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ABSTRACT

This paper presents a column generation algorithm for solving combined vehicle and inventory 
problems. This problem is based on the idea of coordinating customer inventory levels through a 
minimum routing cost. This is a combinatory decision problem since vehicle routing and inventory 
problems, are combined.
Using the column generation method, we can iteratively generate interesting routes to the system, based 
on their dual costs, this is routes that will improve the quality of the objective function because its reduced 
costs are negatives. The initial mixed integer problem has to be relaxed for getting its reduced costs. The 
sub problem is defined as the shortest path problem that returns a set of desirable routes. Finally, when 
the set of desirable routes is obtained, the mixed integer model should select a set of routes that fulfill 
both minimum shipping costs and the constraints of the system.
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RESUMEN

Este trabajo presenta un algoritmo basado en generación de columnas para la solución de problemas 
combinados de ruteo e inventarios. Este problema trata de coordinar los niveles de inventario del cliente 
mediante envíos a costo mínimo. Siendo este un problema de decisión combinatorio, ya que combina 
problemas de ruteo de vehículos (VRP) y problemas de inventario.
Utilizando el método de generación de columnas se pueden generar iterativamente rutas interesantes 
al sistema basadas en los costos duales, esto es rutas que mejoren la calidad de la función objetivo al 
presentar costos reducidos negativos. Para esto el problema entero mixto original se relaja para obtener 
los costos reducidos y se establece un subproblema encargado de generar las rutas. El subproblema se 
modela como un problema de ruta más corta. Finalmente cuando se tiene un conjunto de rutas atractivas 
para el modelo, el problema entero mixto es el encargado de seleccionar aquellas rutas que minimicen 
costos y satisfagan las restricciones establecidas.

Palabras clave: Generación de columnas, costeo ruteo de vehículos, inventarios, ruta más corta, 
algoritmo pulse.
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INTRODUCTION AND MOTIVATION

Nowadays many companies has to deal with the 
problem of coordinate inventory policies and 
transportation management. Due to this problem 
a variety of strategies are used for minimizing 
the logistics costs. One of these strategies is the 
Vendor Managed Inventory System (VMI) where 
the suppliers decide the quantity that will be sent 
to the customers, the period of time that will be 
made the delivery and how will be distributed the 
product. When these decisions are made by retailers 
the logistics cost are reduced and the customer can 
reduce the ordering cost.

The VMI can be model as an Inventory Routing 
Problem (IRP), which is an attractive problem due 
to its complexity and for the applicability that it 
has. In fact, this problem is NP-Hard because it is 
an extension of the vehicle routing problem (VRP) 
and involves inventory decisions.

The Inventory Routing Problem (IRP) was introduced 
by Federguen & Zipkin [1]. This problem can be 
seen as an extension of the classical Vehicle Routing 
Problem (VRP). The problem consists in designing 
a set of vehicle routes of minimal cost, starting and 
returning to the depot, while satisfying capacity 
constraints and customer requirements. Both types 
of decisions concerning inventory and routing are 
taken simultaneously.

The problem shifts responsibilities for customers 
and suppliers (Savelsbergh & Song [2]). Customers 
transfer the inventory control to the supplier. The 
suppliers monitor the inventory level and decide 
when to deliver, how much to deliver and how 
to deliver. This change has advantages like less 
resources required for inventory management for 
the customers, and the freedom for the supplier 
to decide the routes, when, how and how much 
to deliver. It is common to use a so-called order 
up to level policy or maximum level policy in the 
inventory routing problem.

According to order up to level policy introduce by 
Bertazzi, Paletta and Speranza [17], every time a 
customer is visited, the quantity delivered by the 
supplier is such that the maximum level of the 
inventory is reached at the customer. In the maximum 
level policy the quantity delivered to a customer is 

the minimum between the maximum quantity that 
can be delivered without exceeding the maximum 
capacity of the customer, the residual capacity of 
the vehicle and the quantity available at the supplier.

The difference between these two policies are that 
in the order up to level policy when a customer 
is visited the inventory level reaches exactly its 
maximum level, meanwhile in the maximum level 
policy when a customer is visited the quantity 
delivered cannot exceed the maximum inventory 
level. In other words the maximum level policy 
is more flexible than order up to level policy. In 
case these policies are not used, it means that the 
quantity shipped to the customers is not restricted 
by any constraint. In other words the total amount 
of quantity is sent to the customers can take any 
value that do not exceed the capacity of the vehicle 
and do not exceed the maximum level of inventory 
of the customer.

This problem is not only attractive for its 
computational complexity but also for its industrial 
applicability. This model can be used in wholesales, 
where they have to decide the distribution of 
products to its stores. Another application is the 
distribution of drugs between centers of attention, 
we can also see this problem in distribution of 
blood between hospitals (Hemmelmayr, Doerner 
& Hartl [3]) or animals between farms (Aghezzaf, 
Raa & Landeghem [4]) or applications in the 
maritime transportation (Henrik [5]) or perishable 
products [13] or bulk gas distribution [14]. A huge 
number of distribution problems can be modeled 
as an Inventory Routing Problem.

There are several algorithms proposed to solve the 
problem like Savelsbergh & Song [2] who proposed 
an integer programming based optimization 
algorithm with local search procedures in order to 
improve solutions. Zhao, Wang & Lai [6] develop 
a tabu search in order to find the optimal regional 
partition wich indicates the customer that must 
be visited. A hybrid genetic algorithm for a multi 
product IRP was developed by Moin, Salhi & Aziz 
[7], Aghezzaf, Raa & Landeghem [4] proposed a 
nonlinear mixed integer formulation and solve 
the problem using a column generation method 
where the subproblems are solved using saving 
based approximation method. Coelho, Cordeau 
& Laporte [8] proposed a matheuristic with and 
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adaptative large neighborhood search for solving 
the problem. Solyali and Sural [15] developed a 
branch and cut algorithm for solving the problem 
using a tour based heuristic and Coelho, Cordeau and 
Laporte [16] developed and cutting plane algorithm 
for obtain the exact solutions of several instances. 
Also real applications were developed by Oppen, 
Lokketangen & Desrosiers [9] who model the 
problem of livestock collection as an IRP, where for 
solving the problem a column generation approach 
was proposed, also Hemmelmayr, Doerner & Hartl 
[3] model the problem of blood distribution as an 
IRP with uncertainty of the demads.

THE INVENTORY-ROUTING PROBLEM

Mathematical formulation
The Inventory-Routing problem can be defined as a 
mixed integer decision problem in the sense that the 
supplier needs to define inventory levels alongside 
with routing decisions.

The problem can be represented by a graph 
consisting of a set of nodes N = {0,…n}, where 
the node 0 is the depot, and the subset N’ = N \ 
{0} represents the customers. At each discrete time 
over a finite horizon t ∈ T = {1,…,τ} a quantity rt 
will become available at the depot and a quantity 
dit is consumed by customer i ∈ N’ at each time 
t ∈ T = {1,…,τ}. The inventory holding costs are 
hi units for each node i ∈ N per time period. The 
inventory level at node i ∈ N at the beginning of 
time t ∈ T’ = T ∪ {T + 1} is represented by I(i,t). 
There is an initial inventory level at the depot of 
B and the customers i ∈ N’ have also an initial 
inventory defined by Si. For each customer i ∈ 
N’ there is a maximum and minimum level of 
inventory denoted by Ui and Li respectively. The 
set  K={1,…,k} defines available vehicles at the 
depot, each one of them has a capacity Q. The 
mathematical formulation is based on column 
generation where the set R contains all the possible 
routes, and each route r ∈ R = {1,…p}, is associated 
to a cost Cr. There is a binary parameter air that is 
1 if and only if a customer i ∈ N’ is on the route 
r ∈ R, and 0 otherwise. The binary variable xrkt 
is equal to 1 if the route r ∈ R is used by vehicle 
k ∈ K at time r ∈ T, and 0 otherwise. Besides we 
introduce a variable that models the quantity of 
product sent to customer i ∈ N’ using the vehicle 
k ∈ K at time t ∈ T, as qikt.

The mathematical model can described as follows:

min hiIit
t∈T '
∑

i∈N
∑ + crxrkt

t∈T
∑

k∈K
∑

r∈R
∑ 	 (1)

	 s.t.

xrkt
r∈R
∑ ≤ 1 ∀ k ∈K , t∈T

	
(2)

airxrkt
k∈K
∑ ≤ 1

r∈R
∑ ∀ i∈N ', t∈T 	 (3)

qikt ≤Q airxrkt
r∈R
∑ ∀ k ∈K , i∈N ', t∈T 	 (4)

qikt
i∈N '
∑ ≤Q ∀ k ∈K , t∈T 	 (5)

I0t = I0,t−1 + rt−1 − qik ,t−1
k∈K
∑

i∈N
∑ ∀ t∈T '\{1} 	(6)

I01 = B 		  (7)

Iit = Ii,t−1 + qik ,t−1 − d i,t−1
k∈K
∑ ∀ i∈N ', t∈T '\{1} 	 (8)

Ii1 = Si ∀ i∈N ' 		  (9)

Iit ≥ Li ∀ i∈N ', t∈T ' 	 (10)

Iit ≤Ui ∀ i∈N ', t∈T ' 	 (11)

Iit ≥ 0 ∀ i∈N ', t∈T ' 	 (12)

qikt ≥ 0 ∀ i∈N , k ∈K , t∈T 	 (13)

xrkt ∈{0,1} ∀ k ∈K , r ∈R, t∈T 	 (14)

The objective function (1) comprises the inventory 
and transportation cost, the objective is to minimize 
the total cost. Constraints (2) guarantee that each 
vehicle k can be used at most once for each time 
t. Constraint (3) shows that every customer can be 
visited at most once for each period. Constraints (4) 
represents that the maximum quantity shipped to 
each customer could be de capacity of each vehicle 
if the customer is on the route otherwise the quantity 
is cero and constraints (5) guarantee that the quantity 
shipped for each route cannot exceed the capacity 
of the vehicle. Constraint (6) ensures the inventory 
balance equation at the depot while constraint (7) 
assures the initial inventory level; similarly, constraint 
(8) represents the inventory balance equation at each 
customer where stock outs are not allowed, and 
constraint (9) guarantees the initial inventory level 
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per customer. Constraints (10) and (11) enforce the 
inventory level to stay between lower bound (10) and 
upper bound (11). Finally, constraints (12), (13) and 
(14) define the type of variables.

THE PROPOSED APPROACH

The proposed approach for solving this kind of 
problems is based on a merge-and-conquer strategy, 
commonly used in ordering algorithms. In our case, 
we divide the problem into two steps:

1.	 A strategy for finding feasible routes.
2.	 An optimization routine for finding the optimal 

routes and the optimal deliveries quantities.

Therefore, the main idea is to find a subset of 
the possible routes using the dual information by 
finding an optimal solution of each subproblem 
(feasible route). The subproblem is then formulated 
as a shortest path problem (SPP) where each node 
represents a customer, and the depot is represented 
by the initial and the final node.

Finally, the solution is provided by the best routes of 
the subproblems after solving all of them as SPPs.

We use the dual information for solve the subproblem 
by using a LP relaxation of (1) to (14). To do so, 
the PULSE algorithm (see next Section) allows 
us to solve the subproblem by generating more 
than one route per iteration. Once we complete a 
subset of feasible routes, the mixed integer problem 
is solved given an inventory policy (in this case, 
inventory levels).

Subproblem formulation
We will introduce the following notation obtained 
for the master problem; it is defined for a specific 
vehicle and day as follows:

•	 θ is the dual variable associated with the maximum 
uses of a vehicle, Constraints (2).

•	π i are the dual variables associated with the 
maximum visit of a customer, Constraints (3).

•	 ϕi are the dual variables associated with the 
quantity shipped, Constraints (4).

The goal of the subproblem is to find routes with 
negative reduce cost that can be added to the master 
problem. We model it as a network to solve it. It 

can be defined by a graph consisting of a set of 
nodes M = {0, …, N + 1}, where the node 0 and 
N + 1 correspond to the depot, and the subset  
M’ = M \ {0, N + 1} represents the customers. 
For every node i ∈ M the parameter bi represents 
the transition demand, where b0 = 1 is the demand 
of the depot, bi = 0, i ∈ M’ representing the 
customers demand, and bN+1 = 1 representing the 
depot. There is a cost Cij associated with every 
arc (i, j) ∈ M. The binary variable wij is equal to 
one if the arc (i, j) ∈ M is on the route and the 
binary variable yi is equal to one if the customer 
i ∈ M’ is visited. The variable ui is used for 
subtour elimination and models the order in which 
a customer i ∈ M’ is visited.

min 
i  ∈ M
∑

j  ∈ M
∑ cijwij −Θ−

        
i  ∈ M'
∑ π iyi +Q

i  ∈ M'
∑ ϕiyi

	 (15)

j  ∈ N  
∑ wij −

j  ∈ N  
∑ wji = bi           ∀ i 

∈M 

	 (16)

j  ∈ N
∑ wji = yi            ∀ i  ∈ M' 	 (17)

ui ≥ 2           ∀ i∈M  	 (18)

ui ≤   |M |           ∀ i∈M  	 (19)

ui − uj + 1 ≤   (|M |)*(1−wij)    ∀ i∈M 	 (20)

wij ,  y i   ∈ 0,1{ }             ∀i, j  ∈ M 	 (21)

ui ≥ 0                   ∀i∈M 	 (22)

The objective function (15) comprises the routing cost 
and the dual information, the objective is to minimize 
the reduced costs. Constraints (16) represent the flow 
conservation constraints. Constraints (17) guarantee 
that if a customer i is visited then the variable yi  
takes the value of one, and zero if the customer is 
not visited. Constraints (18), (19) and (20) are the 
Subtour elimination constraints. Finally Constraints 
(21) and (22) restrict the type of variables.

The dual information is obtained from solving 
the relaxed version of the master problem. With 
this information we solve the subproblem. The 
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subproblem then obtains routes that are added to 
the master problem.

The PULSE algorithm
The PULSE algorithm (Lozano & Medaglia, [10]), is 
an exact method for solving the constrained shortest 
path problem. The algorithm consists in send pulses 
through the network and use pruning strategies 
to avoid that the pulses continues propagating 
through the network. If the pulse reached the end 
of the network it contains all the information for 
a feasible path.

The pulse algorithm uses 4 types of pruning strategies: 
by cycles, by dominance, by infeasibility and by 
boundaries.

In the pruning by cycles, the algorithm uses a binary 
vector that keep the nodes already visited in the 
partial path, with this vector the pulses cannot go 
back to a node previously visited.

The second strategy used is pruning by dominance. 
When a pulse is propagating through the network 
it stores all the information about the resource 
consumption and the accumulative costs. When a 
new pulse is propagating it is compared with another 
path that has already propagated. If the new pulse 
is dominated by another path it is pruned and it 
cannot continue propagating.

A third method to prune is by infeasibility. When a 
pulse is propagating it is calculated the minimum 
resource consumption from the actual node to the 
final node, in order to calculate the minimum resource 
to reach the end of the network. If the sum of the 
partial consumption and the minimum resource 
consumption to the final node exceed the resource 
availability, then the pulse is pruned.

Finally, pruning by boundaries uses two strategies, 
pruning by primal boundary and pruning by primal 
and dual boundary. In the first case when a pulse 
reaches the final node of the network, the best total 
cost is updated. When a new pulse is exploring the 
network if the cost of the partial path exceed the 
best known solution it is pruned. In the primal and 
dual bound pruning strategy, the minimum cost to 
the final node is calculated and is pruned the pulse 
if the partial cost and the minimum cost to the final 
node is greater than the best known solution.

EXPERIMENTS AND RESULTS

The proposed algorithm is tested using the instances 
proposed by Archetti, Bertazzi, Laporte & Speranza 
[11], where we only consider one vehicle available at 
the depot. These instances are also used by Coelho, 
Cordeau, & Laporte [8] and Archetti, Bertazzi, 
Hertz & Speranza [12] who used metaheuristics 
for solving the problem, whose optimal solutions 
were computed in order to compare their results. 
Instances with a time horizon of 3 are denoted by 
H3 and instances with time horizon of 6 are referred 
to as H6. The amount of customers varies between 
5 and 50, represented by N = 5k where k varies 
between 1 and 10 if the time horizon is 3, and k 
varies between 1 and 6 if the time horizon is 6. The 
demand dit for each customer i ∈ N’ at each period 
t ∈ T is generated randomly, but it is assumed to be 
constant over the whole time horizon. Hence we will 
also refer to the customers demand per time period 
as di. There is a quantity rt becoming available at the 
depot at each time t ∈ T, represented by diti∈N∑ .  
There is a maximum inventory level for each 
customer i ∈ N’ represented by Ui, it is given by 

digi where gi is selected randomly from {2, 3}. The 

initial inventory level at the depot is Uii∈N∑  and 

the initial inventory level for each customer i ∈ N’ 

is set as Ui - di. The instances are divided into two 
classes depending of their inventory holding cost: 
high cost and low cost. The inventory holding cost 
at the depot is h0 = 0.03 when the inventory holding 
costs at the customers are low and h0 = 0.3 when the 
inventory holding costs at the customers are high. 

The capacity for vehicles is given by 32 dii∈N∑ .
Finally the transportation cost cij ∀ (i, j) ∈ N is an 
Euclidean distance.

The methodology of the study
The study is performed through some experiments 
(different instances of well-known case studies), 
using the following key steps:

1.	 Vary the number of routes generated per iteration 
between [2-12]
a.	 Run column generation
b.	 Run PULSE algorithm
2.	 Set an appropriate number of routes provided 

in Step 1.
c.	 Run SPP
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3.	 Aggregate by number of vehicles
d.	 Obtain results for High and Low holding 

costs (for PULSE and SPP)
4.	 Compare PULSE against SPP

Firstly, the column generation algorithm is run 
alongside with the pulse algorithm, varying the 
number of routes generated per iteration. We have 
varied the amount of routes considered (between 2 
and 12) per instance. After solving these problems, 
the average results for different classes of instances 
and results are aggregated for all instances with 
the same amount of vehicles. Once an appropriate 
number of routes to be generated per iteration are 
selected, two comparisons are performed: the first 
one compares the pulse algorithm to the approach 
that solves the subproblem as a shortest path problem 
exactly which generates only one route. The second 
comparison consists in contrasting our algorithm to 
the results published in the literature that consider a 
similar problem that uses an order up to level policy.

Once our algorithm is run, the results are summarized 
separately for instances of high and low inventory 
holding cost.

RESULTS

Using the pulse algorithm, we obtain better results in 
average when generating seven routes per iteration. 
The comparison between the pulse algorithm and the 
classic shortest path problem are provide in Table 1. 
The computational results are presented in Table 2 
and 3, where only one vehicle is available at the 
depot. Each table provides the average results per 
class of instances, organized as follows: the first 
column presents the time periods and the type of 
cost (where H3 is 3 time periods an H6 is 6 time 
periods). Second column contains the amount of 
customers, and the results of the objective function 
obtained by the proposed algorithm are presented 
in the third column where z(P7) indicates the 
objective function using the pulse algorithm with 
seven routes. Finally, the Gap (as percentage) and 
the Computational Time (in seconds) are presented 
in columns four and five respectively, the gap is 
obtained by comparing the best result report in the 
literature vs the solution obtained by our algorithm.

Remark 1. Table 3 compares the results of our 
proposal to the optimum obtained by Archetti, 

Bertazzi, Laporte & Speranza [11], Coelho, 
Cordeau, & Laporte [8] and Archetti, Bertazzi, 
Hertz & Speranza [12] but relaxing the order 
up to level policy. This allows us to obtain a 
negative gap in most of experiments which means 
an improvement of the solutions. Also this kind of 
problems without this policy were not published so 
far, so our results are the first reported experiments 
in those conditions.

Note that the relaxation of the order up to policy 
allows us to find better results, so in practice, 
the use of the order up policy leads to higher 
transportation costs.

Table 1 shows that in overall instances the pulse 
algorithm is able to obtain better solutions that 
using a classical shortest path problem. Table 2 
shows that our proposal is able to obtain the same 
solutions as reported in the literature in most of 
the instances. The obtained average gap is 0.04% 
on H3 low cost instances, 0.31% on H6 low cost 
instances, 0.39% on H3 high cost instances and 
0.24% on H6 high cost instances. Our model is 
able to obtain high quality solutions on instances 
available in the literature. Our approach is effective 
and stable.

Table 3 shows the average results of the algorithm 
without order up policy, which obtains better 
solutions in most of the classes of instances than 
others reported in the literature. If the order up to 
level policy is relaxed, we can find better solutions 
using the PULSE algorithm.

Our proposal obtains better solutions in all 
the instances for H3 and H6. The average 
computational time of the algorithm is 376.11 
seconds for H3 low cost instances and 1045.75 
seconds for H3 high cost instances. For H6 low 
instances, our algorithm spent 800.72 seconds 
on average and 1249.98 seconds for the H6 high 
cost instances.

We improve solutions on average 3.35% on H3 low 
cost instances and 3.22% on H3 high cost instances. 
On H6 low cost instances we improve solutions on 
average 12.23% while on H6 high cost instances 
we obtain 25.40% on average. These improvements 
can be obtained because we relaxed the order up 
to level policy.
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Table 1.	 Average results comparing a pure shortest 
path problem and the pulse algorithm.

n z (sp) z (p) Gap (%)

H3 Low cost

  5 1529,24 1416,50 -7,37%

10 2420,81 2028,77 -16,19%

15 3016,98 2514,69 -16,65%

20 3758,64 2870,76 -23,62%

25 4500,76 3225,37 -28,34%

30 5530,13 3546,02 -35,88%

35 7026,36 3720,99 -47,04%

40 8214,37 4001,93 -51,28%

45 8711,60 4109,88 -52,82%

50 11544,84 4808,19 -58,35%

Average 5625,37 3224,31 -33,76%

H6 Low cost

  5 3124,41 2572,30 -17,67%

10 4649,36 4269,81 -8,16%

15 5564,97 4865,86 -12,56%

20 6878,03 6139,21 -10,74%

25 8295,41 6957,99 -16,12%

30 9071,88 7041,86 -22,38%

Average 6264,01 5307,84 -14,61%

n z (sp) z (p) Gap (%)

H3 High cost

  5 2320,57 2273,70 -2,02%

10 4540,87 4252,73 -6,35%

15 5699,73 5698,46 -0,02%

20 7710,88 7493,00 -2,83%

25 10647,60 9043,66 -15,06%

30 13749,35 10878,49 -20,88%

35 15304,90 11765,54 -23,13%

40 18051,35 12850,79 -28,81%

45 18092,30 13934,34 -22,98%

50 19502,60 15256,75 -21,77%

Average 11562,02 9344,75 -14,38%

H6 High cost

  5 5137,61 4790,30 -6,76%

10 8405,39 6672,31 -20,62%

15 11154,18 8412,01 -24,58%

20 14301,74 10242,78 -28,38%

25 17894,00 12532,19 -29,96%

30 21784,22 14918,38 -31,52%

Average 13112,86 9594,66 -23,64%

Table 2.	 Average results with order up to level 
policy.

n z (P7) Gap (%) Time (s)

H3 Low cost

  5 1418,76 0,00% 2,43

10 2228,67 0,00% 82,32

15 2493,47 0,00% 97,00

20 3053,02 0,00% 194,78

25 3451,15 0,00% 238,57

30 3643,22 0,00% 537,50

35 3846,87 0,00% 541,21

40 4125,70 0,00% 957,51

45 4270,61 0,00% 1323,93

50 4829,33 0,38% 1247,32

H6 Low cost

  5 3299,98 0,00% 1,42

10 4832,89 0,00% 24,24

15 5566,39 0,00% 1428,48

20 6833,29 0,00% 1905,56

25 7592,33 1,85% 875,27

30 7847,39 0,00% 2196,43

H3 High cost

  5 2354,18 0,00% 0,00

10 4690,46 0,00% 6,51

15 5736,91 0,00% 43,55

20 7619,91 0,00% 1116,66

25 9460,74 0,00% 1566,77

30 11320,63 0,00% 2053,46

35 12101,32 2,30% 2057,90

40 13011,46 0,00% 2316,68

45 14317,82 0,00% 2702,39

50 16209,32 1,63% 2592,90

H6 High cost

  5 5538,02 0,00% 3,31

10 8872,41 0,00% 772,22

15 11721,83 0,00% 1193,38

20 14863,85 0,00% 2541,00

25 17170,81 0,00% 2941,25

30 20949,32 1,41% 3210,28

CONCLUDING REMARKS

Our proposal combines column generation with the 
pulse algorithm, decomposing the mathematical 
problem into a master problem and a sub-problem. 
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We have obtained better solutions in most of the 
instances because we do not use order up to level 
policy while other algorithms use this policy. We 
also can obtain the optimal solution in most of the 
instances even considering the order up to level policy.

The mathematical model and the presented solution 
approach are generic. This means that other 
constraints could be added to the master problem, 
and the proposed algorithm is able to solve the 
problem and test its flexibility.

Finally, the strategy of divide and merge properly 
works for solving the problem (for both the relaxed 
and original problem), since the shortest path 
problem is efficient when solving well defined 
instances which are provided by the combination 
of the column generation and PULSE algorithms. 
This allows us to find better results than other 
compact algorithms.
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