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Introduction

There has been recent considerable interest in the development of artificial neural
networks (ANNs) for solving a variety of problems, since the universal approximation
theorem states that a feedback network can approximate almost any known function.
This thesis examines the application of neural networks in the context of pricing
options.
We test this approach on two different types of solvers for the valuation of a European
call option with the Heston stochastic volatility model (1993), including valuation
using the Fourier-based approach (Lewis, 2001) and using finite difference methods.
This thesis is divided into three parts. The first part is concerned with the derivation
of the Heston model. The second part covers a number of topics for the option
pricing through finite difference methods (FDM). The third part finally covers the
major aspects related to train an optimized ANN on a data set generated with a
data-driven approach.

1.1 Research Problem

The traditional approach to the pricing of European-style options on an underly-
ing asset assumes that the asset price follows a given exogenous process and prices
the options using an arbitrage-free hedging argument. The most relevant example is
presented in the article of Black-Scholes (1973) (BSM) on the valuation of European-
style options, this approach provides a closed-form valuation formula that can be
used to efficiently price plain vanilla options. However, this method is based on
several assumptions that are not representative of the real world. In particular, the
BSM model assumes that volatility is deterministic and remains constant through
the option’s life, which clearly contradicts the behavior observed in financial mar-
kets. While the BSM framework can be adapted to obtain reasonable prices for plain
vanilla options, the constant volatility assumption may lead to significant mispric-
ings when used to evaluate options with non-conventional or exotic features. During
the last decades several alternatives have been proposed to improve volatility mod-
eling in the context of derivatives pricing. One of such approaches is to model
volatility as a stochastic quantity. By introducing uncertainty in the behavior of
volatility, the evolution of financial assets can be estimated more realistically. One
of the most widely used stochastic volatility models was proposed by Heston in 1993.
The Heston model introduces a dynamic for the underlying asset which can take into
account the asymmetry and excess kurtosis that are typically observed in financial
assets returns, this model is based on a two-dimensional stochastic diffusion process
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with two Brownian movements with correlation ρ, which poses the problem of solv-
ing a system of two stochastic equations under the neutral risk measure, one of these
equations describes the dynamics of the underlying price and the other its variance,
since the valuation model is two-dimensional, by adding stochastic volatility, it is
not possible to have an analytical solution for the valuation of options with the Hes-
ton model, which is why different numerical methods have therefore been developed
to solve the corresponding option pricing partial differential equation problems, e.g.
finite difference methods, Fourier approaches and Monte Carlo simulation.

In the context of model calibration, thousands of option prices need to be deter-
mined in order to fit the asset parameters. However, due to the requirement of a
highly efficient computation, certain high-quality asset pricing valuation models are
discarded. Efficient numerical computation is also increasingly important in finan-
cial risk management, especially when we deal with real-time risk management (e.g.,
high frequency trading) or counterparty credit risk issues, where a trade-off between
efficiency and accuracy seems often inevitable.
Artificial neural networks (ANNs) with multiple hidden layers have become success-
ful machine learning methods to extract features and detect patterns from a large
data set, we aim to take advantage of a classical ANN to speed up option valuation
by learning the results of an option pricing method. From a computational point of
view, the ANN does not suffer much from the so-called curse of dimensionality of
classical numerical methods for solving PDEs.

Given the application of neural networks in finance, and the advantages already
described, in this thesis we test two different types of solvers for the valuation of
a European call option with the Heston stochastic volatility model, including val-
uation using the Fourier-based approach (Lewis, 2001), knowing the characteristic
function of the stochastic process; and on the other hand, using finite difference
methods, which are capable of solving problems in which the value of the derivative
satisfies an PDE with a temporal variable and a few spatial variables (underlying
assets).
The FDM are numerical methods for solving differential equations by approximating
them with difference equations, in which finite differences approximate the deriva-
tives. This method is used to solve the PDE associated with the stochastic volatility
model, since it is easy to implement, flexible and offers ways to improve the accuracy
of the results and reduce the computational cost, using an implicit type of alterna-
tive management (ADI) scheme.
Once Heston prices are determined, through the Fourier-based approach and the
application of FDM, we train ANN and test its performance for each data set.
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Theory

This chapter discusses key ideas, explanations, concepts, models and theories, used
as the basis for this research. Most of these concepts were taken from (Eric Chin
and Ólafsson, 2014).

2.1 Taylor Series

The most used tool for discretizing is the approximation by Taylor series. In this
work we use this theory for numerical approximations in Fourier integration and
finite differences, that is why we give an brief description of this tool next.

If f(x) is an analytic function of x, then for small h

f(x0 + h) = f(x0) + f
′
(x0)h+

1

2!
f
′′
(x0)h2 +

1

3!
f
′′′

(x0)h3 + · · ·

If f(x, y) is an analytic function of x and y, then for small ∆x, ∆y:

f(x0 + ∆x, y0 + ∆y) = f(x0, y0) +
∂f(x0, y0)

∂x
∆x+

∂f(x0, y0)

∂y
∆y

+
1

2!

[
∂2f(x0, y0)

∂x2
(∆x)2 + 2

∂2f(x0, y0)

∂x∂y
∆x∆y +

∂2f(x0, y0)

∂y2
(∆y)2

]
+

1

3!

[
∂3f(x0, y0)

∂x3
(∆x)3 + 3

∂3f(x0, y0)

∂x2∂y
(∆x)2∆y

+ 3
∂3f(x0, y0)

∂x∂y2
∆x(∆y)2 +

∂3f(x0, y0)

∂y3
(∆y)3

]
+ · · ·

2.2 Itô’s formula

In mathematics, Itô’s formula (or lemma) is used in stochastic calculus to find the
differential of a function of a particular type of stochastic process. In essence, it
is the stochastic calculus counterpart of the chain rule in ordinary calculus via a
Taylor series expansion.

2.2.1 Theorem (one-dimensional Itô’s formula)

Let {Wt : t ≥ 0} be a standard Wiener process on the probability space (Ω,F ,P)
and let Ft, t ≥ 0 be the associated filtration. Consider a stochastic process Xt
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satisfying the following stochastic differential equation (SDE):

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt

or in integrated form,

Xt = X0 +

∫ t

0

µ(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs

with
∫ t

0
[ |µ(Xs, s)|+ σ(Xs, s)

2 ] ds <∞.
Then for any twice differentiable function g(Xt, t), the stochastic process
Yt = g(Xt, t) satisfies:

dYt =
∂g

∂t
dt+

∂g

∂Xt

dXt +
1

2

∂2g

∂X2
t

(dXt)
2

=
∂g

∂t
dt+

∂g

∂Xt

(µdt+ σdWt) +
1

2

∂2g

∂X2
t

(
σ2dW 2

t

)
=

[
∂g

∂t
+ µ

∂g

∂Xt

+
1

2
σ2 ∂

2g

∂X2
t

]
dt+ σ

∂g

∂Xt

dWt

where (dXt)
2 is the quadratic variation process, which is commonly simplified ac-

cording to the rule: (dWt)
2 = dt, (dt)2 = dWt · dt = dt · dWt = 0, as above.

2.3 Ornstein - Uhlenbeck Process

The Ornstein-Uhlenbeck process is a diffusion process with applications in financial
mathematics and the physical sciences. In finance, it has appeared as a model of
the volatility of the underlying asset price process, so it is used as a starting point
for the volatility process in the Heston model, that is why we give the following
definition.

Let (Ω,F ,P) be a probability space and let {Wt : t ≥ 0} be a standard Wiener
process. Suppose Xt follows the Ornstein-Uhlenbeck process with SDE

dXt = κ(θ −Xt)dt+ σdWt

where κ, θ and σ are constants. By applying Itôs’s formula to Yt = eκtXt and taking
integrals, we can show for t < T :

XT = Xte
−κ(T−t) + θ

[
1− e−κ(T−t)]+

∫ T

t

σe−κ(T−s)dWs

2.4 The Fourier transform and its inverse

There are several definitions of the Fourier transform f̂ of a function f , the one
usually encountered in the mathematical literature and used by (Gupta, 2019) is:

Let f be a real valued function such that f(x) and f
′
(x) are piecewise continuous
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in every finite interval and the integral of |f(x)| exists from −∞ to ∞. The Fourier
transform of the the function f is:

f̂(w) =

∫ ∞
−∞

eiwxf(x)dx

where i =
√
−1 is the imaginary unit, w either real or complex and eiwx is called

the phase factor.
The original function f can be recovered from f̂ via the inverse Fourier transform:

f(x) =
1

2π

∫ ∞
−∞

f̂(w)eiwxdw

and the expression on the right-hand side is called the inverse Fourier transform of
the function f̂(w).

2.4.1 Fourier transform of derivative

If f is any function for which the Fourier transforms of f(x) and f
′
(x) exist and

f(x)→ 0 as |x| → ∞ then:

f̂ ′(w) =

∫ ∞
−∞

eiwxf
′
(x)dx

= −iwf̂(w) (2.1)

To verify equation (2.1) we using integration by parts:

u = eiwx

du = iweiwxdx

dv = f
′
(x)

v = f(x)

This yields:

f̂ ′(w) = eiwxf(x)
∣∣∣∞
−∞︸ ︷︷ ︸

=0

− iw
∫ ∞
−∞

eiwxf(x)dx

= −iwf̂(w)

The first term must vanish, as we assume f is absolutely inte-
grable on R, f(x)→ 0 as |x| → ∞ and the complex exponen-
tial is bounded.

Applying integration by parts once more shows that f̂ ′′(w) = (−iw)2f̂(w), while a
repeated application shows that the Fourier transform of the derivative of order n
is (−iw)nf̂(w).
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Heston Model

In this chapter, we present a complete derivation of the European Call price under
the Heston model. First we present the model and obtain the various partial differ-
ential equations (PDEs) that arise in the derivation. We show that the call price in
the Heston model can be expressed as the sum of two terms that each contains an
in-the-money probability, but obtained under a separate measure. We show how to
obtain the characteristic function for the Heston model, and how to solve the dif-
ferential equation from which the characteristic function is derived. We then show
how to compute the price of a European call.
The key ideas were taken from (Rouah, 2013).

3.1 Model dynamics

The Heston model assumes that the underlying stock price, St follows a Black-
Scholes-type stochastic process, but with a stochastic variance νt that follows a
(Cox and Ross, 1985) process.
Hence, the Heston model is represented by the bivariate system of stochastic differ-
ential equations (SDEs)

dSt = µStdt+
√
νtStdW

S
t

dνt = κ(θ − νt)dt+ σ
√
νtdW

ν
t (3.1)

where EP[dW S
t , dW

ν
t ] = ρdt.

Here P denotes the historical measure, also called the physical measure.
We will sometimes drop the time index and write S = St, ν = νt, W

S = W S
t , and

W ν = W ν
t , for notational convenience.

The parameters of the model are:
µ the drift of the process for the stock;
κ > 0 the mean reversion speed for the variance;
θ > 0 the mean reversion level for the variance;
σ > 0 the volatility of the variance;
ν0 > 0 the initial (time zero) level of the variance;
ρ ∈ [−1, 1] the correlation between the two Brownian motions W S and W ν .

It is important to note that the volatility
√
νt is not modeled directly in the Heston

model, but rather through the variance νt. The process for the variance arises from
the 2.3. Ornstein - Uhlenbeck for the volatility ht =

√
νt given by:

dht = −βhtdt+ δdW ν
t (3.2)
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Applying 2.2.1. Itô’s lemma, νt = h2
t follows the process νt = g(ht)

dνt =
∂g

∂ht
dht +

1

2

∂2g

∂h2
t

(dht)
2

= 2htdht +
1

2
· 2 (dht)

2

= 2ht(−βhtdt+ δdW ν
t ) + (β2h2

t (dt)2︸︷︷︸
=0

−2βδht · dt · dW ν
t︸ ︷︷ ︸

=0

+δ2 (dW ν
t )2︸ ︷︷ ︸

=dt

)

= −2βh2
tdt+ 2δhtdW

ν
t + δ2dt

= (δ2 − 2βνt)dt+ 2δ
√
νtdW

ν
t (3.3)

Defining κ = 2β, θ = δ2

2β
, and σ = 2δ:

dνt = (κθ − κνt)dt+ σ
√
νtdW

ν
t

= κ(θ − νt)dt+ σ
√
νtdW

ν
t

Therefore, it can expresses dνt from equation (3.1) as (3.3).

3.2 The Heston PDE

In this section, we explain how to derive the PDE for the Heston model. The
argument is similar to the hedging argument that uses a single derivative to derive
the Black-Scholes PDE. In the Black-Scholes model, a portfolio is formed with the
underlying stock, plus a single derivative which is used to hedge the stock and
lender the portfolio riskless. In the Heston model, however, an additional derivative
is required in the portfolio, to hedge the volatility.
Hence, we form a portfolio consisting of one option V = V (S, ν, t), ∆1 units of
the non-dividend paying stock, and ∆2 units of another option U(S, ν, t) for the
volatility hedge.
The portfolio has value

Π = V + ∆1S + ∆2U

where the t subscripts are omitted for convenience.
Assuming the portfolio is self-financing, the change in portfolio value is

dΠ = dV + ∆1dS + ∆2dU (3.4)

The strategy is similar to that for the Black-Scholes case. We apply 2.2.1. Itô’s
lemma to obtain the processes for U and V , which allows us to find the process for
Π. We then find the values of ∆1 and ∆2 that makes the portfolio riskless, and we
use the result to derive the Heston PDE.
First apply Itô’s lemma to V (S, ν, t):

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂ν
dν +

1

2

∂2V

∂S2
(dS)2 +

1

2

∂2V

∂ν2
(dν)2 +

∂2V

∂S∂ν
dSdν

Here, (dS)2 = νS2dt, (dν)2 = σ2νdt, dSdν = σρνSdt
Hence

dV =
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂ν
dν +

1

2
νS2∂

2V

∂S2
dt+

1

2
σ2ν

∂2V

∂ν2
dt+ σρνS

∂2V

∂S∂ν
dt (3.5)
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Applying Itô’s lemma to the second derivative, U(S, ν, t), produces an expression
identical to (3.5), but in terms of U . Substituting these two expressions into (3.4),
the change in portfolio value can be written as:

dΠ = dV + ∆1dS + ∆2dU

=

[
∂V

∂t
+

1

2
νS2∂

2V

∂S2
+

1

2
σ2ν

∂2V

∂ν2
+ σρνS

∂2V

∂S∂ν

]
dt

+ ∆2

[
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
σ2ν

∂2U

∂ν2
+ σρνS

∂2U

∂S∂ν

]
dt (3.6)

+

[
∂V

∂S
+ ∆2

∂U

∂S
+ ∆1

]
dS +

[
∂V

∂ν
+ ∆2

∂U

∂ν

]
dν

In order for the portfolio to be hedged against movements in both the stock and
volatility, the last two terms in equation (3.6) must be zero. This implies that the
hedge parameters must be

∆2 = −∂V
∂ν

/
∂U

∂ν
, ∆1 = −∆2

∂U

∂S
− ∂V

∂S

Substitute these values of ∆2 and ∆1 into (3.6) to produce

dΠ =

[
∂V

∂t
+

1

2
νS2∂

2V

∂S2
+

1

2
σ2ν

∂2V

∂ν2
+ σρνS

∂2V

∂S∂ν

]
dt

+ ∆2

[
∂U

∂t
+

1

2
νS2∂

2U

∂S2
+

1

2
σ2ν

∂2U

∂ν2
+ σρνS

∂2U

∂S∂ν

]
dt (3.7)

The condition that the portfolio earn the risk-free rate r, implies that the change in
portfolio value is dΠ = rΠdt.
Equation (3.4) thus becomes

dΠ = r(V + ∆1S + ∆2U)dt = (rV−rS∆2
∂U

∂S
−rS ∂V

∂S
+ ∆2rU)dt (3.8)

Joining equations (3.7) and (3.8), drop the dt term, using the fact that ∆2 =
−∂V

∂ν

/
∂U
∂ν

and re-arrange. This yields[
∂V
∂t

+ 1
2
νS2 ∂2V

∂S2 + 1
2
σ2ν ∂

2V
∂ν2

+ σρνS ∂2V
∂S∂ν

]
− rV + rS ∂V

∂S

∂V
∂ν

(3.9)

=

[
∂U
∂t

+ 1
2
νS2 ∂2U

∂S2 + 1
2
σ2ν ∂

2U
∂ν2

+ σρνS ∂2U
∂S∂ν

]
− rU + rS ∂U

∂S

∂U
∂ν

The left-hand side of equation (3.9) does not depend on U but is a function of S, ν
and t, only. We denote this function by f : R2

+ × [0, T ]→ R and following (Heston,
1993), specify this function as:

f(S, ν, t) = −κ(θ − ν) + λ(S, ν, t)
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where the function λ(S, ν, t) is called market price of volatility risk and is not
uniquely determined, taking into account that Heston furthermore assumes that
the market price of volatility risk is of the form λ(S, ν, t) = λν with a constant λ
and (Gatheral, 2006) assumes the market price of volatility risk to be zero, so that
λ(S, ν, t) = 0. That characterise an incomplete market where one cannot replicate
derivatives with an portfolio only consisting of the money market account and the
underlying. However, if one accepts the prices for plain vanilla call/put options (V )
observed in the market and just wants to price other options (U), e.g. barrier options
one gets a unique solution by finding an appropriate function λ which matches the
prices for V . In practise one simply sets λ(S, ν, t) = 0 and calibrates the parameters
of the underlying to the observed prices for plain vanilla options, therefore we set
λ(S, ν, t) = 0 and the left-hand side of equation (3.9) can be written as:[

∂V
∂t

+ 1
2
νS2 ∂2V

∂S2 + 1
2
σ2ν ∂

2V
∂ν2

+ σρνS ∂2V
∂S∂ν

]
− rV + rS ∂V

∂S

∂V
∂ν

= −κ(θ − ν)

Rearrange to produce the Heston PDE expressed in terms of the price S

∂V

∂t
+

1

2
νS2∂

2V

∂S2
+

1

2
σ2ν

∂2V

∂ν2
+σρνS

∂2V

∂S∂ν
− rV + rS

∂V

∂S
+κ(θ− ν)

∂V

∂ν
= 0 (3.10)

The following boundary conditions on the PDE in equation (3.10) hold for a Euro-
pean call option with maturity T and strike K. At maturity, the call is worth its
intrinsic value

V (S, ν, T ) = max(0, S −K)

When the stock price is zero, the call is worthless. As the stock price increases, delta
approaches one, and when the volatility increases, the call option becomes equal to
the stock price. This implies the following three boundary conditions:

V (0, ν, t) = 0,
∂V

∂S
(∞, ν, t) = 1, V (S,∞, t) = S (3.11)

We can define the log price x = lnS and express the PDE in equation (3.10) in terms
of (x, ν, t) instead of (S, ν, t). This simplification requires the following derivatives:
By the chain rule:

∂V

∂S
=
∂V

∂x

1

S
,

∂2V

∂S∂ν
=

∂

∂ν

(
1

S

∂V

∂x

)
=

1

S

∂2V

∂ν∂x

Using the product rule,

∂2V

∂S2
=

∂

∂S

(
1

S

∂V

∂x

)
= − 1

S2

∂V

∂x
+

1

S

∂2V

∂S∂x
= − 1

S2

∂V

∂x
+

1

S2

∂2V

∂x2

Substituting these expressions into the Heston PDE in (3.10) all the S terms cancel,
and we obtain the Heston PDE in terms of the log price x = lnS.

∂V

∂t
+

1

2
ν
∂2V

∂x2
+

(
r − 1

2
ν

)
∂V

∂x
+

1

2
σ2ν

∂2V

∂ν2
+ σρν

∂2V

∂ν∂x
− rV + κ(θ − ν)

∂V

∂ν
= 0 (3.12)
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3.3 The European Call Price

In this section, we show that the call price in the Heston model can be expressed
in a manner which resembles the call price in the Black-Scholes model. The time -
t price of a European call on a non-dividend paying stock with spot price St, when
the strike is K and the time to maturity is τ = T − t, is the discounted expected
value of the payoff under the risk neutral measure.

C(K) = e−rτEQ [(ST −K)+
]

= e−rτEQ [(ST −K) · 1{ST>K}
]

(3.13)

= e−rτEQ [ST · 1{ST>K}
]
−Ke−rτEQ [

1{ST>K}
]

where 1 is the indicator function and Q is the risk neutral measure.
To obtain the expression of the first term in the last line of equation (3.13) we need
to change the original measure Q to another measure QS. Consider the Radon-
Nikodym derivative

dQ
dQS

=
BT/Bt

ST/St
=

EQ[exT ]

exT
(3.14)

where Bt is the money market and satisfies Bt = exp
(∫ t

0
rdu
)

= ert.

In (3.14), we have written Ste
r(T−t) = Ste

rτ = EQ[exT ], since under Q assets grow at
the risk-free rate, r. The first expectation in the third line of (3.13) can therefore
be written as

e−rτ · EQ[ST · 1{ST>K}] = StEQ
[
ST/St
BT/Bt

· 1{ST>K}

]
= StEQs

[
ST/St
BT/Bt

· 1{ST>K} ·
dQ
dQS

]
= StEQs

[1{ST>K}]

= StQs(ST > K)

The second expectation in the third line of (3.13) can be written as

EQ[1{ST>K}] = Q(ST > K)

This implies that the European call price of equation (3.13) can be written in terms
of both measures as

C(K) = StQS(ST > K)−Ke−rτQ(ST > K)

= StP1 −Ke−rτP2 (3.15)

We have denoted P1 = QS(ST > K) and P2 = Q(ST > K) where the measure Q
uses the bond Bt as the numeraire, while the measure QS uses the stock price St.
The last line in equation (3.15) is the “Black-Scholes-like” call price formula, with
P1 replacing φ(d1) and P2 replacing φ(d2) in the Black-Scholes call price.
The quantities P1 and P2 each represent the probability of the call expiring in-the-
money, conditional on the value St = ext of the stock and on the value νt of the
volatility at time t.
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3.3.1 The PDE for probabilities in equation for European
Call Price

Using x = xt = lnSt

C(K) = exP1 −Ke−rτP2 (3.16)

Equation (3.16) expresses C(K) in terms of the in-the-money probabilities P1 =
QS(ST > K) and P2 = Q(ST > K). Since the European Call satisfies the PDE 3.12
we can find the required derivatives of equation (3.16), substitute them into the
PDE, and express the PDE in terms of P1 and P2. The derivative of C(K) with
respect to t is:

∂C

∂t
= ex

∂P1

∂t
−Ke−rτ

[
rP2 +

∂P2

∂t

]
(3.17)

with respect to x:

∂C

∂x
= ex

[
P1 +

∂P1

∂x

]
−Ke−rτ ∂P2

∂x
(3.18)

The second derivative of C(K) with respect to x:

∂2C

∂x2
= ex

[
P1 +

∂P1

∂x

]
+ ex

[
∂P1

∂x
+
∂2P1

∂x2

]
−Ke−rτ ∂

2P2

∂x2
(3.19)

= ex
[
P1 + 2

∂P1

∂x
+
∂2P1

∂x2

]
−Ke−rτ ∂

2P2

∂x2

with respect to ν:
∂C

∂ν
= ex

∂P1

∂ν
−Ke−rτ ∂P2

∂ν
(3.20)

The second derivative of C(K) with respect to ν:

∂2C

∂ν2
= ex

∂2P1

∂ν2
−Ke−rτ ∂

2P2

∂ν2
(3.21)

with respect to ν and x:

∂2C

∂x∂ν
= ex

[
∂P1

∂ν
+
∂2P1

∂x∂ν

]
−Ke−rτ ∂

2P2

∂x∂ν
(3.22)

As mentioned earlier, since the European call C(K) is a financial derivative, it also
satisfies the Heston PDE in (3.12).
To obtain the Heston PDE for P1 and P2, Heston (1993) argues that the PDE
in (3.12) holds for any contractual features of C(K), in particular, for any strike
price K ≥ 0, for any value of S ≥ 0, and for any value r ≥ 0 of the risk-free rate.
Setting K = 0 and S = 1 in the call price in equation (3.15) produces an option
whose price is simply P1. This option will also follow the PDE in (3.12). Similarly,
setting S = 0, K = 1, and r = 0 in (3.15) produces an option whose price is −P2.
Since −P2 follows the PDE, so does P2.
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Substituting terms in equation (3.17) to (3.22) in equation (3.12) we obtain:

ex
∂P1

∂t
−Ke−rτ

(
rP2 +

∂P2

∂t

)
+

1

2
ν

[
ex
(
P1 + 2

∂P1

∂x
+
∂2P1

∂x2

)
−Ke−rτ ∂

2P2

∂x2

]
+

(
r − 1

2
ν

)[
ex
(
P1 +

∂P1

∂x

)
−Ke−rτ ∂P2

∂x

]
+

1

2
σ2ν

(
ex
∂2P1

∂ν2
−Ke−rτ ∂

2P2

∂ν2

)
+ σρν

[
ex
(
∂P1

∂ν
+
∂2P1

∂x∂ν

)
−Ke−rτ ∂

2P2

∂x∂ν

]
− r

(
exP1 −Ke−rτP2

)
+ κ(θ − ν)

(
ex
∂P1

∂ν
−Ke−rτ ∂P2

∂ν

)
= 0

The brown terms do not depend on P2 but they are a function of x, ν and t, only;
and the other terms depend only on P2. The last equality is satisfied if each equation
of P1 and P2 is equal to zero, separately. Regroup common terms to P1, cancel ex

to obtain:

∂P1

∂t
+

1

2
ν

(
P1 + 2

∂P1

∂x
+
∂2P1

∂x2

)
+

(
r − 1

2
ν

)(
P1 +

∂P1

∂x

)
+

1

2
σ2ν

∂2P1

∂ν2
(3.23)

+ σρν

(
∂P1

∂ν
+
∂2P1

∂x∂ν

)
− rP1 + κ(θ − ν)

∂P1

∂ν
= 0

Simplifying (3.23) becomes

∂P1

∂t
+

(
r +

1

2
ν

)
∂P1

∂x
+

1

2
ν
∂2P1

∂x2
+σρν

∂2P1

∂x∂ν
+[σρν + κ(θ − ν)]

∂P1

∂ν
+

1

2
σ2ν

∂2P1

∂ν2
= 0

(3.24)
Similarly, regroup terms common to P2, cancel −Ke−rτ :

rP2 +
∂P2

∂t
+

1

2
ν
∂2P2

∂x2
+

(
r − 1

2
ν

)
∂P2

∂x
+

1

2
σ2ν

∂2P2

∂ν2
+ σρν

∂2P2

∂x∂ν
(3.25)

− rP2 + κ(θ − ν)
∂P2

∂ν
= 0

Simplifying (3.25) becomes

∂P2

∂t
+

(
r − 1

2
ν

)
∂P2

∂x
+

1

2
ν
∂2P2

∂x2
+σρν

∂2P2

∂x∂ν
+κ(θ−ν)

∂P2

∂ν
+

1

2
σ2ν

∂2P2

∂ν2
= 0 (3.26)

For notational convenience, combine equations (3.24) and (3.26) into a single ex-
pression

∂Pj
∂t

+(r + ujν)
∂Pj
∂x

+
1

2
ν
∂2Pj
∂x2

+σρν
∂2Pj
∂x∂ν

+(a− bjν)
∂Pj
∂ν

+
1

2
σ2ν

∂2Pj
∂ν2

= 0 (3.27)

for j = 1, 2 and where u1 = 1
2
, u2 = −1

2
, a = κθ, b1 = κ− σρ, and b2 = κ.

With xτ defined as xτ = lnSτ , the PDE for Pj equation (3.27) becomes

−∂Pj
∂τ

+(r + ujν)
∂Pj
∂x

+
1

2
ν
∂2Pj
∂x2

+σρν
∂2Pj
∂x∂ν

+(a− bjν)
∂Pj
∂ν

+
1

2
σ2ν

∂2Pj
∂ν2

= 0 (3.28)
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The transformation of the PDE from t to the time to maturity τ = T − t explains
the minus sign in front of the maturity derivative in equation (3.28).

Consider the Fourier transform P̂j of the probabilities Pj = Pj(x, ν, τ)

P̂j(m, ν, τ) =

∫ ∞
−∞

e−imxPj(x, ν, τ)dx

Remembering differentiation in subsection 2.4.1 (Fourier transform of derivative) P̂j
with respect to x corresponds to multiplication by im, the PDE in equation (3.28)
for P̂j is

−∂P̂j
∂τ

+(r+ujν)imP̂j−
1

2
νm2P̂j+ρσνim

∂P̂j
∂ν

+(a−bjν)
∂P̂j
∂ν

+
1

2
σ2ν

∂2P̂j
∂ν2

= 0 (3.29)

Heston (1993) postulates that the characteristic functions (Pj) for the logarithm of
the terminal stock price, xT = lnST have the log linear form:

P̂j(m;x, ν, τ) = E[eimxT ] = exp [Aj(m, τ) +Bj(m, τ)ν + imxt] (3.30)

where i =
√
−1 is the imaginary unit, Aj and Bj are coefficients.

The following derivatives are required to evaluate equation (3.29):

∂P̂j
∂τ

=

[
∂Aj
∂τ

+ ν
∂Bj

∂τ

]
P̂j

∂P̂j
∂ν

= BjP̂j

∂2P̂j
∂ν2

= Bj
∂P̂j
∂ν

= B2
j P̂j

Substitute these derivatives into (3.29) and drop the P̂j terms produces

−∂Aj
∂τ
− ν ∂Bj

∂τ
+ (r + ujν)im− 1

2
νm2 + ρσνimBj + (a− bjν)Bj +

1

2
σ2νB2

j = 0

or equivalently

ν

(
−∂Bj

∂τ
+

1

2
σ2B2

j + ρσimBj − bjBj + imuj −
1

2
m2

)
− ∂Aj

∂τ
+ rim+ aBj = 0

Since νt > 0, this last equality is satisfied if:

∂Bj

∂τ
− 1

2
σ2B2

j + (bj − ρσim)Bj − imuj +
1

2
m2 = 0 (3.31)

∂Aj
∂τ
− aBj − rim = 0 (3.32)

write, αj = imuj − 1
2
m2, βj = −bj + ρσim, γ = σ2

2
and substituting δ = a,

ε = rim in (3.31) and (3.32) obtains:

∂Bj

∂τ
− γB2

j − βjBj − αj = 0 (3.33)

∂Aj
∂τ

= δBj + ε (3.34)

16



⇒

∂Bj

∂τ
= γB2

j + βjBj + αj

=
(γBj)

2 + βj(γBj) + αjγ

γ

=
(γBj − π+)(γBj − π−)

γ

=
γ(Bj − π+/γ) · γ(Bj − π−/γ)

γ

= γ(Bj − π+/γ)(Bj − π−/γ)

π± =
−βj±
√
β2
j−4αjγ

2
is the quadratic formula

Solving the differential equation for Bj∫
dBj

(Bj − π+/γ)(Bj − π−/γ)
=

∫
γdτ (3.35)

By partial fractions

1

(Bj − π+/γ)(Bj − π−/γ)
=

D

Bj − π+/γ
+

E

Bj − π−/γ

D,E constants.
Then D(Bj − π−/γ) + E(Bj − π+/γ) = 1 implies that:

(D + E)Bj = 0

−Dπ−/γ − Eπ+/γ = 1

We, obtain

D =
−1− Eπ+/γ

π−/γ
, E =

1 + Eπ+/γ

π−/γ

Then

E(π−/γ − π+/γ) = 1

=
−1

π+/γ − π−/γ
,

D = −E

=
1

π+/γ − π−/γ
Substituting D and E into the left side of the equation (3.35) obtains:∫

dBj

(Bj − π+/γ)(Bj − π−/γ)

=
1

π+/γ − π−/γ

∫
dBj

Bj − π+/γ
− 1

π+/γ − π−/γ

∫
dBj

Bj − π−/γ

=
1

π+/γ − π−/γ
[ln (Bj − π+/γ)− ln (Bj − π−/γ)]
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Therefore

1

π+/γ − π−/γ
ln

(
Bj − π+/γ

Bj − π−/γ

)
= γτ + C, C constant

At maturity (τ = 0), the value of xT = lnST is know, so the expectation in equa-
tion 3.30 will disappear, and consequently the right hand side will reduce to simply
exp(imxT ). This implies that the initial conditions at maturity are Aj(m, 0) = 0
and Bj(m, 0) = 0.

So taking τ = 0, obtains C = 1
π+/γ−π−/γ ln

(
π+
π−

)
So

ln

(
Bj − π+/γ

Bj − π−/γ

)
= γτ(π+/γ − π−/γ) + ln

(
π+

π−

)
Then

Bj − π+/γ

Bj − π−/γ
=
π+

π−
· eτ(π+−π−)

Bj − π+/γ =
π+

π−
(Bj − π−/γ) · eτ(π+−π−)

Bj

[
1− π+

π−
· eτ(π+−π−)

]
= −π+

γ
eτ(π+−π−) +

π+

γ

Thus

Bj =

π+
γ

(
1− eτ(π+−π−)

)
1− π+

π−
· eτ(π+−π−)

Write π̃ = π+
π−

and η = (π+ − π−) =
√
β2
j − 4αjγ, obtains

Bj(m, τ) =
(π+/γ)(1− eητ )

1− π̃eητ
(3.36)

Now solving for Aj(m, τ), Bj(m, τ) can be written as:

Bj(m, τ) = (π+/γ)

(
1

1− π̃eητ
− eητ

1− π̃eητ

)
= (π+/γ)

(
e−ητ

e−ητ − π̃
− eητ

1− π̃eητ

)Multiplying the fraction on the left by e−ητ

Given that
∂Aj

∂τ
= δBj + ε, integrating we obtains:∫

dAj = δ

∫
Bj(m, τ)dτ +

∫
εdτ

= δ(π+/γ)

(∫
e−ητ

e−ητ − π̃
dτ −

∫
eητ

1− π̃eητ
dτ

)
+

∫
εdτ

Taking the substitution

u = e−ητ − π̃ du = −ηe−ητdτ, v = 1− π̃eητ dv = −π̃ηeητdτ
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⇒

Aj = −δ(π+/γ)

η

[
ln(e−ητ − π̃)− 1

π̃
ln(1− π̃eητ )

]
+ ετ + C, C constant.

When τ = 0, by boundary condition Aj(m, 0) = 0.

0 = −δ(π+/γ)

η

[
ln(1− π̃)− 1

π̃
ln(1− π̃)

]
+ C

0 = −δ(π+/γ)

η
· ln(1− π̃) ·

(
1− 1

π̃

)
+ C

Then

C =
δ(π+/γ)

η

(
π̃ − 1

π̃

)
ln(1− π̃)

And therefore

Aj(m, τ) = −δ(π+/γ)

η

[
ln(e−ητ − π̃)− 1

π̃
ln(1− π̃eητ )−

(
π̃ − 1

π̃

)
ln(1− π̃)

]
+ ετ

= −δ(π+/γ)

η

[
ln(e−ητ − π̃)− ln(1− π̃)− 1

π̃
{ln(1− π̃eητ )− ln(1− π̃)}

]
+ ετ

= −δ(π+/γ)

η

[
ln

(
e−ητ − π̃

1− π̃

)
− 1

π̃
ln

(
1− π̃eητ

1− π̃

)]
+ ετ

= −δ(π+/γ)

η

[
ln

(
e−ητ − π̃

1− π̃

)
+ ln(eητ )− 1

π̃
ln

(
1− π̃eητ

1− π̃

)
− ln(eητ )

]
+ ετ

= −δ(π+/γ)

η

[
ln

(
1− π̃eητ

1− π̃

)
− 1

π̃
ln

(
1− π̃eητ

1− π̃

)
− ητ

]
+ ετ

= −δ(π+/γ)

η

[(
π̃ − 1

π̃

)
· ln
(

1− π̃eητ

1− π̃

)
− ητ

]
+ ετ

Thus

Aj(m, τ) = −δ(π+/γ)

η

[(
π̃ − 1

π̃

)
· ln
(

1− π̃eητ

1− π̃

)
− ητ

]
+ ετ (3.37)

Therefore
P̂j(m;x, ν, τ) = exp [Aj(m, τ) +Bj(m, τ)ν + imxt] (3.38)

with Aj(m, τ) and Bj(m, τ) are given in equations (3.37) and (3.36), respectively.
We use the functions P1 and P2 to implement the model in Python, heston char function
returns the characteristic functions.
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The following code snippet shows the implementation in Python:

1 def heston_char_function(m, x, t_m , r, kappa , theta , sigma ,

2 rho , v0):

3 """ Valuation of European call option in Heston model

Fourier -based approach: characteristic function. """

4 u1, u2 = 0.5, -0.5

5 a = kappa * theta

6 b1, b2 = kappa - sigma * rho , kappa

7 alpha1 = 1j * m * u1 - 0.5 * m ** 2

8 alpha2 = 1j * m * u2 - 0.5 * m ** 2

9 beta1 = -b1 + rho * sigma * 1j * m

10 beta2 = -b2 + rho * sigma * 1j * m

11 gamma = 0.5 * sigma ** 2

12 delta , epsilon = a, r * 1j * m

13 pi_plus1 = 0.5*( - beta1 + (b1 ** 2 - 4 * alpha1 * gamma) **

0.5)

14 pi_plus2 = 0.5*( - beta2 + (b2 ** 2 - 4 * alpha2 * gamma) **

0.5)

15 pi_minus1 = 0.5*( - beta1 - (b1 ** 2 - 4 * alpha1 * gamma) **

0.5)

16 pi_minus2 = 0.5*( - beta2 - (b2 ** 2 - 4 * alpha2 * gamma) **

0.5)

17 pi_hat_1 , pi_hat_2 = pi_plus1 / pi_minus1 , pi_plus2 /

pi_minus2

18 eta1 , eta2 = pi_plus1 - pi_minus1 , pi_plus2 - pi_minus2

19
20 B1 = (pi_plus1 * (np.exp(-eta1 * t_m) - 1)) / (gamma * (np.

exp(-eta1 * t_m) - pi_hat_1))

21 B2 = (pi_plus2 * (np.exp(-eta2 * t_m) - 1)) / (gamma * (np.

exp(-eta2 * t_m) - pi_hat_2))

22
23 A1 = -(delta * pi_plus1) / (eta1 * gamma) * \

24 ((( pi_hat_1 - 1) / pi_hat_1) * (cmath.log((np.exp(-eta1

* t_m) - pi_hat_1) / (1 - pi_hat_1)) + eta1 * t_m)

25 - eta1 * t_m) + epsilon * t_m

26 A2 = -(delta * pi_plus2) / \

27 (eta2 * gamma) * ((( pi_hat_2 - 1) / pi_hat_2) * (cmath.

log((np.exp(-eta2 * t_m) - pi_hat_2) / (1 - pi_hat_2

)) + eta2 * t_m) - eta2 * t_m) + epsilon*t_m

28
29 char_func_value1 = np.exp(A1 + B1 * v0 + 1j * m * x)

30 char_func_value2 = np.exp(A2 + B2 * v0 + 1j * m * x)

31
32 return char_func_value1 , char_func_value2

Given that the characteristic functions P̂j(m;x, ν, τ) are known, each in the money
probability Pj can be recovered from the characteristic function using inversion
theorem, as

Pj = Pr(lnST > lnK) =
1

2
+

1

π

∫ ∞
0

Re

[
e−im lnKP̂j(m;x, ν, τ)

im

]
dm (3.39)

Writing k = lnK, suppressing the j index and denote φ(m) to be the characteristic
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function for lnST evaluated at m. Equation (3.39) can be written as:

Pr(lnST > k) =
1

2
+

1

π

∫ ∞
0

Re

[
e−imkφ(m)

im

]
dm (3.40)

To verify this equation, the probabilities expressed in the form of equation (3.40)
were derived by Gil-Pelaez (1951) using the inversion theorem for Fourier transforms.
The sign function sign(α) plays in an important role in this derivation. It is defined
as

sign α =

{
α/|α| α 6= 0

0 α = 0
(3.41)

The sign function has the integral representation

sign α =
1

π

∫ ∞
−∞

sinαx

x
dx

Denote f(x) to be the density of lnST , and F (x) to be its distribution, and using
the definition of the sign function in (3.41), we can write for a fixed y∫ ∞

−∞
sign(x− y)f(x)dx =

∫ ∞
y

sign(x− y)f(x)dx−
∫ y

−∞
sign(y − x)f(x)dx

= [1− F (y)]− F (y) = 1− 2F (y) (3.42)

To evaluate (3.42), we have broken up the integration range at y and we have
exploited the sign of x− y over each region.
To begin the derivation of equation (3.40), note that f(x) can be recovered from
φ(m) as in sub-section 2.4 (Fourier inversion formula) as:

f(x) =
1

2π

∫ ∞
−∞

e−imxφ(m)dm. (3.43)

We can express Pr(lnST > k) using the density, and then substitute equation (3.43)
to obtain:

Pr(lnST > k) =

∫ ∞
k

f(x)dx =
1

2π

∫ ∞
k

(∫ ∞
−∞

e−imxφ(m)dm

)
dx

=
1

2π

∫ ∞
−∞

φ(m)

(∫ ∞
k

e−imxdx

)
dm. (3.44)

The last equality is obtained by reversing the order of integration, as a consequence
from Fubini’s theorem. Now evaluate the inner integral in the second line of (3.44),
which results in∫ ∞

k

e−imxdx = − 1

im
e−imx

∣∣∣∞
k

= − 1

im
lim
R→∞

e−imR +
1

im
e−imk

Then

Pr(lnST > k) =
1

2π

∫ ∞
−∞

φ(m)
e−imk

im
dm− 1

2π
lim
R→∞

∫ ∞
−∞

φ(m)
e−imR

im
dm (3.45)
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In the second integrand of (3.45), express φ(m) as a Fourier transform and apply
the results developed earlier in this section. This produces

1

2π
lim
R→∞

∫ ∞
−∞

(∫ ∞
−∞

eimxf(x)dx

)
e−imR

im
dm

=
1

2π
lim
R→∞

∫ ∞
−∞

f(x)

(∫ ∞
−∞

eim(x−R)

im
dm

)
dx (3.46)

=
1

2π
lim
R→∞

∫ ∞
−∞

πsign(x−R)f(x)dx

=
1

2
lim
R→∞

(1− 2F (R)) = −1

2

By equation 3.42

To obtain the second line in equation (3.46), we have applied (3.42), and we have
used the fact the inner integrand can be written using Euler’s identity in (3.47)

eim(x−R)

im
=

1

i

cos(m(x−R))

m
+

sin(m(x−R))

m
(3.47)

The first term is an odd function in m, so it will disappear when integrated over
(−∞,∞), while the second term will integrate to πsign(x−R).
Substituting the result of (3.46) into equation (3.45) produces

Pr(lnST > k) =
1

2
+

1

2π

∫ ∞
−∞

φ(m)
e−imk

im
dm. (3.48)

By applying Euler’s identity to both φ(m) and e−imk, we can see that the integrand
in (3.48) is odd in its imaginary part and even in its real part. Hence, we can
use the real part only, restrict the integration range to (0,∞) and multiply the re-
sult by 2, and we obtain the desired expression for the probability in equation (3.39).

3.3.2 Consolidating the integrals

It is possible to regroup the integrals for the probabilities P1 and P2 into a single
integral, which will speed up the numerical integration required in the call price
calculation. Substituting the expression for Pj from equation (3.39) into the call
price (3.16) and rearranging produces:

C(K) = exP1 −Ke−rτP2

= ex

[
1

2
+

1

π

∫ ∞
0

Re

(
e−im lnKP̂1(m;x, ν, τ)

im

)
dm

]

−Ke−rτ
[

1

2
+

1

π

∫ ∞
0

Re

(
e−im lnKP̂2(m;x, ν, τ)

im

)
dm

]

=
1

2
ex − 1

2
Ke−rτ +

1

π

∫ ∞
0

Re

[
e−im lnK

im

(
exP̂1 −Ke−rτ P̂2

)]
dm

heston int func returns the integrand in the last equation. The following code snip-
pet shows the implementation in Python:
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1 def heston_int_func(m, x, k, t_m , r, kappa , theta , sigma , rho ,

v0):

2 char_func_value = heston_char_function(m, x, t_m , r, kappa ,

theta , sigma , rho , v0)

3 int_func_value = (np.exp(-1j * m * np.log(k)) / (1j * m) *

4 (np.exp(x) * char_func_value [0] - k * np.

exp(-r * t_m) * char_func_value [1])).

real

5
6 return int_func_value

Finally, the heston call value function returns the price of a European call

1 def heston_call_value(s0 , k, t_m , r, kappa , theta , sigma , rho ,

v0):

2 x = np.log(s0)

3 int_value = quad(lambda m: heston_int_func(m, x, k, t_m , r,

kappa , theta , sigma , rho , v0),

4 0, np.infty , limit =250) [0]

5 call_value = max(0, 0.5 * s0 - 0.5 * k * np.exp(-r * t_m) +

1 / np.pi * int_value)

6 return call_value

This completes the derivation of the Heston model.

3.4 Summary of the Heston Model

In this chapter, we have presented the derivation of the Heston model, including the
PDEs of the model. From equation 3.12, we have obtained the equation which we
call henceforth the Heston p.d.e.

∂V

∂t
+

1

2
ν
∂2V

∂x2
+

(
r − 1

2
ν

)
∂V

∂x
+

1

2
σ2ν

∂2V

∂ν2
+ σρν

∂2V

∂ν∂x
− rV + κ(θ − ν)

∂V

∂ν
= 0

In addition we have obtained the call price, from equation 3.16 is of the form:

C(K) = exP1 −Ke−rτP2

where the in-the-money probabilities (Pj) of equation 3.39 are the form:

Pj = Pr(lnST > lnK) =
1

2
+

1

π

∫ ∞
0

Re

[
e−im lnKP̂j(m;x, ν, τ)

im

]
dm

and the characteristic functions (P̂j) of the equation 3.38 are the form:

P̂j(m;x, ν, τ) = exp [Aj(m, τ) +Bj(m, τ)ν + imxt]

The Heston model has become the most popular stochastic volatility model for pric-
ing equity options. This is in part due to the fact that the call price in the model
is available in closed form. Some authors refer to the call price as being in “semi-
closed” form because of the numerical integration required to obtain P1 and P2.
But the Black-Scholes model also requires numerical integration, to obtain Φ(d1)
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and Φ(d2). In this sense, the Heston model produces call prices that are no less
closed than those produced by the Black-Scholes model. The difference is that pro-
gramming languages often have built-in routines for calculating the standard normal
cumulative distribution function, Φ(·) (usually by employing a polynomial approx-
imation), whereas the Heston probabilities are not built-in and must be obtained
using numerical integration, here we have used quadrature method of integration. In
the next chapter, we present finite difference methods that approximate the Heston
partial differential equation (3.12).
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Finite difference method

In this chapter, we present methods to obtain the European call price by solv-
ing the Heston PDE in (3.12) along a two-dimensional grid representing the stock
price and the volatility. We first show how to construct non-uniform grids for the
discretization of the stock price and the volatility, and present formulas for finite
difference approximations to the derivatives in the Heston PDE. We then present
the Crank-Nicolson scheme, which shows better results in terms of accuracy, consis-
tency, stability, convergence, and performance than to the explicit scheme.

Recall from Section (3.2) the Heston PDE for the value V (S, ν, t) of an option when
the spot price is S, the volatility is ν, and when the maturity is τ , is the following
equation:

−∂V
∂τ

+
1

2
ν
∂2V

∂x2
+

(
r − 1

2
ν

)
∂V

∂x
+

1

2
σ2ν

∂2V

∂ν2
+σρν

∂2V

∂ν∂x
−rV +κ(θ−ν)

∂V

∂ν
= 0 (4.1)

Recall also that, the choice of τ = T − t instead of t in equation (3.12) explains the
minus sign in front of the maturity derivative in equation (4.1).
Using V (t) = V (S, ν, t) as compact notation we can express the PDE (4.1) as:

∂V

∂τ
= LV (t)

where the operator L is defined as:

L =
1

2
ν
∂2

∂x2
+

(
r − 1

2
ν

)
∂

∂x
+

1

2
σ2ν

∂2

∂ν2
+ σρν

∂2

∂ν∂x
− r + κ(θ − ν)

∂

∂ν
(4.2)

Finite difference methods are techniques to find a numerical approximation to
the PDE. To implement finite differences, we first need a discretization grid for the
two state variables (the stock price and the variance), and a discretization grid for
the maturity. These grids can have equally or unequally spaced increments. Second,
we need discrete approximations to the continuous derivatives that appear in the
PDE. Finally, we need a finite difference methodology to solve the PDE.

4.1 Generating non-uniform grids

A grid of a subset Ω ⊂ R1 is a finite set of points Ωh := {x(i) : i ∈ {1, . . . ,m}} ⊂ Ω
with points x(i) ∈ R in strictly increasing order, i.e. x(i) < x(2) < · · · < x(m).
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A structured grid (sometimes also called tensor grid) of the closure of a region
Ω̄ ∈ R2, this two-dimensional case, since we need a grid for the state variables
(S, ν), is the set

Ω̄h := {x(k) = (x
(k1)
1 , x

(k2)
2 )} ⊂ Ω̄

based on 2 dimensional meshes {x(1)
i , . . . , x

(m)
i }, i = 1, 2. To distinguish between

boundary and inner points we define with Ωh the set of all inner and with Γh the
set of all boundary grid points.
The choice of an appropriate mesh is of great importance since it directly influes
the error we are making by approximating a continuous function with the function
values in only grid points of the mesh.
The strategy is generating a function’s mapping from a uniform to a non-uniform
grid, the idea is very simple. One has to specify an appropriate function g : [0, 1]→
[0, 1] which is continuously differentiable, bijective and strictly monotonic increasing.
Now given a uniform grid on [0, 1] one applies the mapping g to the grid points and
scale if necessary, i.e. the resulting non-uniform mesh is then defined by {yi}ni=0 with

yi = cg(xi) + d, xi =
i

n
, i = 1, . . . , n.

∆x = xi+1 − xi = 1
n
, implies that xi+1 = xi + ∆x, ∆x is the distance between two

adjacent grid points in the uniform grid, and

∆y = yi+1 − yi = cg(xi+1)− cg(xi). (4.3)

is the distance between two adjacent grid points in the non-uniform grid.
Using the first order Taylor approximation in section 2.1 (Taylor series), g(xi+1) can
be written as

g(xi+1) = g(xi) + g′(xi)∆x+R2(∆x)

g(xi+1)− g(xi)

∆x
= g

′
(xi)

Here R2(∆x) denotes the sum of the factors of order greater or equal than (∆x)2,
which approximate to zero.
Thus equation (4.3) can be written as:

∆y ≈ cg′(xi)∆x = cg′(g−1(yi))∆x

Motivated by this result we introduce a distance ratio function

r : [0, 1]→ R+ by (4.4)

r(y) = g′(g−1(y))

which characterises the ratio between the distances of two adjacent points of the
non-uniform grid and the uniform grid.
Thus g must satisfy the ordinary differential equation (o.d.e)

g′(x) = r(g(x))
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This o.d.e can be solved by the separation of variables approach:

g′(x) =
dg(x)

dx
= r(g(x))

dg(x)

r(g(x))
= dx

Integrating∫ x

0

dg(z)

r(g(z))
dz =

∫ x

0

dz

substituting: y = g(z), dy = dg(z) · dz obtains:∫ g(x)

0

dy

r(y)
= x (4.5)

By definition of r in (4.4), r(y) > 0, and r ∈ C[0, 1], i.e. r is continuously differen-
tiable. If x = 1 then g(1) = 1, (g : [0, 1] → [0, 1] is bijective an strictly monotonic
increasing). Thus r satisfies the relation:∫ 1

0

dy

r(y)
= 1

Before choosing a distance ratio function one needs to be aware of the grid structure
one would like to have, e.g. the following questions need to be answered: Is one
concentration point sufficient or are there more points where the grid should be
finer? and how strong should the distance between two adjacent grid points increase
as we go away from the concentration points?. As a simple example we consider the
distance ratio function:

r(y) =
√
c2 + p2(y − y∗)2.

The parameter y∗ can be viewed as the centre of the grid point concentration with
c as a measure of the intensity because r assumes its minimum at y∗ with r(y∗) = c.
For big values of y, the function is almost linear since r(y) =

√
c2 + p2(y − y∗)2 ≈√

p2y2 = |py|.
The parameter p has to be set appropriately so that the property of a density
function is satisfied. A big advantage of the function r is that we are able to find an
analytic solution for the grid generating function g by solving the o.d.e. g′ = r(g).
From equation (4.5) it follows∫ g(x)

0

1√
c2 + p2(y − y∗)2

dy = x (4.6)

To find solution to integral in equation (4.6):

Let x =
1√
a
· arcsinh

(
2ay + b√
4ac1 − b2

)
,with a > 0 and 4ac1 − b2 > 0, a, b, c1 constants.
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Solving for y, we have √
4ac1 − b2 · sinh(

√
ax) = 2ay + b (4.7)

√
4ac1 − b2 · sinh(

√
ax)− b

2a
= y

Now using differentiation, we obtain:

d

dy

(√
4ac1 − b2 · sinh(

√
ax)− b

2a

)
=

d

dy
y

√
4ac1 − b2

√
a

2a
cosh(

√
ax) · dx

dy
= 1

√
4ac1 − b2

2
√
a

cosh(
√
ax) · dx

dy
= 1

dx

dy
=

2
√
a√

4ac1 − b2 · cosh(
√
ax)

Given that cosh x > 0 for all x, and applying the hyperbolic trigonometric identity

cosh2 x− sinh2 x = 1, we have cosh(
√
ax) =

√
1 + sinh2(

√
ax). Thus gives

2
√
a√

4ac1−b2·cosh(
√
ax)

= 2
√
a√

4ac1−b2·
√

1+sinh2(
√
ax)

= 2
√
a√

4ac1−b2+(4ac1−b2) sinh2(
√
ax)

= 2
√
a√

4ac1−b2+(2ay+b)2

= 2
√
a√

4ac1−b2+4a2y2+4aby+b2

= 2
√
a√

4a(ay2+by+c1)

= 1√
ay2+by+c1

From (4.7) (2ay + b)2 = (4ac1 − b2) · sinh2(
√

ax)

Thus

dx
dy

= 1√
ay2+by+c1

dx = 1√
ay2+by+c1

dy

x =

∫
1√

ay2+by+c1
dy

Therefore ∫
1√

ay2 + by + c1

dy =
1√
a
· arcsinh

(
2ay + b√
4ac1 − b2

)
.

Given that

c2 + p2(y − y∗)2 = c2 + p2(y2 − 2y∗y + y∗2)

= p2y2 − 2p2y∗y + c2 + y∗2p2.
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Let a = p2, b = −2p2y∗, c1 = c2 + y∗2p2 obtains:

1√
a
· arcsinh

(
2ay + b√
4ac1 − b2

)
=

1

p
· arcsinh

(
2p2y − 2p2y∗√

4p2(c2 + y∗2p2)− 4p4y∗2

)

=
1

p
· arcsinh

(
2p2(y − y∗)

2p
√
c2 + y∗2p2 − p2y∗2

)
=

1

p
· arcsinh

(p
c

(y − y∗)
)
.

So we conclude that∫ g(x)

0

1√
c2 + p2(y − y∗)2

dy =
1

p

[
arcsinh

(p
c

(g(x)− y∗)
)
− arcsinh

(
−py∗

c

)]
= x

and thus

arcsinh
(p
c

(g(x)− y∗)
)

= px+ arcsinh

(
−py∗

c

)
g(x) =

c

p
sinh

[
px+ arcsinh

(
−py∗

c

)]
+ y∗. (4.8)

4.2 Space Discretization

Uniform grids are those which have equally spaced increments for the two state
variables. These grids have two advantages: first, they are easy to construct, and
second, since the increments are equal, the finite difference approximations to the
derivatives in the PDE take on a simple form. Non-uniform grids are more compli-
cated to construct, and the finite difference approximations to the derivatives are
more complicated. These grids, however, can be made finer around certain points,
in particular, around the region (S, ν) = (K, 0), as in practice this is the region in
the (S, ν)-domain where one wishes to obtain option prices. Hence, non-uniform
grids are often preferable since they produce more accurate prices with fewer grid
points, and consequently, with less computation time.

We denote the maximum values of S, ν, and t as Smax, νmax and tmax = τ (the
maturity), and the minimum values as Smin, νmin, and tmin = 0. We denote by
V n
i,j = V (Si, νj, tn) the value of a European call at time tn when the stock price is Si

and the volatility is νj. We use NS + 1 points for the stock price, NV + 1 points for
the volatility, and NT + 1 points for the maturity. For convenience, sometimes we
write simply the other way around V (Si, νj) for V n

i,j.

Using the minimum values Smin = νmin = 0 and following (Kluge, 2002), who de-
scribes a non-uniform grid that is finer around the strike price K and around the
spot volatility ν0 = 0, the grid of size NS + 1 for the stock price is:

Si = c sinh

[
i∆ζ + arcsin

(
−K
c

)]
+K, i = 0, 1, . . . , NS (4.9)

29



with

∆ζ =
1

NS

[
arcsin

(
Smax −K

c

)
− arcsin

(
−K
c

)]
Equation (4.9) follows from (4.8) with p = 1, y∗ = K and the parameter c, which
controls the fraction of mesh points Si that lie in the neighborhood of the strike
K. We set c = K/5, which follows from the numerical experiments by (Hout and
S.Foulon, 2010).
We define a non-uniform mesh in the ν-direction analogous to S-direction. Let a
constant d > 0, the grid of size NV + 1 for the volatility is:

νj = d sinh(j∆η), j = 0, 1, . . . , NV

with

∆η =
1

NV

arcsin
(νmax

d

)
In (Hout and S.Foulon, 2010) use d = νmax/500, and a uniform grid for t. Figure 4.1
illustrates a non-uniform grid using their settings, along with NS = 50, NV = 25,
Smax = 8, νmax = 5 and K = 1. The grid for the stock price is represented by
horizontal points, and the volatility by vertical points.

Figure 4.1: Non-uniform grid.
Source: Own elaboration.

Note that in stock price dimension the grid is finest around the strike price, while
in the volatility dimension the grid becomes finer as we progress towards zero.

4.3 Approximation of derivatives

The general approach to approximate derivatives of a function V : Ω ⊂ R2 → R,
V ∈ C3(Ω), in a certain grid point x(k) ∈ Ωh is to use a weighted sum of the
function values of adjacent grid points. For the first order derivatives in equation
(4.2) (Operator L) the approximation is made using a scheme with only three points,
and the idea is to approximate the derivatives using the following equation:

∂V

∂S
(Si) ≈

1∑
k=−1

akV (Si+k) (4.10)
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Applying Taylor series expansion around the grid point Si, with the abbreviations:
Vi = V (Si), V

′
i = VS = ∂

∂S
V (Si, νj), V

′′
i = VSS = ∂2

∂S2V (Si, νj), ∆Si = Si − Si−1.

∆Si = Si − Si−1 and ∆Si+1 = Si+1 − Si

V (Si−1) = V (Si −∆Si) = Vi −∆SiV
′

i +
1

2!
(∆Si)

2V
′′

i −
1

3!
(∆Si)

3V
′′′

i + · · ·

V (Si+1) = V (Si + ∆Si+1) = Vi + ∆Si+1V
′

i +
1

2!
(∆Si+1)2V

′′

i +
1

3!
(∆Si+1)3V

′′′

i + · · ·

The above expressions are commonly named backward and forward differencing,
respectively.
From equation (4.10) we obtain

V
′

i = a−1V (Si−1) + a0V (Si) + a1V (Si+1)

= a−1

(
Vi −∆SiV

′

i +
1

2
(∆Si)

2V
′′

i +R3(−∆Si)

)
+ a0Vi

+ a1

(
Vi + ∆Si+1V

′

i +
1

2
(∆Si+1)2V

′′

i +R3(∆Si+1)

)
= (a−1 + a0 + a1)Vi + (−a−1∆Si + a1∆Si+1)V

′

i +

(
1

2
a−1(∆Si)

2 +
1

2
a1(∆Si+1)2

)
V
′′

i

+ a−1R3(−∆Si) + a1R3(∆Si+1)

=
(
Vi V

′
i V

′′
i

) 1 1 1
−∆Si 0 ∆Si+1

1
2
(∆Si)

2 0 1
2
(∆Si+1)2

 a−1

a0

a1

+ a−1R3(−∆Si) + a1R3(∆Si+1)

Here R3(−∆Si) and R3(∆Si+1) denotes the sum of the factors of order greater than
(−∆Si)

2 and (∆Si+1)2 respectively, which approximate to zero.
In order to approximate the first derivative, we have to choose the factors a−1, a0,
a1 so that factors before the function value Vi and its second derivative V

′′
i are zero

and the factor before the first derivative V
′
i is one. In general, the following linear

equations have to be solved, where exactly one of the γ′s is one and the others are
zero depending on which derivative has to be approximated. 1 1 1

−∆Si 0 ∆Si+1
1
2
(∆Si)

2 0 1
2
(∆Si+1)2

 a−1

a0

a1

 =

 γ
γS
γSS


• With γS = 1, γ = γSS = 0
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
a−1 + a0 + a1 = 0(1)

−∆Sia−1 + ∆Si+1a1 = 1(2)
1
2
(∆Si)

2a−1 + 1
2
(∆Si+1)2a1 = 0(3)

It follows from the equation (3) that a1 = −a−1
(∆Si)

2

(∆Si+1)2

Substituting a1 into equation (2):

−∆Sia−1 −
(∆Si)

2

∆Si+1

a−1 = 1

a−1 =
−1

∆Si + (∆Si)2

∆Si+1

a−1 =
−∆Si+1

∆Si (∆Si+1 + ∆Si)

Therefore we have:

a1 =
∆Si

∆Si+1 (∆Si+1 + ∆Si)

Substituting a−1 and a1 into equation (1):

−∆Si+1

∆Si (∆Si+1 + ∆Si)
+ a0 +

∆Si
∆Si+1 (∆Si+1 + ∆Si)

Thus we have:

− (∆Si+1)2 + ∆Si∆Si+1 (∆Si+1 + ∆Si) a0 + (∆Si)
2 = 0

a0 =
(∆Si+1)2 − (∆Si)

2

∆Si∆Si+1 (∆Si+1 + ∆Si)

=
(∆Si+1 −∆Si)((((((((

(∆Si+1 + ∆Si)

∆Si∆Si+1((((((((
(∆Si+1 + ∆Si)

=
∆Si+1 −∆Si

∆Si∆Si+1

• With γSS = 1, γ = γS = 0


a−1 + a0 + a1 = 0(1)

−∆Sia−1 + ∆Si+1a1 = 0(2)
1
2
(∆Si)

2a−1 + 1
2
(∆Si+1)2a1 = 1(3)

It follows from the equation (2) that a1 = a−1
∆Si

∆Si+1
.

Substituting a1 into equation (3):

1

2
(∆Si)

2a−1 +
1

2
∆Si∆Si+1a−1 = 1

a−1 =
2

∆Si(∆Si+1 + ∆Si)
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Therefore we have:

a1 =
2

∆Si+1 (∆Si+1 + ∆Si)

Substituting a−1 and a1 into equation (1):

2

∆Si(∆Si+1 + ∆Si)
+ a0 +

2

∆Si+1 (∆Si+1 + ∆Si)
= 0

Thus we have:

2∆Si+1 + ∆Si∆Si+1(∆Si + ∆Si+1)a0 + 2∆Si = 0

a0 =
−2((((((((

(∆Si + ∆Si+1)

∆Si∆Si+1((((((((
(∆Si + ∆Si+1)

=
−2

∆Si∆Si+1

• With γ = 1, γS = γSS = 0 it is easy to check that a−1 = a1 = 0 and a0 = 1

We summarise the result in table 4.1

ak V V ′ V ′′

a−1 0 −∆Si+1

∆Si(∆Si+∆Si+1)
2

∆Si(∆Si+∆Si+1)

a0 1 ∆Si+1−∆Si

∆Si∆Si+1

−2
∆Si∆Si+1

a1 0 ∆Si

∆Si+1(∆Si+∆Si+1)
2

∆Si+1(∆Si+∆Si+1)

Table 4.1: Central approximation of derivatives, inner points

The central difference scheme can not be applied on boundaries. For convection
dominated parabolic p.d.e.s the finite method with central difference approximation
exhibits an oscillating behaviour. That is why we also need to discuss left and right
hand side approximations.
Beginning with right hand side approximation, the idea is to approximate the deriva-
tives using the following equation:

∂V

∂S
(Si) ≈

2∑
k=0

akV (Si+k)

Here ∆Si+1 = Si+1 − Si, and ∆Si+2 = Si+2 − Si+1

Then
2∑

k=0

akV (Si+k) = a0V (Si) + a1V (Si+1) + a2V (Si+2) (4.11)
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therefore, we need to get an expression for V (Si+1) and V (Si+2).

V (Si+1) = V (Si + ∆Si+1) = Vi + ∆Si+1V
′

i +
1

2
(∆Si+1)2V

′′

i +R3(∆Si+1)

V (Si+2) = V (Si+1 + ∆Si+2) = V (Si + ∆Si+1 + ∆Si+2)

= Vi + (∆Si+1 + ∆Si+2)V
′

i +
1

2
(∆Si+1 + ∆Si+2)2V

′′

i +R3(∆Si+1 + ∆Si+2)

From equation (4.11) we obtain

V
′

i = a0V (Si) + a1V (Si+1) + a2V (Si+2)

= a0Vi + a1

(
Vi + ∆Si+1V

′

i +
1

2
(∆Si+1)2V

′′

i +R3(∆Si+1)

)
+ a2

(
Vi + (∆Si+1 + ∆Si+2)V

′

i +
1

2
(∆Si+1 + ∆Si+2)2V

′′

i +R3(∆Si+1 + ∆Si+2)

)
= (a0 + a1 + a2)Vi + [a1∆Si+1 + a2(∆Si+1 + ∆Si+2)]V

′

i

+

[
1

2
a1(∆Si+1)2 +

1

2
a2(∆Si+1 + ∆Si+2)2

]
V
′′

i + a1R3(∆Si+1) + a2R3(∆Si+1 + ∆Si+2)

=
(
Vi V

′
i V

′′
i

) 1 1 1
0 ∆Si+1 ∆Si+1 + ∆Si+2

0 1
2
(∆Si+1)2 1

2
(∆Si+1 + ∆Si+2)2

 a0

a1

a2


Applying the same method described above results in the system: 1 1 1

0 ∆Si+1 ∆Si+1 + ∆Si+2

0 1
2
(∆Si+1)2 1

2
(∆Si+1 + 1

2
(∆Si+2)2)2

 a0

a1

a2

 =

 γ
γS
γSS


Applying the substitution method when γS = 1 and the other γ′s are equal to zero,
and on the other hand when γSS = 1 and the other γ′s are equal to zero, we obtain
the result of this equation system given in Table 4.2.

ak V V ′ V ′′

a0 1 − 2∆Si+1+∆Si+2

∆Si+1(∆Si+1+∆Si+2)
2

∆Si+1(∆Si+1+∆Si+2)

a1 0 ∆Si+1+∆Si+2

∆Si+1∆Si+2

−2
∆Si+1∆Si+2

a2 0 −∆Si+1

∆Si+2(∆Si+1+∆Si+2)
2

∆Si+2(∆Si+1+∆Si+2)

Table 4.2: Right hand side approximation of derivatives, left border

The left hand side approximation of derivatives with

∂V

∂S
(Si) ≈

0∑
k=−2

akV (Si+k)

Here ∆Si−1 = Si−1 − Si−2, and ∆Si = Si − Si−1

Then
0∑

k=−2

akV (Si+k) = a−2V (Si−2) + a−1V (Si−1) + a0V (Si) (4.12)
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therefore, we need to get an expression for V (Si−2) and V (Si−1).

V (Si−2) = V (Si−1 −∆Si−1) = V (Si −∆Si −∆Si−1)

= Vi − (∆Si + ∆Si−1)V
′

i +
1

2
(∆Si + ∆Si−1)2V

′′

i +R3(−(∆Si + ∆Si−1))

V (Si−1) = V (Si −∆Si)

= Vi −∆SiV
′

i +
1

2
(∆Si)

2V
′′

i +R3(−∆Si)

From equation (4.12) we obtain

V
′

i = a−2V (Si−2) + a−1V (Si−1) + a0V (Si)

= a−2

[
Vi − (∆Si + ∆Si−1)V

′

i +
1

2
(∆Si + ∆Si−1)2V

′′

i +R3(−(∆Si + ∆Si−1))

]
+ a−1

[
Vi −∆SiV

′

i +
1

2
(∆Si)

2V
′′

i +R3(−∆Si)

]
+ a0Vi

= (a−2 + a−1 + a0)Vi + [−(∆Si + ∆Si−1)a−2 −∆Sia−1]V
′

i

+

[
1

2
(∆Si + ∆Si−1)2a−2 +

1

2
(∆Si)

2a−1

]
V
′′

i

+ a−2R3(−(∆Si + ∆Si−1)) + a−1R3(−∆Si)

=
(
Vi V

′
i V

′′
i

) 1 1 1
−(∆Si + ∆Si−1) −∆Si 0
1
2
(∆Si + ∆Si−1)2 1

2
(∆Si)

2 0

 a−2

a−1

a0


Applying the same method described above results in the system: 1 1 1

−(∆Si + ∆Si−1) −∆Si 0
1
2
(∆Si + ∆Si−1)2 1

2
(∆Si)

2 0

 a−2

a−1

a0

 =

 γ
γS
γSS


Applying the substitution method when γS = 1 and the other γ′s are equal to zero,
and on the other hand when γSS = 1 and the other γ′s are equal to zero, we obtain
the result of this equation system given in Table 4.3.

ak V V ′ V ′′

a−2 0 ∆Si

∆Si−1(∆Si+∆Si−1)
2

∆Si−1(∆Si+∆Si−1)

a−1 0 −∆Si+∆Si−1

∆Si∆Si−1

−2
∆Si∆Si−1

a0 1 2∆Si+∆Si−1

∆Si(∆Si+∆Si−1)
2

∆Si(∆Si+∆Si−1)

Table 4.3: Left hand side approximation of derivatives, right border
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4.4 Crank-Nicolson Scheme

4.4.1 The Weighted method

This is a general method that incorporates other finite difference schemes as special
cases. Recall that V n

i,j denotes the value of the European call at the grid points
(Si, νj) and at maturity tn. Since the two-dimensional grid for (S, ν) is of size
N = (NS + 1)(NV + 1), at each tn there are N possible values for V n

i,j, as indicated
in figure 4.2. To apply the weighted method, we must construct a vector V n of
size N with these values, arranged in any way we like. We choose to stack the
NV column vectors ν0, ν1, ν2, . . . , νNV

in figure 4.2 on top of one another, so that
V n = (νT0 , ν

T
1 , . . . , ν

T
NV

)T is our vector.

S0

SNS

S1

...

ν0 ν1 νNV

V n
0,0 V n

0,1 V n
0,NV

. . .

. . .

V n
1,0 V n

1,NV
V n

1,1
. . .

...
...

...
. . .

V n
NS ,0 V n

NS ,1
V n
NS ,NV

. . .

Figure 4.2: Value of the European Call along the Stock Price and Variance Grids

The entries of V n therefore correspond to the following (Si, νj) points

(S0, ν0), (S1, ν0), . . . , (SNS
, ν0)︸ ︷︷ ︸

Values of S for ν0

, (S0, ν1), (S1, ν1), . . . , (SNS
, ν1)︸ ︷︷ ︸

Values of S for ν1

, . . . ,

(S0, νNV−1
), (S1, νNV−1

), . . . , (SNS
, νNV−1

)︸ ︷︷ ︸
Values of S for νNV −1

, (S0, νNV
), (S1, νNV

), . . . , (SNS
, νNV

)︸ ︷︷ ︸
Values of S for νNV

, . . . ,

The weighted method, also called the θ-method, is defined via the relationship

V n+1 − V n

dt
= L(θV n+1 + (1− θ)V n)

where L is sparse matrix of dimension N ×N . This matrix is based on the operator
defined in equation (4.2). The initial condition V 0 is known, since it represents the
value of the call at expiry. Hence, we can work from expiry, starting with the initial
value V 0, and we use L to obtain V 1, V 2, and so forth, until we reach V NT . This is
done by solving, at each time, the system

(I−θdtL)V n+1 = (I + (1− θ) dtL)V n (4.13)

where I is the identity matrix of size N . The system can be solved by taking the
inverse of the matrix on the left-hand side, so that

V n+1 = (I−θdtL)−1 (I + (1− θ) dtL)V n
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The vector V 0 depends on the option being priced. For a call option, it will contain
S−K in the components of V that correspond to S > K, and zero in the components
that correspond to S < K. The order in which these appear in the vector will depend
on how the components of V are arranged. A number of finite difference schemes
arise as a special case of equation (4.13), depending on the value of θ. Setting θ = 0
produces the explicit scheme, θ = 1/2 produces the Crank-Nicolson scheme, and
θ = 1 produces the implicit scheme.
We decompose L into three matrices A0, A1, and A2 each of size N ×N , so that

L = A0 + A1 + A2

where A0 contains all entries of L corresponding to the mixed derivative ∂2V/∂S∂ν,
A1 contains all entries corresponding to ∂V/∂S and ∂2V/∂S2, and A2 contains all
entries corresponding to ∂V/∂ν and ∂2V/∂ν2. The entries of L corresponding to
rV n

i,j are split evenly between A1 and A2. Hence, we construct the matrices as:

A0 = σρνS

(
∂V

∂S∂ν

)
N×N

A1 = rS

(
∂V

∂S

)
N×N

+
1

2
νS2

(
∂2V

∂S2

)
N×N

− 1

2
r(V )N×N

A2 = κ(θ − ν)

(
∂V

∂ν

)
N×N

+
1

2
σ2ν

(
∂2V

∂ν2

)
N×N

− 1

2
r(V )N×N .

4.5 Summary of the FDM

In this chapter, we have presented finite difference methods, which are commonly
used to obtain European prices in the Heston model. We present the necessary
steps to apply the method, as follows: Generate a non-uniform grid, build the space
discretization, approximate of derivatives and use the Crank-Nicolson scheme as a
solver.
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Artificial Neural Network

5.1 Defining Neural Networks

Neural networks are machine learning models inspired by the biological layout of
animal and more specifically human brains. They contain many connected units,
which mimic the way neurons are laid out in the brain and data is fed through units.
Each unit performs a task on the data, for example it could round a number, decide
if a result is positive or negative, and so on. This is a graphical representation of
what a single unit neuron:

w0

Bias weightxj,0

Bias attributes
always = 1

w2

w1

w3

xj,1

xj,2

xj,3

Input
attributes

Weights

a
(i)
j

Neural Network output or output
to other neurons

Figure 5.1: Single unit neuron. Source: own elaboration

The unit has inputs on the left, weights that influence choices, a bias attribute,
which is an additional set of weights in a neural network that require no input, and
this corresponds to the output of an artificial neural network when it has zero inputs.
Bias represents an extra neuron included with each pre-output layer and stores the
value of “1”, for each action. Bias units are not tied to any previous layer in the
network, so they don’t represent any form of activity, but are treated the same as
any other weight. Bias is a fundamental aspect because without a bias node, no
layer would be able to produce an output for the next layer that differs from 0 if
the feature values were 0.
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This is a basic representation of a 3-layer neural network with two inputs, two
hidden layers of 3 neurons each and one output layer with 2 neurons.

Figure 5.2: Graph of a 3-layer neural network.
Source: own elaboration

Notice that when we say N-layer neural network, we do not count the input layer.
Therefore, a single-layer neural network describes a network with no hidden layers
(input directly mapped to output). In that sense, you can sometimes hear people
say that logistic regression is simply a special case of single-layer Neural Networks.
You may also hear these networks interchangeably referred to as “Artificial Neural
Networks” (ANN) or “Multi-Layer Perceptrons” (MLP). Many people do not like
the analogies between Neural Networks and real brains and prefer to refer to neurons
as units.

Input Layer

The input layer of a neural network
is composed of artificial input neurons,
and brings the initial data into the sys-
tem for further processing by subsequent
layers of artificial neurons, each input unit
deals with a different attribute. The in-
put layer is the very beginning of the
workflow for the artificial neural net-
work.

Output Layer

The output layer is the final layer of the
network and is responsible for providing
the answer to a question. Usually is taken
to represent the class scores (e.g. in clas-
sification), which are arbitrary real-valued
numbers, or some kind of real-valued target
(e.g. in regression), often, there are multi-
ple output units, which require some sort
of transformation before giving an answer.
For example, Softmax functions (a common occurrence in the last layer of neural
networks) normalizes data before providing an answer.

Finally, hidden layers are any layer between the input and output layers.
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So, to continue, we define a notation from (Shuaiqiang Liu and Bohte, 2019) article.
A Feedforward Neural Network is a set of many layers of neurons connected together.
Then it takes in an input, that input “trickles” through the network and then the
neural network returns an output vector.
More formally, call zlj the activation of the jth neuron in the l-th layer, where z0

j is
the jth element in the input vector. Then we can relate consecutive layers via the
following relation:

z
(l)
j = φ(l)

(∑
k

w
(l)
jk · z

(l−1)
k + b

(l)
j

)
where
φ(·) is the activation function,

w
(l)
jk is the weight from the kth neuron in the (l− 1)-th layer to the jth neuron in the

l-th layer,
b

(l)
j is the bias of the jth neuron in the lth layer, and

z
(l−1)
j is the output value of the jth neuron in the (l − 1)-th layer.

For more concise notation we can write z(l) = φ(w(l) · z(l−1) + b(l)).

5.2 Activation Functions

In this section, we’ll discuss the common types of activation functions. In computing,
activation functions are used to determine the output based on inputs. A simple
example would be the true or false paradigm of Boolean logic.
In neural networks, perceptrons are algorithms representing a single true or false
decision, and they are known as linear classifiers forming a chain of true or false
determinations. So, Why are the activation functions needed? Well, the function
is a linear relationship, and if we only consider linear relationships, a model won’t
explore potentially better relationships. Therefore, activation functions give a model
the potential to learn complex relationships.
Every activation function (or non-linearity) takes a single number and performs a
certain fixed mathematical operation on it. There are several activation functions
you may encounter in practice:

Sigmoid Function

The sigmoid function has the mathematical
form:

φ(x) =
1

1 + e−x

This function takes a real-valued number and
“squeezes” it into range between 0 and 1. The
sigmoid function has seen frequent use histori-
cally since it has a nice interpretation as the fir-
ing rate of a neuron: from not firing at all (0) to

fully-saturated firing at an assumed maximum frequency (1).
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Tanh Function The tanh squeezes a real-valued number to
the range [−1, 1]. Like the sigmoid neuron, its
activations saturate, but unlike the sigmoid neu-
ron its output is zero-centered. Therefore, in
practice the tanh non-linearity is always pre-
ferred to the sigmoid non-linearity. It is impor-
tant to note that the tanh neuron is simply a
scaled sigmoid neuron, in particular the follow-
ing holds: tanh(x) = 2φ(2x)− 1

ReLU Function

Rectified Linear Unit, or ReLU, is a popular
activation function. It computes the function
f(x) = max(0, x). In other words, the activa-
tion is simply zero when x < 0 and then linear
with slope 1 when x > 0.
The fact that ReLU is effectively a function that
is zero for negative inputs and identity for pos-
itive inputs means that it is easy to have zeros
as outputs and this leads to dead neurons. How-
ever, dead neurons may sound bad, therefore, we
simply say that ReLU does a similar job of what
an L1 regularization would do which would bring
some weights to zero.

L1 regularization is also referred as L1 norm. In L1 norm we shrink the parameters
to zero, when input features have weights close to zero, which is useful to feature
selection and helps to solve over fitting problem in machine learning.

5.3 Cost Functions for Neural Networks

In this section we discus how cost functions are used to train neural networks. In
neural network design, a cost function is a measure of “how good” a neural network
did with respect to it’s given training sample and the expected output. Simply put,
answers the question: How well a network performed in its decision process? It is a
way of incentivizing a neural network to make better and ultimately the correct de-
cisions. The term correct is entirely subjective, because in the real world, decisions
are not always based on absolute input and so neural networks use cost functions.
A cost function is a single value, not a vector, because it rates how good the neural
network did as a whole.
According to the Universal Approximation Theorem (Cybenko, 1989), a single-
hidden-layer ANN with a sufficient number of neurons can approximate any contin-
uous function. The distance between two functions is measured by the norm of a
function || · ||,

D(f(x), F (x)) = ||f(x)− F (x)||,
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where f(x) is the objective function, and F (x) is the neural network approximated
function.
Within supervised learning, the loss function is equivalent to the above distance,
specifically, a cost function is of the form

J(Θ) := D(f(x), F (x|Θ))

where Θ = (W1,b1,W2,b2, . . . ,WL,bL), is the parameters vector, Wj is a weight
matrix, and bj is the bias vector in the L-th neural layer.
There are conditions for neural network cost functions: They must be able to be
written as an average taking all inputs into account and they should only depend
on the output and not any hidden activation values. We choose mean squared error
(MSE) to evaluate the averaged accuracy, MSE, calculates how much error a model
has, and is defined as:

JMSE(f(x), F (x|Θ)) =
1

N

N∑
j

(f(xj)− F (xj|Θ))2

Where N is the number of samples.

5.4 Optimization Algorithms

The training process aims to learn the optimal weights and biases in a function
y(x) = F (x|Θ) to make the loss function as small as possible. The process can be
formulated as an optimization problem,

arg min
θ
J(Θ|(x, y)), (5.1)

given the known input-output pairs (x, y) and a loss function J(Θ).
Several back-propagation gradient descent methods have been successfully applied
to solve equation (5.1), for instance, Stochastic Gradient Descent (SGD) and its
variants Adam and RMSprop. These optimization algorithms start with initial
values and move in the direction in which the loss function decreases. The formula
for updating the parameters reads,

{ W←W− η(i) ∂J
∂W

,
b← b− η(i)∂J

∂b
,

i = 0, 1, 2, . . . ,

where η is a learning rate, which may vary during the iterations. The learning rate
plays an important role during the training, as a “large” learning rate value causes
the ANN’s convergence to oscillate, where as a small one results in ANNs learning
slowly, and even getting trapped in local optimal regions.
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5.5 Hyper-Parameters Optimization

Training deep neural networks involves numerous choices for the commonly called
“hyper-parameters”. These include the number of layers, neurons, and the specific
activation function, etc. First, determining the depth (the number of hidden layers)
and the width (the number of neurons) of the ANN is a challenging problem. Once
the MLP architecture is determined, the other hyper-parameters are optimized us-
ing automatic machine learning. There are different techniques to implement the
automatic search. In a grid search technique, all candidate parameters are systemat-
ically parameterized on a pre-defined grid, and all possible candidates are explored
in a brute-force way.
During this model selection process, over-fitting can be reduced by adopting the
k-fold cross validation. In k-fold cross validation we split our data into k different
subsets (or folds). We use k − 1 subsets to train our data and leave the last subset
(or the last fold) as test data. We then average the model against each of the folds
and then finalize our model. After that we test it against the test set.
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Data

The option prices dataset used in this thesis consists of a call European style option
obtained by a data-driven approach. Theoretically, an arbitrary number of samples
can be generated since the mathematical model is known, but the quality of the
data has an important role in the training of the model and, therefore, the way of
generating the data has an impact on the performance of the resulting model. A
sampling technique with good space-filling properties should be preferable, so in this
thesis Latin hypercube sampling (LHS) is used, in order to generate enough samples
of the set of parameters involved in the Heston model, the reason for using LHS is
that this technique is able to generate random samples of the parameter values
from a multidimensional distribution, which results in a better representation of
the parameter space. When sampling across the entire range, each variable has the
opportunity to show up as important, if it indeed is important. If an input variable
is not important, then the method of sampling is of little or no concern. When
the sample data set for the input parameters is available, we select the appropriate
numerical methods to generate the training results. For the Heston model, prices
are calculated by applying the Fourier-based approach (Lewis, 2001), knowing the
characteristic function of the stochastic processes that govern the evolution of the
underlying, and by applying FDM with a non-uniform grid and using the Crank-
Nicolson scheme.
In table 6.1, we list the range of the six input parameters of the Heston model
(r, κ, θ, σ, ρ, ν0) as well as the two option contract-related parameters (τ,m), here m
represents moneyness, and we take a fixed strike price, K = 1. We generate around
one million data points through Latin hypercube sampling, to obtain the training
dataset for the call price with Fourier-based approach, and around five thousand
when applying the FDM, the latter because one of the advantages of the FDM is
that the two-dimensional grid for (S, ν) is of size N = (NS + 1)(NV + 1), at each
tn there are N possible values for V n

i,j, as indicated in figure 4.2. Additionally, it
is guaranteed that the V n

i,j values obtained correspond to the values of moneyness
and initial variance that belong to the respective ranges shown in table 6.1, that
is, the results obtained by finite differences were filtered so that the parameters are
within the defined range. In this case, we have taken NS = 50 and NV = 25, so
we have 1, 326 option prices and to keep the moneyness and the initial variance in
the range defined in table 6.1 we have filtered the output prices following the rule:
0.6 < S0 < 1.4 and 0.05 < ν0 < 0.5. After making the filter, we obtain around
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200 values, for this reason we execute the FDM 5, 000 times to obtain a data set of
around one million data points.
Once Heston prices are determined, the entire dataset is randomly divided into two
groups, 80% will be training and 20% the test set.

ANN Parameters Range Method

Moneyness, m = S0/K (0.6, 1.4) LHS
Time to maturity, τ (0.1, 1.4) (year) LHS
Risk free rate, r (0.0%, 10%) LHS

Input Correlation, ρ (−0.95, 0.0) LHS
Reversion speed, κ (0.0, 2.0) LHS
Long average variance, θ (0.0, 0.5) LHS
Volatility of volatility, σ (0.0, 0.5) LHS
Initial variance, ν0 (0.05, 0.5) LHS

Output European call price, V (0, 0.66)
Fourier
Method

Table 6.1: The Heston parameter ranges for training the ANN.

The following table show the data distribution from applying the two approaches.

Moneyness

distribution

Initial variance

distribution

Call value

distribution

Fourier-based

approach
FDM

Fourier-based

approach
FDM

Fourier-based

approach
FDM

mean 1.000012 0.9961206 0.275007 0.2009332 0.2072096 0.1863310

std 0.230935 0.2054110 0.129901 0.1209586 0.1518449 0.1138063

min 0.600000 0.6000769 0.050000 0.0500433 8.882e-16 1.363e-10

25% 0.800019 0.8386924 0.162511 0.1042255 0.07264893 0.0684755

50% 1.000013 1.009769 0.275007 0.1814014 0.1820689 0.1631307

75% 1.200006 1.153146 0.387503 0.3153996 0.3281735 0.2843789

max 1.400000 1.399923 0.500000 0.4999567 0.6627153 0.6740285

Table 6.2: Data distribution of moneyness, the initial variance and the call value.

The above table show only the distribution of moneyness, the initial variance and
the call vale, the values on the left correspond to the call value obtained by applying
the Fourier-based approach and the values on the right correspond to the call value
obtained using FDM, it is seen the distribution is similar for each variable, although
the values obtained by FDM are slightly lower than the values obtained by Fourier-
based approach. The other distribution parameters are not shown, because the
respective distribution is very similar. The latter because all the parameters of the
Fourier-based approach are obtained through LHS and not all FDM parameters are
obtained through LHS, but the stock price and the initial variance are obtained from
the discretization in the construction of the non-uniform grid.
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The following figures show the distribution of call values for the out-the-money
(OTM), near-the-money (NTM) and in-the-money (ITM) call option observations,
the moneyness criterion as follows: (S/K) < 0.97, 0.97 ≤ (S/K) ≤ 1.05 and
(S/K) > 1.05, respectively, values m = 0.97 and m = 1.05 were chosen as boundary
values for the subset division, this is done in the same way as in the (Ramazan Gen-
cay and Kukolj, 2008) article.

(a) Distribution of call values by moneyness
Fourier-based approach

(b) Distribution of call values by moneyness
FDM

The distribution is similar for the call values in subfigures (a) and (b), although
the number of observations for ITM values, obtained by FDM are slightly less than
the values obtained by the Fourier based approach. The following table shows the
percentage of participation of moneyness for each data set.

Moneyness

Fourier-based

approach
FDM

No % No %
OTM 462,468 46.25% 488,503 45.43%

ITM 437,500 43.75% 441,672 41.08%

NTM 100,000 10.00% 145,080 13.49%

Total 999,968 100% 1,075,255 100%

In the following figures, the ramp functional form which is typical for call options is
shown in the data structure. Moreover, the subfigures also depict the maturity value
of the options as each individual colour distinguish the different time to maturity
(in the following figures denoted as T ).
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In the above figure, the subfigures (a), (b) show the data for the call option prices
which have strike price 1. Figure (a) corresponds to the call price options generated
with Fourier method and figure (b) corresponds to call price option generated with
FDM, the values T = 0.36, T = 0.75 and T = 1.075 were chosen as boundary values
for the subset division of the options according to the time to maturity τ (in figures
denoted T ).
The difference between the distributions may be due to the fact that the parameters
for the Fourier-based approach are obtained 100% with LHS and the parameters of
finite difference are obtained with a combination of LHS and the parameters dis-
cretized in the grid.
It can be noticed, here the moneyness m = (S/K) matches with S.
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Empirical Analysis

7.1 Training Neural Networks

ANNs generally constitute three levels of components, i.e. neurons, layers and the
architecture. The architecture is determined by a combination of different layers,
that are made up of numerous artificial neurons, by connecting the neurons of adja-
cent layers, output signals of a previous layer enter a next layer as input signal. By
stacking layers on top of each other, signals travel from the input layer through the
hidden layers to the output layer potentially through cyclic or recurrent connections,
and the ANN builds a mapping among input-output pairs.
We experimentally find that a MLP architecture with four hidden layers has an
optimal capacity of approximating option pricing formulas of our current interest.
Built on a four hidden layer architecture, the other hyper-parameters are optimized
as follows (Algorithm 1)

Algorithm 1 k-fold cross validation
- Split the training data set into k different subsets,
- Select one set as the validation data set,
- Train the model on the remaining k-1 subsets,
- Calculate the metric by evaluating the trained model on the validation part,
- Continue the above steps by exploring all subsets,
- Calculate the final metric which is averaged over k cases,
- Explore the next set of hyper-parameters,
- Rank the candidates according to their averaged metric.

There are two stages to complete the hyper-parameter optimization. In the first
stage, we use a random search combined with a 3-fold cross validation to find the
initial hyper-parameter configurations for the neural network. As shown in Table
7.1, each model is trained following (Shuaiqiang Liu and Bohte, 2019), with 200
epochs using MSE as the loss metric. An epoch is the moment when the model
has processed the whole training data set. It is found that the prediction accuracy
increases with the training data set size growing (more related details will be dis-
cussed below). Therefore, the random search is implemented on a small data set
(50,000 samples were selected by simple random sampling), and then the selected
ANN is trained in larger data sets in the application.

48



Parameters Options or Range
Activation ReLU, Sigmoid
Neurons [200,700]
Initialization uniform, Glorot uniform
Optimizer SGD, Adam
Batch size [256, 3000]

Table 7.1: The setting of random search for hyper-parameters optimization.

Parameters Options
Hidden layers 4
Activation ReLU
Neurons 700-350-233-175
Initialization Glorot uniform
Optimizer Adam
Batch size 256

Table 7.2: The selected model after the random search.

In the second stage, we tried to train the model with a standardized data set,
because it is almost always a good practice to standardize the data when we com-
pare measurements that have different units.
Before modeling it using a neural network model, we test the model’s performance
by increasing the size of the data set of training.

We use scikit-learn’s Pipeline framework, which is a procedure that allows perform-
ing a series of different transformations on a dataset before modeling, to perform the
standardization during the model evaluation process, with 5-fold of cross validation
and using 50, 000 samples selected by simple random sampling of the train set. The
table 7.3 shows the results for each fold and the average performance.

Dataset MSE (5-Fold) Mean (MSE) std (MSE)

No standardized dataset
1.9180e-05, 2.3101e-05,
2.9004e-05, 4.4750e-04,
2.4739e-05

1.0871e-04 1.6943e-04

Standardized dataset
1.9180e-05, 2.3101e-05,
2.9004e-05, 4.4750e-04,
2.4739e-05

3.7171e-05 1.3813e-05

Table 7.3

Running the neural network with a standardized data set provides improved perfor-
mance over the baseline model without standardized data, which reduces the error.

In order to investigate the relation between the prediction accuracy and the size of
the training set, we increase the number of training samples from 1/8 to 16 times
the baseline set, as shown in Table 7.4.
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Case 1 2 3 4 5 6 7 8
Training size (×25.000) 1/8 1/4 1/2 1 2 4 8 16

Table 7.4: The different sizes of training data set when training the ANN.

Meanwhile, the test data is kept unchanged. The example here is learning the
Heston call value by applying the Fourier-based approach. We first train the ANN
on each data set separately using an the architecture described in Table 7.2., and
repeat the training stage for each case 3 times to obtain the accuracy metric (MSE)
as an average of the performance of the three models. As shown in Figure 7.1, with
an increasing data size, the prediction accuracy increases and the gap between the
MSE obtained in the training and test set decreases. The training and validation
losses remain close, which indicates that there is no over-fitting.

Figure 7.1: R2 and MSE vs. size of the training set. (R2 on test set). Source: own
elaboration

7.2 Numerical Results

We show the performance of the ANNs for solving the financial models, based on
the following accuracy metrics (which forms the basis for the training),

MSE =
1

N

N∑
i=1

(yi − ŷi)2,

where yi is the actual value and ŷi is the ANN predicted value. For completeness,
however, we also report the other well-known metrics,

MAE =
1

N

N∑
i=1

|yi − ŷi|,

MAPE =
1

N

N∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣
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The MSE is used as the training metric to update the weights, and all above metrics
are employed to evaluate the selected ANN.
The following tables show the ANN performance for two approaches, both Fourier
base approach and FDM ANN solver has been well trained, avoiding over-fitting
and approximating the prices accurately.

Fourier - based approach MSE MAE MAPE R2

Training 1.4178e-07 9.30e-05 8.41e-04 0.99999858
Testing 1.4495e-07 9.39e-05 6.46e-04 0.99999855

Table 7.5: The trained Fourier - based approach - ANN performance.

Finite Difference Method MSE MAE MAPE R2

Training 9.2651e-07 2.05e-04 1.70e-03 0.99999073
Testing 1.0082e-06 2.09e-04 1.68-03 0.99998993

Table 7.6: The trained FDM - ANN performance.

In order to demonstrate the accuracy of the prediction by our choices of architecture,
we represent the prediction measures in the following figures. Both figures show that
the neural network is very successful in learning the correct functional form and that
its expected price almost coincides with the actual price obtained by applying the
respective scheme to generate the data set. In both figures, four subfigures are
shown that show the prediction of the value of a call option and the histogram of
the difference between the actual and expected price, both the train and test set.
Figure 7.2 shows both the train and test sample performance of the ANN trained in
the data set generated by Fourier-based scheme. The difference between the actual
and expected price distribution shows a small deviations of the actual prices, where
the maximum deviation is around 7 × 10−3, and most of values of call option are
equal their actual values.
Figure 7.3 shows both the train and test sample performance of the ANN trained
in the data set generated by FDM. The difference between the actual and expected
price distribution approximately follows a normal distribution, and most of values
of call option are equal their actual values.
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(a) Prediction precision - Train set (b) Prediction precision - Test set

(c) Histogram of difference - Train set (d) Histogram of difference - Test set

Figure 7.2: Call options price prediction for network with data generated by Fourier -
based approach

(a) Prediction precision - Train set (b) Prediction precision - Test set

(c) Histogram of difference - Train set (d) Histogram of difference - Test set

Figure 7.3: Call options price prediction for network with data generated by Finite Differ-
ence Method
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Conclusion

• In this thesis we have proposed an Artificial Neural Network(ANN) approach
to calculate the price of a European Call Option with the Heston stochastic
volatility model, in order to accelerate the corresponding numerical methods
and show the ability of Artificial Neural Network to “learn” the model from
the dataset. We test the ANN approach on two different solvers, including
valuation using the Fourier-based approach and using finite difference methods.
Our numerical results show that the ANN can compute option prices efficiently
and accurately in a robust way.

• One of the advantages of the FDM is that the two-dimensional grid for (S, ν)
is of size N = (NS +1)(NV +1), at each tn there are N possible values for V n

i,j,
this leads to a lower computational cost since in this thesis the finite difference
method algorithm had to be run 5, 000 times compared to one million for the
Fourier-based approach algorithm.

• We have shown that the sampling technique plays an important role in the
implementation of an ANN and has an impact on the performance of the ANN
model. In this thesis we used LHS as a sampling technique, and it was shown
that the network performance was better with the data obtained by Fourier-
based approach than with the data obtained by FDM (tables 7.5 and 7.6), due
to the fact that the parameters for the Fourier-based approach were obtained
with LHS only, and the parameters of finite difference are obtained with a
combination of LHS and the discretization on the non-uniform grid.

• We have shown that the size of a training set has an impact on the performance
of the ANN model. With an increasing data size, the prediction accuracy
increases and the gap between the MSE obtained in the training and test set
decreases.
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8.1 Future Research

Although we focus on European call options in this work, it should be possible to
extend the approach to pricing more complex options, like American, Bermuda or
exotic options.
Additionally, in a future work might change the configuration of the Neural Network
(i.e the number of hidden layers and the number of neurons in the hidden layer
and also the type of transfer function for a feed-forward NN, so that error become
minimum. Also the model accuracy can be further improved, for example, by using
deeper neural networks, more complex NN architectures.
Regarding to the use of a non-uniform grid in the FDM, the possibility of better
adapting the combination of LHS and the discretization of parameters included
in the non-uniform grid could be evaluated to obtain a better distribution of the
parameters and, and therefore obtain better performance of the ANN.
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Appendix A: Python scripts FDM

make grid: Generate non-uniform grid.

1 import matplotlib.pyplot as plt

2 from math import sinh , asinh

3 import numpy as np

4
5
6 def g(xi , k, c): return k + c * sinh(xi)

7
8
9 def h(xi , d): return d * sinh(xi)

10
11
12 def make_grid(ns , s_max , s0 , k, c, nv , v_max , v0 , d):

13 delta_zeta_i = (1.0 / ns) * (asinh(( s_max - k) / c) - asinh

(-k / c))

14 zeta_s = [asinh(-k / c) + i * delta_zeta_i for i in range(ns

+ 1)]

15 vec_s = [g(zeta_s[i], k, c) for i in range(ns + 1)]

16 vec_s.append(s0)

17 vec_s.sort()

18 vec_s.pop(-1)

19 delta_s = [vec_s[i + 1] - vec_s[i] for i in range(ns)]

20
21 delta_eta = (1.0 / nv) * asinh(v_max / d)

22 eta_v = [i * delta_eta for i in range(nv + 1)]

23 vec_v = [h(eta_v[i], d) for i in range(nv + 1)]

24 vec_v.append(v0)

25 vec_v.sort()

26 vec_v.pop(-1)

27 delta_v = [vec_v[i + 1] - vec_v[i] for i in range(nv)]

28
29 x, y = np.meshgrid(vec_s , vec_v)

30
31 # grid checking

32 plt.plot(x, y, ’.’, color=’blue’)

33 plt.show()

34
35 return vec_s , delta_s , vec_v , delta_v , x, y
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Approximation to derivatives

1 # Central approximation of derivatives , inner points

2 def central_coefficients1(i, index , delta): # V’

3 if index == -1:

4 return -delta[i + 1] / (delta[i] * (delta[i] + delta[i +

1]))

5 elif index == 0:

6 return (delta[i + 1] - delta[i]) / (delta[i] * delta[i +

1])

7 elif index == 1:

8 return delta[i] / (delta[i + 1] * (delta[i] + delta[i +

1]))

9
10
11 def central_coefficients2(i, index , delta): # V’’

12 if index == -1:

13 return 2 / (delta[i] * (delta[i] + delta[i + 1]))

14 elif index == 0:

15 return -2 / (delta[i] * delta[i + 1])

16 elif index == 1:

17 return 2 / (delta[i + 1] * (delta[i] + delta[i + 1]))

18
19
20 # Left hand side approximation of derivatives , right border

21 def backward_coefficients(i, index , delta): # V’

22 if index == -2:

23 return delta[i] / (delta[i - 1] * (delta[i] + delta[i -

1]))

24 elif index == -1:

25 return (-delta[i] - delta[i - 1]) / (delta[i] * delta[i

- 1])

26 elif index == 0:

27 return (2 * delta[i] + delta[i - 1]) / (delta[i] * (

delta[i] + delta[i - 1]))

28
29
30 # Right hand side approximation of derivatives , left border

31 def forward_coefficients(i, index , delta): # V’

32 if index == 0:

33 return (-2 * delta[i + 1] - delta[i + 2]) / (delta[i +

1] * (delta[i + 1] + delta[i + 2]))

34 elif index == 1:

35 return (delta[i + 1] + delta[i + 2]) / (delta[i + 1] *

delta[i + 2])

36 elif index == 2:

37 return -delta[i + 1] / (delta[i + 2] * (delta[i + 1] +

delta[i + 2]))
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Make Matrices

1 def make_matrices(ns , nv , rho , sigma , r_d , kappa , eta , vec_s ,

vec_v , delta_s , delta_v):

2 n = (1 + ns)*(1 + nv)

3 a_0 , a_1 , a_2 = np.zeros((n, n)), np.zeros((n, n)), np.

zeros ((n, n))

4
5 # Definition of a_0

6 for j in range(1, nv):

7 for i in range(1, ns):

8 c = rho * sigma * vec_s[i] * vec_v[j]

9 for k in [-1, 0, 1]:

10 for l in [-1, 0, 1]:

11 a_0[i + j * (ns + 1), (i + k) + (j + l) * (

ns + 1)] += c * central_coefficients1(i -

1, k, delta_s)\

12 * central_coefficients1(j - 1, l,

delta_v)

13
14 a_0 = csc_matrix(a_0)

15
16 # Definition of a_1

17 for j in range(nv + 1):

18 for i in range(1, ns):

19 b = r_d * vec_s[i]

20 c = 0.5 * vec_s[i] ** 2 * vec_v[j]

21 for k in [-1, 0, 1]:

22 a_1[i + j * (ns + 1), (i + k) + j * (ns + 1)] +=

(c * central_coefficients2(i - 1, k, delta_s

) + b * central_coefficients1(i - 1, k,

delta_s))

23 a_1[i + j * (ns + 1), i + j * (ns + 1)] += - 0.5 *

r_d

24 a_1[ns + j * (ns + 1), ns + j * (ns + 1)] += - 0.5 * r_d

25
26 a_1 = csc_matrix(a_1)

27
28 # Definition of a_2

29 for j in range(nv - 1):

30 for i in range(ns + 1):

31 d = kappa * (eta - vec_v[j])

32 e = 0.5 * sigma ** 2 * vec_v[j]

33 if vec_v[j] > 1.:

34 for k in [-2, -1, 0]:

35 a_2[i + (j + 1) * (ns + 1), i + (ns + 1) * (

j + 1 + k)] +=\

36 d * backward_coefficients(j, k, delta_v)

37 for k in [-1, 0, 1]:

38 a_2[i + (j + 1) * (ns + 1), i + (ns + 1) * (

j + 1 + k)] += \

39 e * central_coefficients2(j - 1, k,

delta_v)

40 if j == 0:

41 for k in [0, 1, 2]:

42 a_2[i, i + (ns + 1) * k] += d *
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forward_coefficients(j, k, delta_v)

43 else:

44 for k in [-1, 0, 1]:

45 a_2[i + j * (ns + 1), i + (ns + 1) * (j + k)

] += \

46 (d * central_coefficients1(j - 1, k,

delta_v) +

47 e * central_coefficients2(j - 1, k,

delta_v))

48 a_2[i + j * (ns + 1), i + j * (ns + 1)] += - 0.5 *

r_d

49
50 a_2 = csc_matrix(a_2)

51
52 a = a_0 + a_1 + a_2

53 a = csc_matrix(a)

54
55 return a

Make boundaries

1 def make_boundaries(ns , nv , r_d , vec_s):

2 n = (1 + ns)*(1 + nv)

3 b_0 , b_1 , b_2 = [0.] * n, [0.] * n, [0.] * n

4
5 # Boundary when s = s_max

6 for j in range(nv + 1):

7 b_1[ns * (j + 1)] = r_d * vec_s[-1]

8
9 # Boundary when v = v_max

10 for i in range(1, ns + 1):

11 b_2[n - ns - 1 + i] = -0.5 * r_d * vec_s[i]

12
13 b_0 = np.array(b_0)

14 b_1 = np.array(b_1)

15 b_2 = np.array(b_2)

16
17 b = b_0 + b_1 + b_2

18
19 return b

Crank-Nicolson Scheme

1 def f(omega , l, b):

2 return l * omega + b

3
4
5 def cn_scheme(n, n_tm , u_0 , delta_t , l, b):

6 u = u_0

7 identity = np.identity(n)

8 lhs = csc_matrix(identity - 0.5 * delta_t * l)

9 inv_lhs = inv(lhs)

10 for i in range(1, n_tm + 1):

11 u = inv_lhs * (u + 0.5 * delta_t * (f(u, l, b) + b))

12
13 return u
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FDM

1 def fdm(moneyness , time_to_maturity , risk_free_rate ,

reversion_speed ,

2 long_average_variance , vol_of_vol , correlation ,

initial_variance):

3 # parameters

4 K = 1

5 S_0 = moneyness

6 S = 8 * K

7 V_0 = initial_variance

8 V = 5.

9 T = time_to_maturity

10
11 r_d = risk_free_rate # domestic interest rate

12 rho = correlation

13 sigma = vol_of_vol

14 kappa = reversion_speed

15 eta = long_average_variance

16
17 # grid [0, S] x [0, V]

18 ns = 50 # S

19 nv = 25 # V

20 n = (ns + 1) * (nv + 1) # matrix A and vector U size

21 c = K / 5

22 d = V / 500

23
24 # line [0, T]

25 N = 20

26 delta_t = T / N

27
28 # model setup

29 Vec_s , Delta_s , Vec_v , Delta_v , X, Y = make_grid(ns , S, S_0 ,

K, c, nv , V, V_0 , d)

30
31 A = make_matrices(ns, nv, rho , sigma , r_d , kappa , eta , Vec_s

, Vec_v , Delta_s , Delta_v)

32 B = make_boundaries(ns, nv, r_d , N, Vec_s , delta_t)

33
34 # pricing

35
36 UU_0 = np.array ([[ max(Vec_s[i] - K, 0) for i in range(ns +

1)] for _ in range(nv + 1)])

37 U_0 = UU_0.flatten ()

38
39 price_cn = cn_scheme(n, N, U_0 , delta_t , A, B)

40 price_cn = np.reshape(price_cn , (nv + 1, ns + 1))

41
42 return Vec_v , Vec_s , price_cn
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Appendix B: Python scripts ANN

Baseline Neural Network Model

1 glorot_uniform = keras.initializers.glorot_uniform(seed=None)

2
3
4 def build_model(inp_size , hidden_layers =1, nodes =50):

5
6 model = Sequential ()

7 model.add(Dense(nodes , input_dim=inp_size ,

8 kernel_initializer=glorot_uniform ,

activation=’relu’))

9 if hidden_layers > 1:

10 for i in range(hidden_layers - 1):

11 nodes_ = int(nodes /(i+2))

12 # nodes_ = int(nodes - 100 * (i + 1))

13 model.add(Dense(nodes_ , kernel_initializer=

glorot_uniform , activation=’relu’))

14
15 model.add(Dense(1, kernel_initializer=’normal ’))

16
17 model.compile(loss=’mean_squared_error ’, optimizer=’adam’,

metrics =[’mean_squared_error ’])

18 return model

Standardized datased

1 def get_dataset(trainX , trainy , testX , testy):

2 # fit scaler

3 SScaler = StandardScaler ()

4 SScaler.fit(trainX)

5 # transform training dataset

6 trainX = SScaler.transform(trainX)

7 # transform test dataset

8 testX = SScaler.transform(testX)

9 SScaler.fit(trainy)

10 # transform training dataset

11 trainy = SScaler.transform(trainy)

12 # transform test dataset

13 testy = SScaler.transform(testy)

14 return trainX , trainy , testX , testy
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Train neural network

1 # Split into training and test set

2 X = df.drop(columns =[’call_value ’])

3 Y = df.call_value.ravel ()

4
5 # Split into training and test set

6 X_train , X_test , y_train , y_test =

7 train_test_split(X, Y, test_size =0.20, random_state =123)

8
9 # Standardized data

10 trainX , trainY , testX , testy =

11 get_dataset(X_train , pd.DataFrame(y_train), X_test ,

12 pd.DataFrame(y_test))

13
14 # create model

15 def model1 ():

16 return build_model (8, hidden_layers =4, nodes =700)

17
18 model = model1 ()

19
20 # Fit the model

21 model.fit(trainX , trainY , epochs =200, batch_size =256, verbose =1)
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