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Introduction

There has been recent considerable interest in the development of artificial neural
networks (ANNSs) for solving a variety of problems, since the universal approximation
theorem states that a feedback network can approximate almost any known function.
This thesis examines the application of neural networks in the context of pricing
options.

We test this approach on two different types of solvers for the valuation of a European
call option with the Heston stochastic volatility model (1993), including valuation
using the Fourier-based approach (Lewis, 2001) and using finite difference methods.
This thesis is divided into three parts. The first part is concerned with the derivation
of the Heston model. The second part covers a number of topics for the option
pricing through finite difference methods (FDM). The third part finally covers the
major aspects related to train an optimized ANN on a data set generated with a
data-driven approach.

1.1 Research Problem

The traditional approach to the pricing of European-style options on an underly-
ing asset assumes that the asset price follows a given exogenous process and prices
the options using an arbitrage-free hedging argument. The most relevant example is
presented in the article of Black-Scholes (1973) (BSM) on the valuation of European-
style options, this approach provides a closed-form valuation formula that can be
used to efficiently price plain vanilla options. However, this method is based on
several assumptions that are not representative of the real world. In particular, the
BSM model assumes that volatility is deterministic and remains constant through
the option’s life, which clearly contradicts the behavior observed in financial mar-
kets. While the BSM framework can be adapted to obtain reasonable prices for plain
vanilla options, the constant volatility assumption may lead to significant mispric-
ings when used to evaluate options with non-conventional or exotic features. During
the last decades several alternatives have been proposed to improve volatility mod-
eling in the context of derivatives pricing. Ome of such approaches is to model
volatility as a stochastic quantity. By introducing uncertainty in the behavior of
volatility, the evolution of financial assets can be estimated more realistically. One
of the most widely used stochastic volatility models was proposed by Heston in 1993.
The Heston model introduces a dynamic for the underlying asset which can take into
account the asymmetry and excess kurtosis that are typically observed in financial
assets returns, this model is based on a two-dimensional stochastic diffusion process
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with two Brownian movements with correlation p, which poses the problem of solv-
ing a system of two stochastic equations under the neutral risk measure, one of these
equations describes the dynamics of the underlying price and the other its variance,
since the valuation model is two-dimensional, by adding stochastic volatility, it is
not possible to have an analytical solution for the valuation of options with the Hes-
ton model, which is why different numerical methods have therefore been developed
to solve the corresponding option pricing partial differential equation problems, e.g.
finite difference methods, Fourier approaches and Monte Carlo simulation.

In the context of model calibration, thousands of option prices need to be deter-
mined in order to fit the asset parameters. However, due to the requirement of a
highly efficient computation, certain high-quality asset pricing valuation models are
discarded. Efficient numerical computation is also increasingly important in finan-
cial risk management, especially when we deal with real-time risk management (e.g.,
high frequency trading) or counterparty credit risk issues, where a trade-off between
efficiency and accuracy seems often inevitable.

Artificial neural networks (ANNs) with multiple hidden layers have become success-
ful machine learning methods to extract features and detect patterns from a large
data set, we aim to take advantage of a classical ANN to speed up option valuation
by learning the results of an option pricing method. From a computational point of
view, the ANN does not suffer much from the so-called curse of dimensionality of
classical numerical methods for solving PDEs.

Given the application of neural networks in finance, and the advantages already
described, in this thesis we test two different types of solvers for the valuation of
a European call option with the Heston stochastic volatility model, including val-
uation using the Fourier-based approach (Lewis, 2001), knowing the characteristic
function of the stochastic process; and on the other hand, using finite difference
methods, which are capable of solving problems in which the value of the derivative
satisfies an PDE with a temporal variable and a few spatial variables (underlying
assets).

The FDM are numerical methods for solving differential equations by approximating
them with difference equations, in which finite differences approximate the deriva-
tives. This method is used to solve the PDE associated with the stochastic volatility
model, since it is easy to implement, flexible and offers ways to improve the accuracy
of the results and reduce the computational cost, using an implicit type of alterna-
tive management (ADI) scheme.

Once Heston prices are determined, through the Fourier-based approach and the
application of FDM, we train ANN and test its performance for each data set.



Theory

This chapter discusses key ideas, explanations, concepts, models and theories, used
as the basis for this research. Most of these concepts were taken from (Eric Chin
and Olafsson, 2014).

2.1 Taylor Series
The most used tool for discretizing is the approximation by Taylor series. In this

work we use this theory for numerical approximations in Fourier integration and
finite differences, that is why we give an brief description of this tool next.

If f(z) is an analytic function of x, then for small h

I 1 1 1 "
f(xo+h) = f(zo) + [ (zo)h + gf (o) + gf (20)P® + -
If f(x,y) is an analytic function of x and y, then for small Az, Ay:

f(xo + Az, yo + Ay) = f(xo,y0) + _af(ﬂco,yo)Ax n af(xoyyo)Ay

Oz dy
% [—an éfcoz’ W) (g + 2—82“’;%’;0) Axiy + 2 @0 00) g”y - %) (Ay)?
% {—8?7 ((92%’ %) (A + 3—3318‘;23;0) (Az)2Ay
+ 3—3352?3;23’0)Ax(Ay)2 + —83féz(]3’ ) (Agy?| + -

2.2 1Itd’s formula

In mathematics, Itd’s formula (or lemma) is used in stochastic calculus to find the
differential of a function of a particular type of stochastic process. In essence, it
is the stochastic calculus counterpart of the chain rule in ordinary calculus via a
Taylor series expansion.

2.2.1 Theorem (one-dimensional It6’s formula)

Let {W, : t > 0} be a standard Wiener process on the probability space (2, .7, P)
and let %;, t > 0 be the associated filtration. Consider a stochastic process X;
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satisfying the following stochastic differential equation (SDE):
dXt = M(Xta t)dt + U(Xt, t)th

or in integrated form,
t t
X, = X0+/ [L(XS,S>d$—|—/ o(Xs, s)dWy
0 0

with fot [ (X, 8)| + o (X, 8)?]ds < oc.
Then for any twice differentiable function g(X,t), the stochastic process
Y = g(Xy, t) satisfies:

dg dg 10% .
dY, = =dt + ——dX;, + ——=(d X
™t oax, “LQaXf( 2

dg dg 1%
=Y+ 9 dt + o) + =
5t +8Xt(/L +0(Uf)+26XtQ

_ [og dg 1 ,0% dg
= at+uaXt+20 oxX? dt+aaXtth

((72(]11}2>

where (dX;)? is the quadratic variation process, which is commonly simplified ac-
cording to the rule: (dW;)? = dt, (dt)* = dW,-dt = dt-dW, = 0, as above.

2.3 Ornstein - Uhlenbeck Process

The Ornstein-Uhlenbeck process is a diffusion process with applications in financial
mathematics and the physical sciences. In finance, it has appeared as a model of
the volatility of the underlying asset price process, so it is used as a starting point
for the volatility process in the Heston model, that is why we give the following
definition.

Let (£2,.#,P) be a probability space and let {W; : ¢ > 0} be a standard Wiener
process. Suppose X; follows the Ornstein-Uhlenbeck process with SDE

dX, = k(0 — X,)dt + odW,

where x, 6 and o are constants. By applying Itos’s formula to Y; = e X, and taking
integrals, we can show for t < T

T
XT = Xte_li(T—t) + 6 [1 _ G—H(T—t)} + / O.e—H(T—s)dWS
t

2.4 The Fourier transform and its inverse

There are several definitions of the Fourier transform f of a function f, the one
usually encountered in the mathematical literature and used by (Gupta, 2019) is:

Let f be a real valued function such that f(z) and f'(z) are piecewise continuous
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in every finite interval and the integral of | f(z)| exists from —oo to co. The Fourier
transform of the the function f is:

floy = [ evptayas

where i = y/—1 is the imaginary unit, w either real or complex and e™® is called

the phase factor. R
The original function f can be recovered from f via the inverse Fourier transform:

1 [ :
- we g
fla) = 5 [ Fuwpe=au
and the expression on the right-hand side is called the inverse Fourier transform of
the function f(w).
2.4.1 Fourier transform of derivative

If f is any function for which the Fourier transforms of f(z) and f'(z) exist and
f(z) = 0 as |x| — oo then:

Flwy= [ evef wyio

= —iwf(w) (2.1)

To verify equation (2.1) we using integration by parts:

u:eiwx dU:fl(l')

du = iwe™*dx v=f(x)

This yields:

}\'(w) = eiwxf(x)‘oo —w /00 e f(z)dx

—o0 oo  The first term must vanish, as we assume f is absolutely inte-
—_—— )
-0 grable on R, f(z) — 0 as |z| — oo and the complex exponen-
N tial is bounded.
— iwf(w)

Applying integration by parts once more shows that f”(w) = (—iw)2f(w), while a
repeated application shows that the Fourier transform of the derivative of order n

is (—iw)™ f(w).



Heston Model

In this chapter, we present a complete derivation of the European Call price under
the Heston model. First we present the model and obtain the various partial differ-
ential equations (PDEs) that arise in the derivation. We show that the call price in
the Heston model can be expressed as the sum of two terms that each contains an
in-the-money probability, but obtained under a separate measure. We show how to
obtain the characteristic function for the Heston model, and how to solve the dif-
ferential equation from which the characteristic function is derived. We then show
how to compute the price of a European call.

The key ideas were taken from (Rouah, 2013).

3.1 Model dynamics

The Heston model assumes that the underlying stock price, S; follows a Black-
Scholes-type stochastic process, but with a stochastic variance 1, that follows a
(Cox and Ross, 1985) process.

Hence, the Heston model is represented by the bivariate system of stochastic differ-
ential equations (SDEs)

dS; = pSydt + /v S dW7
dvy = k(0 — v)dt + o/v dWY (3.1)

where EF[dW ), dW}] = pdt.

Here P denotes the historical measure, also called the physical measure.

We will sometimes drop the time index and write S = S;, v = vy, W = W7, and
Wv = WY, for notational convenience.

The parameters of the model are:

i the drift of the process for the stock;

k > 0 the mean reversion speed for the variance;

f > 0 the mean reversion level for the variance;

o > 0 the volatility of the variance;

vp > 0 the initial (time zero) level of the variance;

p € [—1,1] the correlation between the two Brownian motions W9 and W".

It is important to note that the volatility /24 is not modeled directly in the Heston
model, but rather through the variance v;. The process for the variance arises from
the 2.3. Ornstein - Uhlenbeck for the volatility h, = /v, given by:
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Applying 2.2.1. Tto’s lemma, vy = h? follows the process v; = g(/y)

dg 10%g
dl/t 8ht dht 2 6h2 (dht)
1

= 2hydh; + 5 -2 (dhy)?
= 2hy(—Bhidt + 5dW)) + (B%h: (dt)* —2B85hy - dt - AW} +6% (dAW})?)
N~~~ N——

=0 =0 =dt
= —2Bh2dt + 26hdW) + §%dt
= (62 — 2Buy)dt + 26\/rRdW} (3.3)

Defining k = 20, 9—25, and o = 20:

dvy = (KO — kuy)dt + o /v, dW)
= k(0 — v)dt + o/ dW/)

Therefore, it can expresses dv; from equation (3.1) as (3.3).

3.2 The Heston PDE

In this section, we explain how to derive the PDE for the Heston model. The
argument is similar to the hedging argument that uses a single derivative to derive
the Black-Scholes PDE. In the Black-Scholes model, a portfolio is formed with the
underlying stock, plus a single derivative which is used to hedge the stock and
lender the portfolio riskless. In the Heston model, however, an additional derivative
is required in the portfolio, to hedge the volatility.
Hence, we form a portfolio consisting of one option V' = V(S,v,t), A; units of
the non-dividend paying stock, and A, units of another option U(S,v,t) for the
volatility hedge.
The portfolio has value

M=V +AS+ AU

where the t subscripts are omitted for convenience.
Assuming the portfolio is self-financing, the change in portfolio value is

Il = dV + AydS + AsdU (3.4)

The strategy is similar to that for the Black-Scholes case. We apply 2.2.1. Itd’s
lemma to obtain the processes for U and V', which allows us to find the process for
IT. We then find the values of A; and A, that makes the portfolio riskless, and we
use the result to derive the Heston PDE.

First apply Itd’s lemma to V (S, v, t):

oV oV oV 10%V 10%°V o0*V
dV = —dt + —d —d ——(d dv)? + dSd
V= Gpdt+ oS+ g v+ 5 aes (AS) 4 5 55 () + 5ap dSdy
Here, (dS)* = vS?dt, (dv)? = o*vdt, dSdv = opvSdt
Hence
(9V 8V 1% 1 , 02V 1 , 0°V o?V
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Applying It6’s lemma to the second derivative, U(S,v,t), produces an expression
identical to (3.5), but in terms of U. Substituting these two expressions into (3.4),
the change in portfolio value can be written as:

dll = dV + AdS + AydU

CJovo1 L8V 1, &PV %
|:§+§VS w‘f“id' VW+O-pV5858V dt

1 2 1 2 2
oU 02U , O°U 8U]dt (36)

— f— 2_ f— —
+ Ay [(% + 2VS 557 + 57 Vg +U'0VS8581/

ov ou oV oU
+ —+A2—+A1 dS+ _+A2_ dl/
ov ov

In order for the portfolio to be hedged against movements in both the stock and
volatility, the last two terms in equation (3.6) must be zero. This implies that the
hedge parameters must be

ov JoU ou oV

=5, 1T %55 o5

Substitute these values of Ay and A; into (3.6) to produce

OV 1 L,V 1, RV 02V
dH— {E—i—iub’ W—i_éa VW+OPV58S8V dt

2 2 2
oU 1 L0 1, 0°U aU]dt 57

—_— — 2_ — [
A [82& 379 55 T3 Ve TP g5,

The condition that the portfolio earn the risk-free rate r, implies that the change in

portfolio value is dII = rIldt.
Equation (3.4) thus becomes

oU oV
rS—— + AyrU)dt (3.8)

AN =7(V + Ay + AgU)dt = (rV—rSA, - 18—

Joining equations (3.7) and (3.8), drop the dt term, using the fact that Ay =

oV /U is vi
-5,/ %, and re-arrange. This yields

)% 1.,Q20%V 1 2 0%V 92V )%
[W—l—iuS W—l—ga VW—FO',OVS—] —TV—FTS%

50
pild (3.9)
ov
oU 1 20%°U 1_2 0%°U 0*U ou
[W + 505 °%ez + 50 Ve + UPVS_asau} —rU+rSgs
- ou
ov

The left-hand side of equation (3.9) does not depend on U but is a function of S, v
and ¢, only. We denote this function by f: R2 x [0,7] — R and following (Heston,
1993), specify this function as:

f(S,v,t) = —k(0 —v) + A(S, v, t)
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where the function A(S,v,t) is called market price of volatility risk and is not
uniquely determined, taking into account that Heston furthermore assumes that
the market price of volatility risk is of the form A\(S,v,t) = Av with a constant A
and (Gatheral, 2006) assumes the market price of volatility risk to be zero, so that
A(S,v,t) = 0. That characterise an incomplete market where one cannot replicate
derivatives with an portfolio only consisting of the money market account and the
underlying. However, if one accepts the prices for plain vanilla call/put options (V)
observed in the market and just wants to price other options (U), e.g. barrier options
one gets a unique solution by finding an appropriate function A which matches the
prices for V. In practise one simply sets A\(S,v,t) = 0 and calibrates the parameters
of the underlying to the observed prices for plain vanilla options, therefore we set
A(S,v,t) = 0 and the left-hand side of equation (3.9) can be written as:

[8—‘/ + %1/5’282—‘2/ + %021/%27‘2/ + oprS2LL ] —rV + rSg—‘é

ot B 9S0v
oV
v
= —k(0 —v)
Rearrange to produce the Heston PDE expressed in terms of the price S

av 1 o2V 1 0?V 0%V oV ov

— S 4 S —rV+rS— 0—v)— =0 (3.10

ot 25 55 T2 Ve TorSpgg, TV T rigg TRl g, =0 (310

The following boundary conditions on the PDE in equation (3.10) hold for a Euro-
pean call option with maturity 7" and strike K. At maturity, the call is worth its
intrinsic value

V(S,v,T) = max(0,5 — K)
When the stock price is zero, the call is worthless. As the stock price increases, delta
approaches one, and when the volatility increases, the call option becomes equal to

the stock price. This implies the following three boundary conditions:
ov
V(0,v,t) =0, ﬁ(oo,u, t)y=1, V(S,00,t)=S (3.11)

We can define the log price z = In S and express the PDE in equation (3.10) in terms
of (x,v,t) instead of (S, v, t). This simplification requires the following derivatives:
By the chain rule:
oV _ovio PV o (10V) 10V
0S  0x S’ 0Sov  ov\Soxr) Sovox
Using the product rule,
OV._ 0 (lovN __1ov 18V 19V 1OV
052  0S\Sor)  S20r S0S0xr  S2O0r  S%0x?
Substituting these expressions into the Heston PDE in (3.10) all the S terms cancel,
and we obtain the Heston PDE in terms of the log price x =In S.

ot T30 T\ T2 o T2 e T o o

oV 1 PV < 1 )av 1, 2V 02V oV

—rV+kl—-v)=—=0

(3.12)
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3.3 The European Call Price

In this section, we show that the call price in the Heston model can be expressed
in a manner which resembles the call price in the Black-Scholes model. The time -
t price of a European call on a non-dividend paying stock with spot price S;, when
the strike is K and the time to maturity is 7 = T' — ¢, is the discounted expected
value of the payoff under the risk neutral measure.

C(K)=e"E?[(S7 — K)]
=B [(Sr — K) - Lisyoxy] (3.13)
=e "B [Sr - Lispsry] — Ke TE? [1is,5 k1]
where 1 is the indicator function and Q is the risk neutral measure.
To obtain the expression of the first term in the last line of equation (3.13) we need

to change the original measure Q to another measure Q°. Consider the Radon-

Nikodym derivative
dQ  Br/B; EQ[e?7]
dQs — Sp/S,  eer

(3.14)

where B; is the money market and satisfies B; = exp ( fot rdu) =e'.

In (3.14), we have written S,e" ™ = S,e™™ = EQ[e?r], since under Q assets grow at
the risk-free rate, r. The first expectation in the third line of (3.13) can therefore
be written as

- Sr/S
e -E9[Sr - Lggrsky] = SIE? [ ;/ : 'ﬂ{ST>K}]
t

Br/B
. [Sp/8 dQ

o Q T/t
o [BT/B o d@S}

= SEY 1553
= 5,Q°(Sr > K)

The second expectation in the third line of (3.13) can be written as

E°1(s,>r3) = Q(S > K)

This implies that the European call price of equation (3.13) can be written in terms
of both measures as

C(K)=5Q%8Sr > K) - Ke " Q(Sy > K)
== Stpl — KG_TTPQ (315)

We have denoted P, = Q%(Sy > K) and P, = Q(Sy > K) where the measure Q
uses the bond B, as the numeraire, while the measure Q° uses the stock price S;.
The last line in equation (3.15) is the “Black-Scholes-like” call price formula, with
P, replacing ¢(d;) and P, replacing ¢(ds) in the Black-Scholes call price.

The quantities P, and P, each represent the probability of the call expiring in-the-
money, conditional on the value S; = e** of the stock and on the value v, of the
volatility at time t.

13



3.3.1 The PDE for probabilities in equation for European
Call Price

Using z = x; = In S,
C(K) = ezpl - KG_TTPQ (316)

Equation (3.16) expresses C(K) in terms of the in-the-money probabilities P, =
Q%(Sr > K) and P, = Q(Sy > K). Since the European Call satisfies the PDE 3.12
we can find the required derivatives of equation (3.16), substitute them into the
PDE, and express the PDE in terms of P, and P,. The derivative of C(K) with
respect to t is:

oC 8P1 _ aPQ
7 1‘_ _ rT _“ 1
5 =€ o Ke [rPQ + T ] (3.17)
with respect to x:
oC oP 0P,
—— = P+ —| - KeTT—/—= 1
or  © {1+8x} ¢ oz (3-18)
The second derivative of C'(K) with respect to x:
0*C oP oP,  0*P 02 Py
—— = | P+ — T —_— — Ke"m—— 3.19
92z~ © [1+3x}+6 {8x+8:c2] © o (3.19)
oP | 9*Py L PPy
— et [P 422t ~KemZ 2
‘ [1+ 8x+8x2 © a2
with respect to v:
oc  ,0h O
E =€ 81/ Ke 8]/ (320)
The second derivative of C'(K) with respect to v:
0*C 0* P 0Py
Ly 21
a2~ " o < o (3:21)
with respect to v and x:
0*C orP,  0*P 0Py
—em |22 _KerZ 2 22
dxdv { v * 8:1:61/} “ Owow (3:22)

As mentioned earlier, since the European call C(K) is a financial derivative, it also
satisfies the Heston PDE in (3.12).

To obtain the Heston PDE for P, and P,, Heston (1993) argues that the PDE
in (3.12) holds for any contractual features of C'(K), in particular, for any strike
price K > 0, for any value of S > 0, and for any value r > 0 of the risk-free rate.
Setting K = 0 and S = 1 in the call price in equation (3.15) produces an option
whose price is simply P;. This option will also follow the PDE in (3.12). Similarly,
setting S =0, K = 1, and r = 0 in (3.15) produces an option whose price is —P;.
Since — P, follows the PDE, so does P.
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Substituting terms in equation (3.17) to (3.22) in equation (3.12) we obtain:

()Pl _ 8P2 1 . ()Pl ()Pl _ 82P2
7_K rT P i - , L P 27 _K TT—
T <”+ 8t>+ {( (‘ )1+01—> ¢ o

1 ()Pl _ 8P2 1 2 .()“Pl _ 82]32
N [) — Ke m—= —0 X — — Ke'T—=
<7a 21/) {( ( ox ) ¢ ox :| 2 7\ ov? ¢ ov?

[ OP, 0% P, 92P )
+ opv |})J' <(l + ( ,l > — Ke”—2] - T ((TKIP] - K@fTTPQ)

ov OxOv 0xdv

()Pl _TT(?PQ o
+ k(0 —v) (f T—Ke E) =0

The brown terms do not depend on P, but they are a function of x, v and ¢, only;
and the other terms depend only on P,. The last equality is satisfied if each equation
of P, and P, is equal to zero, separately. Regroup common terms to P;, cancel e*
to obtain:

or 1 P, 9P, 1 or\ 1, 0*P
W*Q”(P1+2%+ ax2)+ (7“—5”) (Pﬁ%) 0 B2

8P1 (92P1 aPl_
+ap1/<a 8:68)—7“131—1—&(9—1/)5—0

Simplifying (3.23) becomes

O —+ —|— 1 Oh —i—lanPl +opv O°h +lopy + k(0 — V)] — O + 102V82P1 =
ot oz 2" 0x2 P gzow TP ov or
(3.24)
Similarly, regroup terms common to P,, cancel —Ke™"":
oP, 1 0°P, 1\o~ 1, 9*°P 0*P,
P — - = 2
rPy + 5 +2V6$2 Ty (’91’+ 30 Vs +Upy(9x8y (3.25)
0P,
_ P _ —
r 2+/€(9 )(91/ 0
Simplifying (3.25) becomes
OP, 1\ or, 1 &R 9? P, oR, 1, O°P
Z 2 _Z Z = .2
ot +<T 2”) r T2V g TP geay TG, T30 v e =0 (320)

For notational convenience, combine equations (3.24) and (3.26) into a single ex-
pression

OP; oP; 1 0*P 0P, or; 1 , 0*°P;
— b;v —o?v = 2
g T ) G g Yo gt = b) o oty = 0 (3.2)
for j = 1,2 and where u; = %, Uy = —%, a=kb0,by =Kk —op, and by = K.
With z, defined as z, = In.S;, the PDE for P; equation (3.27) becomes
OP; oP; 1 0°P; O*P; opP; 1 o2y 0*P;
= — b)) =L Y00 (3.2
aT+(r+ )8 +5V 82+0p 5oy +(a — b;v) 8V+ Vs 0 (3.28)
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The transformation of the PDE from ¢ to the time to maturity 7 = T' — t explains
the minus sign in front of the maturity derivative in equation (3.28).
Consider the Fourier transform ]5] of the probabilities P; = P;(z, v, T)

pj(m, v, T) = / e Pi(z, v, 7)dx
Remembering differentiation in subsection 2.4.1 (Fourier transform of derivative) P
with respect to = corresponds to multiplication by im, the PDE in equation (3.28)
for P; is

OP; NP N, 0P oP; 1 , &P
—W—i—(r—{—ujl/)szj—§Vm2]3j+pal/zma—yj+(a—bju) 5 —|— olv 81/2] =0 (3.29)

Heston (1993) postulates that the characteristic functions (PJ) for the logarithm of
the terminal stock price, z = In St have the log linear form:

Pi(m;x,v,7) = E[e™T] = exp [A;(m, 7) + B;(m, 7)v + imx] (3.30)

where ¢ = y/—1 is the imaginary unit, A; and B; are coefficients.
The following derivatives are required to evaluate equation (3.29):

a}%_[aAj+ 8B]P

or | or or
8P
= B; P
81/
0* P, oP;
= B; B P
81/2 T v
Substitute these derivatives into (3.29) and drop the f’J terms produces
0A, GB 1 1
_8_7'] V5 + (r 4+ uv)im — §I/m2 + povimB; + (a — bjv)B; + 50%3? =0
or equivalently
0B; 1 1 0A;
v < e + 0232 + poimB; — b; B; + imu; — §m2) — ? +rim+aB; =0
Since v; > 0, this last equality is satisfied if:
0B; 1 1
0A,;
? —aBj —rim =0 (3.32)
write, o = tmu; — %mQ7 Bj = —=bj + poim, v = %2 and substituting 0 = a,
e =rim in (3.31) and (3.32) obtains:
0B,
0A;



=

0B;
a_Tj = ’)/Bf + 6ij + Oéj
_ (4B’ + Bi(vB;) + oy
_ (vB; — 7T+)ZYB]' ) . Ty = i e ”fj_mﬂ is the quadratic formula
/‘)/
_ (B — /) (B — 7 /7)
Y

=y(Bj — 7wy /v)(Bj —7_/7)

Solving the differential equation for B;

dB, B
/ (Bj — i /7)(B; —7_/v) /FydT (3.35)

By partial fractions

1 D E

(Bj =7 /) (Bj —7_/v)  Bj—my/vy " Bj—m_ /v

D, E constants.
Then D(B; —n_/v) + E(Bj — 74 /) = 1 implies that:

(D+E)B; =0
—Dr_/y—Eny/y=1
We, obtain
T/ T/
Then
Bl [y —mi/v)=1 D=-F
-1 B 1
Ty =T/ Ty =T/

Substituting D and E into the left side of the equation (3.35) obtains:

/ dB,
(Bj = 74 /v)(Bj — 7 /7)

B 1 / dB; 1 / dB;
/vy —7m-/v) Bj—mi/y m/y—7-/v) Bj—7_/y
1

— m In(Bj —7my/y) —In(B; —m_/7)]
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Therefore

1 1H<Bj_7r+/7):,y7_
Ty —m_/y \Bj—m_/v

+ C, C constant

At maturity (7 = 0), the value of x7 = In Sy is know, so the expectation in equa-
tion 3.30 will disappear, and consequently the right hand side will reduce to simply
exp(imaxr). This implies that the initial conditions at maturity are A;(m,0) = 0

and B;(m,0) = 0.

So taking 7 = 0, obtains C' = 1

— 1  In(™
e (2)

So
B, —mi/y ™
In(=L "/ 7\ — T In( 2£
0 (F22) =y —nr) 41 (22
Then
Bj — 7T+/P)/ _ 7T_+ . 67’(7r+—7r,)
Bj — 7T_/")/ m_
™ T\ —TT—
Bj—mi/y=—-(Bj —m[y) ")
B ll _ T Tm—w)] = M ertrem) T
m_ Y Y
Thus ( ( ))
T+ 1 — ™\ -7
B, =2
J 1 — T . er(mp—7-)

™

Write 7 = = and n= (1y —n_) = /87 — 4y, obtains

B;(m,T) =

(7T+/7)(1 B eﬂ"') (336)

1 — mwenm

Now solving for A;(m, 1), B;(m,T) can be written as:

Bj(m, ) = (71 /7) ( = )M

1 — 7wen” 1 — men

e e

ultiplying the fraction on the left by e™""

~ ) (e~

e T -7

7]7’
ent

Given that % = 0B; + ¢, integrating we obtains:

/dAj :5/Bj(m,7')d7'—|—/ed7'
5 4 4 d
_<7T+/’y)(/m7'—/m7>+/67

Taking the substitution

u=e¢ " —7m du=-—-ne"dr, v=1—we" dv=—7ne"dr
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) 1
A; = _w {ln(em —7)— =1In(1 - %6"7)1 + et 4+ C, C constant.
T

When 7 = 0, by boundary condition A;(m,0) = 0.

O:_M {ln(l—fr)—%ln(l—fr)} +C
O:—w-ln(l—fr)-(l—%)JrC

Then

And therefore

As(m, ) = —w (e — 7) — %ma ey — ﬁ; 1) In(1 — w)] ber
_ _w iln(e_m S ) —In(l — 7) — © {In(1 — 7" — (1 — w)}} +er
S () )
_ _W;/ ) E (e_m_;ﬁ> Fln(e) — %m ! _ffrm) - mm} ter
f f, (125)
M

Thus

Aj(m,7) = _Ome/7) KW — 1) ‘In (%ﬁm) - m} +er (3.37)

Therefore

A

Pi(m;z,v,7) = exp [A;(m,T) + B;(m, T)v + ima,] (3.38)

with A;(m,7) and Bj(m,7) are given in equations (3.37) and (3.36), respectively.
We use the functions P, and P, to implement the model in Python, heston_char_function
returns the characteristic functions.
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The following code snippet shows the implementation in Python:

1 |def heston_char_function(m, x, t_m, r, kappa, theta, sigma,
2 rho, vO0):
3 " Valuation of European call option in Heston model
Fourier-based approach: characteristic function. """
4 ul, u2 = 0.5, -0.5
5 a = kappa * theta
6 bl, b2 = kappa - sigma * rho, kappa
7 alphal = 1j * m * ul - 0.5 * m **x 2
8 alpha2 = 1j * m * u2 - 0.5 * m *% 2
9 betal = -bl + rho * sigma * 1j * m
10 beta2 = -b2 + rho * sigma * 1j * m
11 gamma = 0.5 * sigma ** 2
12 delta, epsilon = a, r * 1j * m
13 pi_plusl = 0.5%(-betal + (bl ** 2 - 4 *x alphal * gamma) **
0.5)
14 pi_plus2 = 0.5%(-beta2 + (b2 ** 2 - 4 *x alpha2 * gamma) **
0.5)
15 pi_minusl = 0.5%x(-betal - (bl *x 2 - 4 * alphal * gamma) x*x*
0.5)
16 pi_minus2 = 0.5%x(-beta2 - (b2 *x 2 - 4 * alpha2 * gamma) x*x*
0.5)
17 pi_hat_1, pi_hat_2 = pi_plusl / pi_minusl, pi_plus2 /
pi_minus?2
18 etal, eta2 = pi_plusl - pi_minusl, pi_plus2 - pi_minus2
19
20 Bl = (pi_plusl * (np.exp(-etal * t_m) - 1)) / (gamma * (np.
exp(-etal * t_m) - pi_hat_1))
21 B2 = (pi_plus2 * (np.exp(-eta2 * t_m) - 1)) / (gamma * (np.
exp(-eta2 * t_m) - pi_hat_2))
22
23 Al = -(delta * pi_plusl) / (etal * gamma) * \
24 (((pi_hat_1 - 1) / pi_hat_1) * (cmath.log((np.exp(-etal
* t_m) - pi_hat_1) / (1 - pi_hat_1)) + etal * t_m)
25 - etal * t_m) + epsilon * t_m
26 A2 = -(delta * pi_plus2) / \
27 (eta2 * gamma) * (((pi_hat_2 - 1) / pi_hat_2) * (cmath.
log((np.exp(-eta2 * t_m) - pi_hat_2) / (1 - pi_hat_2
)) + eta2 * t_m) - eta2 * t_m) + epsilon*t_m
28
29 char_func_valuel = np.exp(Al + Bl * v0 + 1j * m * x)
30 char_func_value2 = np.exp(A2 + B2 * v0 + 1j * m * x)
31
32 return char_func_valuel, char_func_value?2

Given that the characteristic functions ]%(m; x,v, T) are known, each in the money
probability P; can be recovered from the characteristic function using inversion
theorem, as

1 00 fimanf), .
P, =Pr(lnSy > K) = +—/ Re | = s T (3.39)
0

1
2 m

Writing k£ = In K, suppressing the j index and denote ¢(m) to be the characteristic
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function for In St evaluated at m. Equation (3.39) can be written as:

mn

Pr(In Sy > k) — % = /0 " Re [w} dm (3.40)

To verify this equation, the probabilities expressed in the form of equation (3.40)
were derived by Gil-Pelaez (1951) using the inversion theorem for Fourier transforms.
The sign function sign(«) plays in an important role in this derivation. It is defined

as
signa = ¢ &/lal a7 0 (3.41)
0 a=0

The sign function has the integral representation

) 1 [ sinax
sigh a = — dx
T ) x

o0

Denote f(x) to be the density of In Sr, and F(z) to be its distribution, and using
the definition of the sign function in (3.41), we can write for a fixed y

/Oo sign(z — y) f(z)dx = /yoo sign(z — y) f(z)dz — /y sign(y — ) f (z)da

e} —00

=[1-F(yl—-Fly) =1-2F() (3.42)

To evaluate (3.42), we have broken up the integrati