cores increases from two to six cores, one at 
a time every 6 minutes. One can clearly see that the tail latency decreases with the increasing 
number of virtual cores, but with a decaying marginal gain. This is because the processing time, 
i.e., latency, follows a 1/n rule where n is the number of cores. It will be apparent that the latency 
improvement between 5 and 6 virtual cores is quite small, compared to the difference between 2 
and 3 cores. The effective capacity per VM is not linearly proportional to the number of virtual 
cores per VM, even though the price does increase linearly with the number of cores. In fact, 
even the largest relative gain in latency (obtained when moving from 2 to 3 cores) is not propor-
tional to the increase in cost. Thus, increasing the number of cores may have a limited impact 
and may not be cost effective. Further, increasing the number of cores does not offer a solution 
to the larger latency due to the interference caused by the neighboring VMs. 
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Figure 2. The 
tail latency of 
RUBiS 
request when 
increasing the 
number of 
allocated 
virtual cores, 
under a 
constant 
arrival rate of 
100 requests 
per second. 

Horizontal Resource Scaling. In Figure 3, we show the improvement in the average latency of 
a popular web knowledge application, MediaWiki,7 as the number of VMs increases. Two types 
of VMs are considered, namely wimpy and brawny, which consist of 2 and 4 virtual cores, with 
2 and 4 GB RAM, respectively, to serve a load of 10 requests per second. We observe a similar 
trend as for vertical scaling: the latency decreases with the increasing number of VMs but the 
marginal gain decreases even as the cost increases. The best latency provisioning wimpy VMs 
(5) is around 138 ms, whereas provisioning 5 brawny instances results in an average latency as 
low as 120 seconds. Moreover, brawny VMs achieve lower latency than wimpy VMs for any 
given number of instances. However, the improvement is definitely less than half even though 
the number of virtual resources doubles and the prices also doubles according to the standard 
market practice, e.g., Amazon EC2. One may thus conclude that using a sufficient number of 
brawny instances, i.e., 5, one can achieve the target latency of 120 ms, whereas even a high num-
ber of wimpy instances fails to achieve such a target. If we combine horizontal scaling of wimpy 
VMs with a workload scaling factor of two a surprising result occurs. Upon arrival of requests, 
we replicate them once and send each replicas to two different VMs. The latency is determined 
by the fastest request among the two replicas. One can see that a sufficiently large number of 
wimpy instances, i.e., 5 VMs, can achieve an average latency as low as 115 ms, which is lower 
than the target and better than the best performance achieved with brawny instances. 

 

Figure 3. The average latency of 
hosting MediaWiki in cloud under 
three scaling strategies: (i) adjusting 
wimpy VMs only, (ii) adjusting 
brawny VMs only, and (iii) adjusting 
wimpy VMs with a replication factor 
of two. 

At a first order of analysis, 
the latency of the system 
can be modeled by the the-
ory of order statistics, 
which describes among 
other things the expected 
value of the minimum of k 

samples taken from a given distribution. For example, the expected value of the minimum of k 
samples taken from a uniform distribution on [0,1] is 1/(k+1). In the real world, such a simple 
model is insufficient and performance modeling is required, because we also note that when the 
number of wimpy instances is low, 2 instances or less, replicating queries results in a latency 
worse than without request replication. This can be explained by the extra load introduced by the 
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replicated requests, and indicates that enabling workload scaling without sufficient resources can 
result in more harm than performance advantages. 

Workload Scaling. As shown in the previous example, and in agreement with prior art, specula-
tively replicating requests is an effective strategy to strengthen system dependability8 and to im-
prove the latency,9 particularly its high percentiles. Workload scaling policies in interactive 
systems can be grossly classified by the issuing time of the replicated requests and by the cancel-
ing policy on the remaining redundant requests. Replicated requests can be issued proactively 
upon the arrival of requests or reactively after observing performance degradation so as to mini-
mize the processing overhead. Upon receiving the first result from replicated requests/jobs, the 
majority of replication policies leave the rest of replicas in the system due to the overhead of ter-
minating requests, while a few studies show the benefits of terminating requests for certain 
benchmarks.6 Additional details on these policies are provided in the section on Research Chal-
lenges and Open Issues. 

Table 1. Comparisons of the analytical models on replication. 

 
Optimal Workload Scaling. Though the prior art demonstrates the effectiveness of workload 
scaling, little is known on determining the optimal level of scaling or replication. The overhead 
of a high replication level can overturn the benefit of returning the first-completed request. 
Moreover, it also depends on the metrics of interests, i.e., the optimal level for mean latency may 
not be the same for the 95th or 99th percentiles. Herein, we show the performance of a Me-
diaWiki cluster hosted on Amazon EC2, subject to different levels of workload scaling. This 
cluster has seven t1.micro instances: six running the MediaWiki stack and one used as central 
queue to dispatch the requests. Figure 4 depicts the mean and tail latency with different percen-
tiles when applying between 1 and 3 replicas for an arrival rate of 1.33 requests per second. 
Clearly, replication is effective in reducing the latency tail, with reductions close to 15% with 2 
replicas. However, introducing a third replica hurts the tail even if it improves the mean latency. 
This highlights the importance of developing analytic models that are able to compute key la-
tency metrics, both mean and distribution, under workload scaling. 

 
Figure 4. Different latency metrics under workload scaling only:  
no replication, two replicas and three replicas. 
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Principle and Limitation of Multi-Scaling. The main idea behind workload scaling is to in-
crease the likelihood that requests are processed on the fastest servers. This could be determined 
a priori by a scheduling and load balancing strategy that sniffs the speed of servers via different 
performance indicators. In contrast, workload scaling defeats the variability by trying out multi-
ple servers simultaneously, determining the fastest server a posteriori. A common criticism is 
therefore the high processing overhead introduced by redundant requests. In fact, the prerequi-
sites for workload scaling to be an effective solution are (i) high variability of server speeds 
across VMs over time, (ii) somewhat low system load, and (iii) a sufficient number of servers 
available on a cost-effective basis. In the case where all the request clones are processed in full, 
the total load introduced by proactive replication is simply the baseline load multiplied by the 
replication factor. Being able to cancel the request clones (after the first one finishes) and reac-
tively spawning the replicas can reduce the overhead. The number of available servers not only 
constraints the maximum number of workload scaling levels, i.e., the number of replicas cannot 
exceed the number of available servers, but also implicitly requires data availability. For exam-
ple, when deploying the MediaWiki stack on multiple VMs, one shall ensure the all database en-
tries are replicated on each VM, otherwise requests can only be served by a subset of VMs that 
contain the requested data. Hence, in addition to workload and resource scaling, data content 
scaling and data access network scaling are additional considerations yet to be addressed the 
multi-scaling in the cloud. Further details on this and other key aspects in modeling workload 
and multi-scaling are treated in the next section. 

RESEARCH CHALLENGES AND OPEN ISSUES 
In this section we delve into the challenges of modeling multi-scaling for software applications 
in the cloud, existing solutions and open problems. Rather than considering problems that are 
common to the modeling of software applications in general we focus on those key features that 
are more prominent when modeling multiscaling solutions. We provide a summary of these key 
features in related work in Table I. In the following we detail those features from the perspective 
of workload scaling that implicitly requires resource scaling. 

Request Canceling Policy 
When introducing workload scaling, multiple clones of a request are issued and processed. Since 
it is sufficient to receive a single response from any of these clones, it is in principle possible 
(and desirable) to kill or cancel all remaining clones when the first one completes service. Can-
celing is particularly appealing as it limits at least a portion of the additional load introduced by 
the workload scaling mechanism. As a result, most modeling works,4,10 assume that request can-
celing is adopted, and in many cases the cancellation is assumed to have zero cost. 

Canceling is also appealing from a modeling point of view and it is central in the few analytical 
results available for workload scaling. For instance, canceling allows Joshi and colleagues10 to 
reduce a multi-server setup to a single-server one and to provide approximate solutions. Also, the 
solution to the Markov chain model proposed by Gardner et.al.4 relies on the canceling assump-
tion. One key reason why canceling simplifies the analysis is that all clones of a request finish at 
the same time, such that the minimum service time among all clones of a request determines the 
service and departure times of all clones. 

However, canceling request clones is not always feasible as it requires incorporating into the ap-
plication a functionality that is not necessarily available. Also, in “fast” distributed applications, 
where the request processing times are very short, canceling requests may be infeasible as the 
signaling delays may be too long for the signals to arrive before the processing completes. From 
a modeling perspective there may be stochastic variation in the delays for a cancellation signal to 
arrive across variably congested or distant network links to different nodes. Thus, in many appli-
cations one needs to account for the possibility that clones cannot be canceled or that the cancel-
lation has a non-negligible cost. 
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Leaving all clones to execute until each of them if fully processed means that the system remains 
busy a much larger fraction of time than when canceling is in place. In other words, if each re-
quest is cloned (on average) r times the offered load increases r times. Thus, workload scaling 
without canceling will often require more resources than with canceling, sometimes many more, 
and its performance advantage is therefore limited to systems facing a low-to-moderate load, as 
has been shown for instance in Vulimiri et.al.9, Qiu et.al.8, Pérez et.al.5. 

The operation without clone canceling has also proven more difficult for modeling and analysis. 
In fact, the analytical results available are limited to scenarios with fairly strict assumption, such 
as the 2-server system with a centralized queue, Poisson arrivals, and exponential processing 
times considered in Lee et.al.12. An approximate analysis method proposed in Vulimiri et.al.9 
consists of assuming that all servers operate independently, receiving a fraction of the total traf-
fic augmented by the workload scaling factor r, computing the latency for each server and ob-
taining the latency of a request as the minimum of the latency of r independent random variables, 
each holding the latency of a single server. The proposal in Vulimiri et.al.9 exploited the fact that 
the latency offered by a single server with exponentially-distributed processing times and Pois-
son arrivals is itself exponentially distributed, whereas in Qiu et al.13 a similar argument is used 
for phase-type distributed processing times. 

Load Balancer Scaling Awareness 
In a distributed setup the load balancer plays the key role of forwarding the incoming requests to 
the available servers. When horizontal scaling is introduced, the load balancer needs to stay 
aware of the changing set of resources, and appropriately modify its routing policy to incorporate 
and remove target resources in real time. In addition, if workload scaling is introduced, the load 
balancer can be further involved in properly allocating the clones of a request to the target re-
sources. For instance, it is desirable if not mandatory that clones of the same request are pro-
cessed by different physical servers to exploit the benefits of workload scaling, as otherwise 
copies of the same request would simply contend for resources at the same server. 

As a result, from a modeling standpoint, the awareness of the load balancer needs to be consid-
ered explicitly as this vastly affects the performance of the scaling mechanism14. In the case of a 
scaling-unaware load balancer, a distributed server may receive multiple copies of the same re-
quest, which impacts its arrival stream creating batch arrivals and therefore impacts the latency 
negatively. Instead, this scenario is not possible in a scaling-aware load balancer, where arrivals 
to a server occurs as singletons and with the same timestamps as the request arrivals to the load 
balancer. 

One further consideration in a distributed setup is that, in case all servers are busy, the incoming 
requests could either queue at the load balancer or immediately dispatched to an appropriately 
chosen server (e.g., following the least-connections rule). This decision typically depends on the 
type of application and the ratio between the transfer delays and the request processing times. If 
transfer times are significant, immediately dispatching the request is preferred to avoid additional 
delays. In either case, this choice must be capture by the model, especially when workload scal-
ing is introduced. With the queueing-at-the-load-balancer option and workload scaling, it is pos-
sible for the load balancer to dispatch the clones of a request to the next available server as long 
as the reply for that request has not been received. In other words, if a request is quickly pro-
cessed and copies of that request are still queueing at the load balancer, it is possible to remove 
those copies from the queue and avoid unnecessary processing. This is not possible if the load 
balancer immediately dispatches all copies to the target servers. Whereas exact numerical models 
exist for the former case11, the latter option has proven more difficult due to the multi-dimen-
sionality of the problem (many servers each with its own queue) and the close connection that 
exists among them since the request latency is given by the clone that finished first, in any of the 
servers. 

The final issue to consider, mainly due to evolution of container-based microservices application 
architectures, is that the underlying load-balancer can either operate at transport layer (L4, re-
quest agonistic) or application layer (L7, request aware). In the case of transport layer (L4) load 
balancer, the incoming requests are distributed across web and/or app servers without necessarily 
analyzing the composition of the request type. On the other hand, the application layer (L7) load 
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balancer balances the requests across web and/or app servers more intelligently after analyzing 
the HTTP and/or HTTPS request headers. In the case of a scaling servers connected to the re-
quest agnostic (L4) load balancer, the load balancer only needs to be aware of the contact end-
point of new servers as these have exact replicas of the data-sets and files. Instead, this scenario 
is not possible in a request aware (L7) load balancer, as the servers manage different data-sets 
and files (e.g., an image server vs. an account server). As a result of this, scaling in the context of 
L7 the load balancer will require both the contact end-point of the new servers as well as the type 
of request that they can serve, to be configured within the load-balancer at run-time. In summary, 
such diversities in load-balancing approaches further complicate the scaling and replication of 
web services in the cloud for improving end-to-end request latency. 

Request Processing Times 
As in general software application modeling, appropriately capturing the request processing 
times has a large impact in the accuracy of the latency predictions obtained by the model. The 
more general models are however more limited in the analyses that can be performed, in many 
cases requiring approximated methods. Thus, for multi-scaling, as in general software applica-
tion modeling, many more results are available for simpler assumptions on the processing times 
(exponentially distributed) than for more general assumptions. 

Beyond the distribution of the processing times, one key issue in modeling workload scaling is 
recognizing that clones of the same request may have similar processing times. For instance, if 
the processing time is dominated by the search time of data items and each request has a list of 
data items to retrieve, it is natural that all its copies have similar data retrieval and therefore 
overall processing times. This behavior can be captured by representing the processing times of 
the clones of a request as correlated random variables, in contrast to the usual assumption of in-
dependent processing times.  

Introducing this correlation is however difficult as standard queueing models used to represent 
software applications assume independent request processing times. Even those models that as-
sume correlated processing times typically assume a general correlation structure for all requests 
processed by the system. Instead, in the case of workload scaling the processing times of the 
clones of the same request can be heavily correlated whereas the processing times of different 
requests may still be fairly independent. The majority of modeling work still assumes independ-
ent service times, except for Qiu.et.al.8. 

Application Topology and tier-specific workload multi-scaling 
The vast majority of existing works in workload scaling focuses on relatively simple applications 
where the whole functionality is contained in a single box. As a number of these boxes is availa-
ble, a request clone can be forwarded to and processed by any of these boxes, simplifying the 
modeling and analysis. However, many applications do not fall within these simple assumptions. 
This and the following subsection consider two common cases where it is not possible to assume 
that a request clone can be processed by any application server. 

Here we focus on the case where the application servers are actually split among groups (e.g. 
web tier, app tier, database tier) that provide different functionality, as in the common multi-tier 
architecture. In this setup a number of new questions arise regarding to workload scaling and 
modelling. For instance, if a request is replicated at the first tier (the one first hit by any incom-
ing request) its clones generate additional processing requirements at all the application tiers. 
Further, clones could be generated at any tier and their impact therefore affects all tiers down-
stream from the one that implements the cloning, and the number of clones grows as the product 
of the replication factor applied at each tier. For instance, in a 3-tier application, if tier 2 uses 
cloning factor 2 (creates 1 additional clone) and tier 3 uses cloning factor 3 (creates 2 additional 
clones), tier 1 will not see any additional load, tier 2 will see its load doubled, while tier 3 will 
see its load multiplied by a factor of 6 since each of the 2 clones in tier 2 generates requests to 
tier 3, each of which is cloned 3 times. Moreover, as each application tier has different workload 
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behavior and resource requirements, it is important to develop tier specific workload scaling 
models. 

To the best of our knowledge, the only work that explicitly considers workload scaling and mod-
elling for a multi-tier application is sPARE14, which proposes an algorithm to determine the best 
cloning levels at each tier explicitly considering the multiplicative impact of cloning at multiple 
tiers. 

Performance Characterization 
The vast majority of the existing work tends to focus on modelling the performance (e.g, request 
processing latency, memory utilization, CPU utilization, request processing throughput) of 
multi-tier applications (as noted above) on cloud datacenters that provide hypervisor-based virtu-
alization technologies. Hypervisors enable cloud providers to create unique virtual machines 
(VMs) that share a set of physical hardware resources (CPU, memory, network, and disk). The 
hypervisor-based virtualization has many advantages (such as stronger security context), but at 
the cost of performance overhead, as each VM has its own Operating System (OS) image. To 
narrow the gap between performance of applications on virtualized and non-virtualized physical 
resources, container-based (e.g., Docker, LXC) cloud virtualization solutions have evolved in the 
last 5 years. Although containers are becoming an attractive choice for deploying applications in 
the cloud, very limited modelling techniques exist15 in the literature that can appropriately distin-
guish and reason about the differences in the performance overhead between hypervisor-based 
and container-based infrastructures. For instance, hypervisors provide each VM with its own re-
sources, while Container engine (equivalent of hypervisor) share a single host’s resources among 
multiple containers (roughly equivalent to VMs) via cgroup and namespace mechanisms. Con-
sidering another example, the run-time performance (e.g. request processing latency) of a con-
tainerized web or database microservice not only depends on the resource configurations (e.g., 
CPU Cores, memory size) allocated to its cgroup but also on whether the underlying physical 
host is hypervisor-based or is hypervisor-free. In the case where containerized web services are 
deployed on hypervisor-based cloud resources, one would need to undertake following multi-
level modelling across each application-tier including: (i) container-level and (ii) VM-level. 

Data Availability 
As described in the previous subsection, when modeling workload scaling it is common to as-
sume that a replica clone can be forwarded to any of the application servers. Even if the model 
explicitly considers the application tiered architecture, or if the application has a single tier, a 
specific request may only be processed by a subset of all servers. This is the case when the appli-
cation considered, or one of its tiers, serves data items stored across a number of distributed 
nodes such that (each of) the items required to fulfill a request are available in just a few of the 
nodes. 

Incorporating data availability in modeling workload scaling introduces too the issue of data 
popularity, as this makes the request arrival rates to be much larger for popular data items than 
for non-popular ones. Thus, whereas introducing cloning for unpopular data items may have lit-
tle to no effect, cloning requests for popular data items must consider the availability of enough 
servers holding that item to fully exploit the benefits of workload scaling as well as to avoid po-
tential server overloads. As of now, this topic has not been explicitly considered in the literature 
on modeling workload scaling. 

Reliability 
Most analyses of workload scaling have focused on the performance benefits of this strategy, as 
it has proven effective in reducing latency. However, workload scaling has the potential of im-
proving reliability in failure. Consider for instance a request that is cloned and its two copies are 
sent to two different servers. If one of the servers fails, the request clone sent to the other server 
can still complete processing and the reply can be sent back to the user without requiring any ad-
ditional steps. Or, for error-prone systems, a voting mechanism can determine the correct result 
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from, say, a majority of the correct and incorrect results received. Workload scaling is thus able 
to boost both performance and reliability. Evaluating workload scaling across both of these per-
spectives simultaneously still remains largely unexplored, with few exceptions such as Qiu and 
Pérez16. 

Performance Metrics 
As workload scaling is mainly put forward as a method of reducing response time at the possible 
expense of higher resource requirements, models are typically geared towards obtaining latency 
metrics. In many cases the metric of interest is the average latency9,4,5. However, workload scal-
ing can be particularly effective to limit the tail latency, which makes obtaining the latency dis-
tribution (or its high percentiles) necessary to assess this potential benefit. Several works11,5 have 
therefore focused on deriving models to obtain the latency distribution. Finally, one metric that 
has proven very useful9,8 to assess when to activate a workload scaling mechanism is the thresh-
old load, that is, the maximum load at which introducing one additional clone remains beneficial 
without congesting or overloading the total system. Obtaining this metric allows for the design 
of adaptive controllers that increase/decrease the cloning intensity according to the observed 
load, such that cloning is deactivated under peak loads to avoid overloads whereas time periods 
with low loads (valleys) can benefit from heavy cloning. 

CONCLUSION 
As we have seen, a number of recent works consider workload scaling a mechanism to latency 
management. A few of them further attempt to answer the fundamental question of the optimal 
number of replicas under various system assumptions (request canceling policy, load-balance 
awareness, etc.). Although the number of servers is a usual input to the proposed models, almost 
no work explores the resource and workload scaling jointly, except Qiu and Pérez11, Pérez et.al.5 
. Among the latter, Qiu and Pérez11 consider a stationary workload and is validated via simula-
tions only. Instead, DuoScale5 considers both horizontal resource and workload scaling and its 
results are experimentally validated on a testbed subject to a dynamic workload. To the best of 
our knowledge, there is no modeling work jointly exploring the three dimensions of horizontal 
resource scaling, vertical resource scaling, and workload scaling. 

ACKNOWLEDGEMENTS 
The research presented in this paper has been supported by the Swiss National Science 
Foundation National Research Programme “Big Data” (NRP 75) (project 407540 167266). 

REFERENCES 
1. K. Metrics, blog; https://blog.kissmetrics.com/loading-time. 
2. M. Björkqvist, L.Y. Chen, and W. Binder, “Opportunistic Service Provisioning in the Cloud,” 

Proceedings of the IEEE 5th International Conference on Cloud Computing (CLOUD 12), 2012, pp. 
237–244. 

3. R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance interference effects 
for QoS-aware clouds,” Proceedings of the 5th European conference on Computer Systems 
(EuroSys 10), 2010, pp. 237–250. 

4. K. Gardener et al., “Reducing latency via redundant requests: Exact analysis,” ACM SIGMETRICS, 
vol. 43, no. 1, 2015, pp. 347–360. 

5. J.F. Pérez et al., “Dual scaling vms and queries: Cost-effective latency curtailment,” Proceedings 
of the IEEE 37th International Conference on Distributed Computing Systems (ICDCS 18), 2017, 
pp. 988–998. 

6. J. Dean and L.A. Barroso, “The tail at scale,” Communications of the ACM, vol. 56, no. 2, 2013, 
pp. 74–80. 

29January/February 2018 www.computer.org/cloud



 

 BLUE SKIES 

7. S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets,” Proceedings of the 36th 
International Conference on Very Large Data Bases (PVLDB 10), 2010, pp. 330–339. 

8. Z. Qiu et al., “Cutting latency tail: Analyzing and validating replication without canceling,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 28, no. 11, 2017, pp. 3128–3141. 

9. A. Vulimiri et al., “Low latency via redundancy,” Proceedings of the ninth ACM conference on 
Emerging networking experiments and technologies (CoNEXT 13), 2013, pp. 283–294. 

10. G. Joshi, E. Soljanin, and G.W. Wornell, “Proceedings of the 53rd Annual Allerton Conference on 
Communication, Control, and Computing,” Efficient replication of queued tasks for latency 
reduction in cloud systems (Allerton 15), 2015, pp. 107–114. 

11. Z. Qiu and J.F. Pérez, “Evaluating the effectiveness of replication for tail-tolerance,” Proceedings 
of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 
15), 2015, pp. 443–452. 

12. K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant requests with cancellation 
overheads,” Proceedings of the 53rd Annual Allerton Conference on Communication, Control, 
and Computing (Allerton), 2015, pp. 99–106. 

13. Z. Qiu, J. Pérez, and P. Harrison, “Variability-aware request replication for latency curtailment,” 
Proceedings of the 35th Annual IEEE International Conference on Computer Communications 
(INFOCOM 16), 2016. 

14. R. Birke et al., “sPARE: Partial replication for multi-tier applications in the cloud,” IEEE 
Transactions on Services Computing, 2017; doi.org/10.1109/TSC.2017.2780845. 

15. M. Fazio et al., “Open issues in scheduling microservices in the cloud,” IEEE Cloud Computing, 
vol. 3, no. 5, 2016, pp. 81–88. 

16. Z. Qiu and J.F. Pérez, “Enhancing reliability and response times via replication in computing 
clusters,” Proceedings of the 34th Annual IEEE International Conference on Computer 
Communications (INFOCOM 15), 2015, pp. 1355–1363. 

AUTHOR BIOS 
Juan F. Pérez is an assistant professor at Universidad del Rosario, Colombia, Department 
of Applied Mathematics and Computer Science. He received a PhD degree in Computer 
Science from University of Antwerp, Belgium. His research interests center around the per-
formance analysis of computer systems, especially on cloud and cluster computing and op-
tical networking. Contact him at juanferna.perez@urosario.edu.co. 

Lydia Y. Chen is a research staff member at the IBM Zürich Research Lab, Switzerland.  
She received a PhD degree in Operations Research and Industrial Engineering  from the 
Pennsylvania State University. Her research interests include performance evaluation for 
datacenters and big data systems. She has served on several technical program committees 
in various performance and network conferences.  She is an IEEE senior member. Contact 
her at yic@zurich.ibm.com. 

Massimo Villari an associate professor of computer science at the University of Messina. 
His research interests include cloud computing, Internet of Things, big data analytics, and 
security systems. Villari has a PhD in computer engineering from the University of Mes-
sina. He’s a member of IEEE and IARIA boards. Contact him at mvillari@unime.it.  

Rajiv Ranjan is a reader in the School of Computing Science at Newcastle University, UK; 
chair professor in the School of Computer, Chinese University of Geosciences, Wuhan, 
China; and a visiting scientist at Data61, CSIRO, Australia. His research interests include 
grid computing, peer-to-peer networks, cloud computing, Internet of Things, and big data 
analytics. Ranjan has a PhD in computer science and software engineering from the Univer-
sity of Melbourne. Contact him at raj.ranjan@ncl.ac.uk or http://rajivranjan.net. 

30January/February 2018 www.computer.org/cloud


