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Abstract We study an incomplete market model, based on jump-diffusion processes with
parameters that are switched at random times. The set of equivalent martingale measures
is determined. An analogue of the fundamental equation for the option price is derived.
In the case of the two-state hidden Markov process we obtain explicit formulae for the
option prices. Furthermore, we numerically compare the results corresponding to different
equivalent martingale measures.
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1 Introduction

Consider the jump-diffusion process with time-dependent deterministic driving parameters
that are simultaneously switched at random times,

X(t) = T c(t) + Jh(t) + Wσ (t), t ≥ 0.

Here T c is path-by-path integral of the alternating at random times velocity regimes ci(t),

J h we denote the associated pure jump part, i.e. the stochastic integral w.r.t. counting pro-
cess N = N(t) applied to the alternating functions hi(t), and Wσ denotes the Wiener
part, defined by the stochastic integral (w.r.t. Brownian motion B) of the process, which
is formed by deterministic functions σi(t), i ∈ D, D := {1, . . . , d}, d ≥ 2, alternating
simultaneously with T c and Jh.
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The switchings are driven by the hidden semi-Markov random process, which is inde-
pendent of the Brownian motion B. Random inter-switching time intervals are assumed to
be independent and exponentially distributed with arbitrary and variable in time intensities.
Generally, such a process is not a Markov process, and it’s not a Lévy process.

We study the market model with a single risky asset whose price is determined by
the stochastic exponential of X. In general, this model has infinitely many equivalent
martingale measures, which makes the market incomplete. The model can be completed
by adding other assets; for the jump-diffusion model see Runggaldier (2003), and for
the telegraph-jump-diffusion model (hidden Markov model) with constant parameters see
Ratanov (2010).

In the incomplete market model it is important to make a reasonable choice of a mar-
tingale measure that will be used for option pricing. One way is to choose an equivalent
martingale measure that minimises the relative entropy with respect to “physical” proba-
bility measure. Another method, which is almost equivalent, is based on maximising the
expected utility. Both approaches have one primary drawback, because the so-called “phys-
ical” measure might not be observable with parameters that depend on the historical data.
Here we discuss another variant of choice of equivalent martingale measure based only on
observable parameters ci, hi, i ∈ D.

In the case of exponentially distributed inter-switching time intervals with constant
switching intensities such processes are called telegraph-jump-diffusion (or Markov modu-
lated jump-diffusion) processes. If d = 2, the market model of asset pricing (with additive
jumps superimposed on the diffusion) has been studied before in Ratanov (2010).

Similar models with time-dependent parameters (without a diffusion component) were
considered first in Melnikov and Ratanov (2007) and more recently have been analysed in
detail by Ratanov (2015). The model with missing jump component was introduced in Di
Crescenzo et al. (2014).

This setting dates back to the seminal paper Runggaldier (2003), where the jump-
diffusion market model has been analysed in detail. The market model without a diffusion
component, so called jump-telegraph model, based on the processes with regime switch-
ing was presented first in Ratanov (2007) (see the more detailed presentation in Kolesnik
and Ratanov (2013)). These models are widely used for various applications, see e.g. Weiss
(1994).

In this paper we construct a viable pricing formulae by computing the expectation of
a payoff function w.r.t. an equivalent martingale measure. By applying some simulating
procedures we show how the reasonable equivalent martingale measure might be chosen.

The paper is organised as follows. In Section 2 we introduce the market model. Gir-
sanov’s transformation is constructed in Section 3. Then, we define the relative entropy. In
Section 4 we discuss the problem of option pricing in the case of infinitely many martingale
measures. The corresponding Volterra equations are deduced. Some numerical simulation
results are presented in the last part of the paper, Section 5.

2 The Market Model

Let (Ω,F ,P) be a complete probability space. Consider a d-state semi-Markov random
process ε = ε(t) ∈ D, t ≥ 0, switching at random times {τn}n≥1, (see Jacobsen (2006)).
Process ε is assumed to be right-continuous with left-hand limits.

Let N = N(t) = max{n | τn ≤ t}, t ≥ 0, be the counting process and B = B(t), t ≥ 0,
be a standard Brownian motion.
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Let ci = ci(t), hi = hi(t) and σi = σi(t), t ≥ 0, i ∈ D, be deterministic measurable
functions. We assume, that functions ci are locally integrable, hi are bounded and σi are
locally square integrable.

Define a jump-diffusion process with the parameters 〈ci, hi, σi〉, i ∈ D, simultaneously
switching at times τn, τ0 = 0 :

X = X(t) = T c(t) + Jh(t) + Wσ (t)

=
N(t)∑

n=1

[∫ Tn

0
cε(τn−1)(u)du + hε(τn−1)(Tn) +

∫ Tn

0
σε(τn−1)(u)dB(u)

]

+
∫ t−τN(t)

0
cε(τN(t))(u)du +

∫ t−τN(t)

0
σε(τN(t))(u)dB(u), t > 0. (2.1)

Let the inter-switching times Tn = τn − τn−1, n ≥ 1, be exponentially distributed with
switching rates λij = λij (t) > 0, t ≥ 0, i, j ∈ D. Here λij (t), t ≥ 0, are positive locally
integrable functions.

Denote λi = ∑
j∈D\{i}

λij . We assume the non-exploding condition to be hold:

∫ ∞

0
λi(u)du = +∞, i ∈ D. (2.2)

Let T = τ1 be the first switching time. Thus, the survival functions are well-defined:

F
P

i (t) = F i(t) := P{T ≥ t | ε(0) = i} = exp

(
−

∫ t

0
λi(u)du

)
1{t>0}, i ∈ D. (2.3)

Therefore, the transition density functions from state i ∈ D to state j ∈ D, j �= i, are
given by

fij (t) := P {Tn ∈ dt, ε(τn) = j | ε(τn−1) = i} /dt = λij (t) exp

(
−

∫ t

0
λi(u)du

)
1{t>0}.

(2.4)
The following result is known (see e.g. (Ratanov 2015, Theorem 1) or (Di Crescenzo and

Ratanov 2015, Theorem 3.1)).

Theorem 1 Let X = X(t), t ≥ 0, be the process with the regimes 〈ci, hi, σi〉, i ∈ D,

switching at random instants τn, n ≥ 0.
Process X is a (Ft ,P)-martingale, if and only if

λi(t)hi(t) + ci(t) ≡ 0, t ≥ 0, i ∈ D. (2.5)

Remark 1 These type of conditions for the jump-telegraph processes with constant deter-
ministic parameters c, h, λ appears first in (Ratanov 2007, Theorem 1) (see also Kolesnik
and Ratanov (2013)). In this case condition (2.5) is intuitively obvious. It means that the
mean displacement ciλ

−1
i ,which is performed by the telegraph process during a time-period

τ, is identical to the jump’s size performed in the opposite direction.
This intuitively explains why (2.5) is a martingale condition.

Let U, U > 0, be the fixed time horizon.
Assume functions hi to be bounded away from −1 uniformly in t ∈ [0, U ]:

− 1 + δ ≤ hi(t) ≤ M, i ∈ D, δ > 0. (2.6)
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Let the parameters of X satisfy (2.6) and (2.5).
The stochastic exponential of X is defined by

Et (X) = exp
(
T c−σ 2/2(t) + J ln(1+h)(t) + Wσ (t)

)

= exp
(
T c−σ 2/2(t) + Wσ (t)

) N(t)∏

n=1

(
1 + hε(τn)(Tn)

)
, t ≥ 0, (2.7)

see Jeanblanc et al. (2009). Process X is the martingale, then the stochastic exponential
Et (X), t ≥ 0, is the strictly positive martingale, E[Et (X)] ≡ 1.

Consider the market of one risky asset with the price given by the geometric jump-
diffusion process under regime switching,

S(t) = S(x; t) = xEt (X), t ∈ [0, U ], (2.8)

where x = S(0) is the initial asset price.
It is assumed that the market interest rate depends on the current state of the market. Let

ri = ri(t), t ≥ 0, i ∈ D, be deterministic non-negative locally integrable functions that
are switched at times τn, when the market switched the state.

Consider a bond (numeraire) with the price

R(t) = exp
(
T r(t)

)
, t ∈ [0, U ]. (2.9)

Note that the discounted process R(t)−1S(t) is again the jump-diffusion process with
regime switching based on the triplet 〈ci − ri , hi, σi〉, i ∈ D. Without loss of generality
hereafter we assume that the interest rate is null, so R(t) ≡ 1.

Let Ft ⊂ F , t ≥ 0, be the natural (right-continuous) filtration generated by ε and B.
Recall that measure Q is the equivalent martingale measure if it is equivalent to P and such
that the discounted price process R(t)−1S(t) is a (Ft ,Q)-martingale.

Following Dybvig Ph and Ross (2008) and Delbaen and Schachermayer (1994), we say,
that

– the model is arbitrage-free, if there is at least one equivalent martingale measure;
– the arbitrage-free model is complete, if the equivalent martingale measure is unique.

To define the measure transform we will restrict the consideration to measures Q with
Radon-Nikodym density, which is P-square integrable martingale over the finite time inter-

val [0, U ]. Under fixed time horizon t, t ∈ [0, U ], the Radon-Nikodym density
dQ

dP
(t) =

dQ

dP
|Ft , t ∈ [0, U ], is defined by the stochastic exponential, Eq. 2.7,

dQ

dP
(t) = Et (X

∗) = exp
(
T c∗−σ ∗2/2(t) + J ln(1+h∗)(t) + Wσ ∗

(t)
)

, (2.10)

see (Bellamy and Jeanblanc 2000, Proposition 3.1). Here σ ∗
i (t) are some square-integrable,

c∗
i (t) are locally integrable and h∗

i (t), t ∈ [0, U ], i ∈ D, are measurable bounded functions
satisfying (2.5) and (2.6):

λi(t)h
∗
i (t) + c∗

i (t) ≡ 0, −1 + δ ≤ h∗
i ≤ M, t ∈ [0, U ], i ∈ D. (2.11)

3 Girsanov’s Theorem. Relative Entropy

Recall the following well-known result, which generalises the classical Girsanov theorem.
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Theorem 2 Let the jump-diffusion process X with the triplet 〈ci, hi, σi〉, i ∈ D, be defined
by Eq. 2.1 on the filtered probability space (Ω,F ,Ft ,P).

Consider measure Q defined by the Radon-Nikodym derivative
dQ

dP
(t), t ∈ [0, U ], with

parameters 〈c∗, h∗, σ ∗〉, see Eqs. 2.10-2.11.
Under measure Q

(a) the process B̃(t) = B(t) − L∗(t), t ≥ 0, is the standard Q-Brownian motion.
Here L∗(t), t ≥ 0, is the piecewise deterministic process with switching velocities

σ ∗
i , i ∈ D, i.e.

L∗(t) := T σ ∗
(t) =

N(t)∑

n=1

∫ Tn

0
σ ∗

ε(τn−1)
(u)du +

∫ t−τN(t)

0
σ ∗

ε(τN(t))
(u)du;

(b) process X becomes

X(t) = T c+σσ ∗
(t) + Jh(t) + W̃σ (t), t ∈ [0, U ]. (3.1)

It is characterised by the triplet 〈ci + σiσ
∗
i , hi, σi〉, i ∈ D, with the switching

intensities of interarrival times λ∗
i = λ∗

i (t) given by

λ∗
i (t) = (1 + h∗

i (t))λi(t) = λi(t) − c∗
i (t), t ∈ [0, U ], i ∈ D. (3.2)

The non-exploding condition
∫ ∞

0
λ∗

i (u)du = +∞, i ∈ D, (3.3)

holds.

Proof Part (a) follows from the classical theorem, see e.g. (Jeanblanc et al. 2009, Propo-
sition 1.7.3.1). Part (b) consists in the special version of Girsanov’s Theorem, see Di
Crescenzo and Ratanov (2015). Condition (3.3) follows from Eq. 2.2, Eq. 3.2 and h∗

i >

−1 + δ, see Eq. 2.11.

Under measure Q the asset price becomes

S(x; t) = x · exp
(
T c+σσ ∗−σ 2/2(t) + W̃σ (t)

) N(t)∏

n=1

(
1 + hε(τn)(Tn)

)
, (3.4)

with new switching intensities λ∗
i , i ∈ D, see Eqs. 3.1–3.2.

One can easily derive the following description of equivalent martingale measures of the
model (2.8).

Proposition 1 Let measure Q be defined by the Radon-Nikodym derivative
dQ

dP
(t), t ∈

[0, U ], with parameters 〈c∗, h∗, σ ∗〉, see Eq. 2.10–2.11.
Processes X = X(t) and S(x; t) = xEt (X) are Q-martingales if and only if

ci(t) + σi(t)σ
∗
i (t) + λ∗

i (t)hi(t) ≡ 0, t ∈ [0, U ], i ∈ D, (3.5)

where λ∗
i (t) is defined by Eq. 3.2.

Proof By Theorem 2 process X is splitted into the Q-martingale W̃ σ and T c+σσ ∗ + Jh.
The latter is the Q-martingale if and only if Eq. 3.5 holds, see Eq. 2.5.
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We use Proposition 1 to classify models (2.8)-(2.9).

Proposition 2 Consider the market model with the risky asset price S = S(t), t ∈ [0, U ],
given by Eq. 2.8, and with zero interest rate, B(t) ≡ 1.

1. Let the diffusion component is missed, σi = 0, i ∈ D, the jump component be defined
by hi(t) �= 0, ∀t ∈ [0, U ], i ∈ D, and Eq. 2.6 holds.

(a) If ci(t)/hi(t) > 0 in some interval t ∈ [α, β], 0 ≤ α < β ≤ U, then the model
possesses arbitrage opportunities;

(b) The model is arbitrage-free, if ci(t)/hi(t) < 0, ∀t ∈ [0, U ], i ∈ D. In this case
the model is complete.

2. Let σi(t) �= 0, ∀t ∈ [0, U ], i ∈ D. Hence the market model is arbitrage-free and
incomplete.

Proof If the diffusion component is missed, model (2.8)-(2.9) is similar to well-studied
jump-telegraph model, see (Kolesnik and Ratanov 2013, Chapter 5) and references therein.

If σi(t) �= 0, ∀t ∈ [0, U ], i ∈ D, then by applying the Radon-Nikodym derivative
(2.10) one can arbitraraly change the tendency and then, construct an arbitrary distribu-
tion of inter-switching time intervals. More precisely, Eq. 3.5 has infinitely many solutions
σ ∗

i , h∗
i ; h∗

i > −1, if σi(t) �= 0, ∀t ∈ [0, U ], i ∈ D.

Let P and Q be two equivalent measures defined by the Radon-Nikodym derivative
dQ

dP
,

see Eq. 2.10. Under the time horizon U, U > 0, the relative entropy ofQ w.r.t. P is defined
by the set of functions Hi(U), i ∈ D :

Hi(U) = H
Q,P
i (U) := E

Q

[
ln

dQ

dP
(U)

∣∣∣∣ ε(0) = i

]
= E

P

[
dQ

dP
(U) ln

dQ

dP
(U)

∣∣∣∣ ε(0) = i

]
,

(3.6)

see Frittelli (2000). Here the Radon-Nikodym derivative
dQ

dP
(U) = EU (X∗) is introduced

by Eq. 2.10 with restrictions (2.11).
Let M be the set of martingale measures Q equivalent to P. For option pricing we are

interested in maximisation of the relative entropy, min
M

H
Q,P
i (U).

In the two-state case with constant parameters and the intensities of switchings the rel-
ative entropy functions of the equivalent martingale measure, H1(U), H2(U), are given
by

H1(U) = H1(U ; λ∗
1, λ

∗
2) = BU + A1

[
1 − e−(λ∗

1+λ∗
2)U

]
,

H2(U) = H2(U ; λ∗
1, λ

∗
2) = BU + A2

[
1 − e−(λ∗

1+λ∗
2)U

]
, (3.7)

where

A1 = λ∗
1(b1 − b2)

(λ∗
1 + λ∗

2)
2

, A2 = λ∗
2(b2 − b1)

(λ∗
1 + λ∗

2)
2

, B = λ∗
2b1 + λ∗

1b2

λ∗
1 + λ∗

2
. (3.8)

bi = λi − λ∗
i + λ∗

i ln

[
λ∗

i

λi

]
+ 1

2
(σ ∗

i )2, i ∈ {0, 1}. (3.9)

See the detailed proof in Di Crescenzo and Ratanov (2015).
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Remark 2 Note that in model (2.8) the minimal entropy martingale measure depends on the
time horizon U . This is in contrast with the Lévy model (Fujiwara and Miyahara 2003) and
with the regime switching diffusion model (Elliott et al. 2005).

By using formulae (3.7)-(3.9) one can see that the minimal entropy corresponds to the
switching intensities λ∗

i = λ∗
i (U) that are moving in the interval between λi and −ci/hi,

i ∈ {0, 1}, see Di Crescenzo and Ratanov (2015).

4 The Option Pricing

Let model (2.8)-(2.9) be arbitrage-free, see parts 1b and 2 of Proposition 2. Consider an
option with the nonnegative payoff function H = H (·), executed at the maturity time
U, U > 0. Let Q ∈ M be an equivalent martingale measure.

In the case without a diffusion component and without arbitrage opportunities (part 1b
of Proposition 2), the equivalent martingale measure Q exists and it is unique. In this case
the option price is unique and it is determined by the expectation

Φi(x; U) = E
Q

i

[
H (S(x; U))

]
, x > 0, i ∈ D, (4.1)

where S(x; ·) is given by Eq. 3.4 and i refers to the initial market state, ε(0) = i. For
the constant parameters, the exponentially distributed inter-switching times and d = 2 the
option pricing in this arbitrage-free and complete case is well-studied, see e.g. Kolesnik and
Ratanov (2013).

Consider the incomplete model with the diffusion component (part 2 of Proposition
2). Now, the equivalent martingale measure is not unique. Let Q be the martingale mea-

sure defined by the density
dQ

dP
(t), t ∈ [0, U ], see Eq. 2.10, with parameters satisfying

conditions (2.11) and (3.5). Then, the viable option price is defined by the expectation (4.1).

Proposition 3 Functions Φi(·; ·), i ∈ D, satisfy the following Volterra equations:

Φi(x;U) = F
Q

i (U)

∫ ∞

−∞
H

(
xeli (U)+y

)
ψi(y, U)dy

+
∑

j∈D\{i}

∫ U

0
λ∗

ij (u) exp

(
−

∫ u

0
λ∗

i (u
′)du′

)

×
[∫ ∞

−∞
Φj

(
x(1 + hi(u))eli (u)+y, U − u

)
ψi(y, u)dy

]
du, i ∈ D.

(4.2)

Here λ∗
ij and λ∗

i are the new switching intensities under measure Q defined by Theorem 2;
li (u), see Eq. 3.4, is defined by

li (u) =
∫ u

0

(
ci(u

′) + σi(u
′)σ ∗

i (u′) − σi(u
′)2/2

)
du′, u ∈ [0, U ],

and ψi = ψi(y, u) is the Q-density function of the Gaussian random variable wi(u) =∫ u

0 σi(u
′)dB̃(u′), u ∈ [0, U ], i ∈ D,

ψi(y, u) = 1

Σi(u)
√
2π

exp

(
− y2

2Σi(u)2

)
, y ∈ (−∞,∞),
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where Σi(u)2 := ∫ u

0 σi(u
′)2du′ = Var[wi(u)], u ∈ [0, U ], i ∈ D. Survival functions F

Q

i

are defined by

F
Q

i (u) = exp

(
−

∫ u

0
λ∗

i (u
′)du′

)
.

Proof Conditioning on the first switching one can easily derive (4.2) from Eqs. 4.1 and
3.4.

To describe of the option price, if the elapsed time after the last switching is not 0,
consider the conditional expectations

Φi(x; U | t, s) = E
Q

[
H (S(x; t, U)) | Ft , s = t − τN(t)

]
, 0 ≤ s < t ≤ U, i ∈ D.

(4.3)
Here S(x; t, U) = xS(x; U)/S(x; t) describes the evolution of asset price beginning from
time t, and s = t − τN(t), corresponds to the elapsed time after the last regime switching.
Subscript i refers to the market state at time t, t ∈ [0, U ], ε(t) = i.

The viable option price V (t) at time t is defined by

V (t) = Φi(S(t);U | t, t − τN(t)), t > 0,

V (0) = Φi(x;U).

The following equation is derived similarly to Eq. 4.2. For i ∈ D

Φi(x;U | t, s) = F
Q

i (t, U)

∫ ∞

−∞
H

(
xeli (U)−li (u)+y

)
ψi(y, t, U)dy

+
∑

j∈D\{i}

∫ U

t

λij (u) exp

(
−

∫ u

0
λ∗

i (u
′)du′

)

×
[∫ ∞

−∞
Φj

(
x(1 + hi(u−t + s))eli (u)−li (t)+y, U − u

)
ψi(y, t, u)dy

]
du.

(4.4)

Here Φj

(
x(1 + hi(u − t + s))eli (u)−li (t)+y, U − u

)
is given as the solution of Eq. 4.2,

F
Q

i (t, U) = exp

(
−

∫ U

t

λ∗
i (u

′)du′
)

, t ∈ [0, U ],

and ψi(·, t, u) is the density function of normally distributed wi(t, u) = ∫ u

t
σi(u

′)dB̃(u′),
t < u.

Equations 4.2 and 4.4 serve as an analogue of the fundamental equation of the Black-
Scholes option pricing.

From a practical viewpoint one can choose the martingale measure Q with a minimal
relative entropy (3.6). This measure is situated between the following two extremal points.

The first one is the equivalent martingale measure constructed by the so-called Esscher
transform. In the case of the model under regime switching the Esscher transform is defined
by

dQθ

dP
|Ft = exp

(
Wθ(t) + T −θ2/2(t)

)
, t ∈ [0, U ], (4.5)

see Elliott et al. (2005). Here θi = θi(t), t ∈ [0, U ], i ∈ D, are square integrable functions.
Note that Eq. 4.5 corresponds to Radon-Nikodym derivative (2.10) with

σ ∗
i = θi, c∗

i = 0, h∗
i = 0, i ∈ D.
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Under measureQθ the distributions of inter-switching times have not changed, λ∗
i = λi, i ∈

D, see Theorem 2, Eq. 3.2. Due to Eq. 3.5 measure Qθ is the martingale measure if θi =
θi(t) = −ci(t) + λi(t)hi(t)

σi(t)
.

Another extremal point might be more suitable for option pricing. This is provided by
the Radon-Nikodym derivative (2.10) of the form

dQθ

dP
|Ft = exp

(
T θ (t) + J ln(1−θ/λ)(t)

)
, t ∈ [0, U ], (4.6)

which corresponds to the equivalent martingale measure Qθ defined by Eq. 2.10 with
σ ∗

i = 0, c∗
i = θi and h∗

i = −θi/λi, i ∈ D. This transformation does not affect the
Brownian motion B, see Theorem 2. It changes only the distributions of inter-switching
times. The new switching intensities are defined by means of observable parameters:
λ∗

i (t) = −ci(t)/hi(t), t ∈ [0, U ], see Eq. 3.5.
Notice that if the diffusion component is missed, σi ≡ 0, i ∈ D, (Proposition 2, 1b) the

market model is complete and the unique equivalent martingale measure is determined by
Eq. 4.6. Thus, the choice of the equivalent martingale measure as in Eq. 4.6 corresponds to
the proximity to the complete case. See also the results of numerical simulations in the next
section.
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5 The Two-States Markov Model and Numerical Study

To simplify numerical computing we consider the case of two-state semi-Markov process ε,
with constant alternating parameters ci, hi, σi, i ∈ {0, 1}. Assume the inter-switching times
Tn to be exponentially distributed with the constant intensities λi > 0, i ∈ {0, 1}.

Let Q be the equivalent martingale measure defined by the density
dQ

dP
(t), t ∈ (0, U),

Eq. 2.10 with constant parameters 〈c∗, h∗, σ ∗〉, h∗
i > −1, i ∈ {0, 1}. Under measure Q

the inter-switching times are again exponentially distributed with the alternating intensities
λ∗

i = (1 + h∗
i )λi, i ∈ {0, 1}, see Theorem 2.

The option price Φi(x;U) satisfies the Volterra Eq. 4.2, which is difficult to solve. For
the case of two-state process with constant parameters one can use explicit formulae which
are obtained below as a mix of the Black-Scholes.

Fix the initial state i, i ∈ {0, 1}, εi(0) = i. Denote by Ti (t) := ∫ t

01{εi (u)=i}du the
total time between 0 and t spent by the semi-Markov process εi in the state i. Process εi is
carried out in the opposite state 1 − i during time t − Ti (t).

For the fixed t, t ∈ [0, U ], let gi(·, t; n), n ≥ 0, i ∈ {0, 1}, be the density function of
the random variable 1{Ni(t)=n}Ti (t):

gi(τ, t; n) = Q{Ni(t) = n, Ti (t) ∈ dτ }/dτ, τ ∈ (0, t).
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It’s clear that gi(τ, t; 0) = e−λ∗
i t δ(t − τ). Conditioning on the first switching time we

obtain the sequence of the equations

gi(τ, t; n) =
∫ τ

0
λ∗

i e
−λ∗

i ug1−i (t − τ, t − u; n − 1)du, τ ∈ (0, t), n ≥ 1, i ∈ {0, 1}.
(5.1)

By induction on n, the solution of Eq. 5.1, {gi(τ, t; n)}, n ≥ 1, i ∈ {0, 1}, takes the
following explicit form: for k ≥ 1

g0(τ, t; 2k) = (λ∗
0)

k(λ∗
1)

k (t − τ)k−1τ k

(k − 1)!k! e−λ∗
0τ−λ∗

1(t−τ)1{0≤τ≤t},

g1(τ, t; 2k) = (λ∗
0)

k(λ∗
1)

k (t − τ)kτ k−1

(k − 1)!k! e−λ∗
0(t−τ)−λ∗

1τ1{0≤τ≤t},

and for k ≥ 0

g0(τ, t; 2k + 1) = (λ∗
0)

k+1(λ∗
1)

k (t − τ)kτ k

(k!)2 e−λ∗
0τ−λ∗

1(t−τ)1{0≤τ≤t},

g1(τ, t; 2k + 1) = (λ∗
0)

k(λ∗
1)

k+1 (t − τ)kτ k

(k!)2 e−λ∗
0(t−τ)−λ∗

1τ1{0≤τ≤t},

cf. (Ratanov 2010, eqs (2.17)-(2.20)), where the erroneous formulae have been presented.
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In the framework of model (2.8)-(2.9) (with zero interest rates) consider the option with
the payoff functionH = H(S(U)). Denote by ϕ(x, σ ) the following expectation

ϕ(x, σ ) = E

[
H

(
xeYσ −σ 2/2

)]
, (5.2)

where r.v. Yσ is normally distributed, N (0, σ 2). Notice that ϕ(x, σ
√

U) is the Black-
Scholes option price with maturity at U and with volatility σ .

The viable option-price is delivered by Q-expectation of the form (see Eqs. 4.1 and 3.4)

Φ(x; U) = E
Q

i

[
H

(
x exp

(
T c+σσ ∗−σ 2/2(t) + W̃σ (t)

)∏N(t)
n=1

(
1 + hε(τn)(Tn)

))]

= E
Q

i

[
H

(
x exp

(
T c̃(U)

)
MW̃ (U)

∏N(t)
n=1

(
1 + hε(τn)(Tn)

))]
, (5.3)

where W̃ σ is theWiener part ofX defined by the Itô integral with respect to theQ-Brownian

motion B̃, the exponential MW̃ (U) = exp
(
W̃ σ (U) + T −σ 2/2(U)

)
is the positive Q-

martingale, c̃i = ci + σiσ
∗
i and the subscript i ∈ {0, 1} refers to the initial market state,

ε(0) = i.
Note that if the time Ti (t) = τ, 0 < τ < U, is given, then

T c̃(U)
d= c̃iτ + c̃1−i (U − τ),

and the Wiener part W̃ σ (U) is distributed as the sum of two independent Gaussian parts,

W̃ σ (U)
d= σiZ(τ) + σ1−iZ

′(U − τ), (5.4)
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where Z(τ), Z′(U − τ) are independent and normally distributed, Z(s), Z′(s) ∼ N (0, s),
s ∈ [0, U ].

We express Φ(x; U) by using the density functions gi(τ, t; n) of Ti (t).
First, note that if there are no switchings, we have

V 0
i : = E

Q

i

[
1{N(U)=0}H

(
x exp

(
T c̃(U)

)
MW̃ (U)

)]

= e−λ∗
i UE

Q

[
H

(
x exp

(
c̃iU + σiB̃(U) − σ 2

i U/2
))]

= e−λ∗
i Uϕ(xec̃iU , σi

√
U).

We continue conditioning on {N(U) = n}, n ≥ 1. From Eq. 5.3 we have

Φ(x; U) = V 0
i +

∞∑

n=1

∫ U

0
gi(τ, t; n)EQ

[
H

(
xκin exp (c̃iτ + c̃1−i (U − τ)) eZi(τ)−�i(τ)2/2

)]
dτ

= V 0
i +

∞∑

n=1

∫ U

0
gi(τ, U ; n)EQ

[
H

(
x̃in(τ ) exp

(
Zi(τ ) − Σi(τ)2/2

))]
dτ. (5.5)

Here τ ∈ (0, U) corresponds to the time spent by the process εi in the state i, i ∈ {0, 1},
n = Ni(U) is the number of jumps, κin = (1+hi)

[(n+1)/2](1+h1−i )
[n/2] is the displacement

of the asset price after n alternated jumps and x̃in(τ ) = xκin exp (c̃iτ + c̃1−i (U − τ)).
Due to Eq. 5.4 the random variable Zi(τ ) is normally distributed N (0,Σi(τ )2) with the

variance Σi(τ)2 = τσ 2
i + (U − τ)σ 2

1−i , i ∈ {0, 1}.
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For the call option with strike K the payoff function is H = (x − K)+. The Black-
Scholes call-option price is given by the formula

ϕK(x, σ
√

U) = xΨ (z+) − KΨ (z−), (5.6)

where z± = ln(x/K) ± σ 2U/2

σ
√

U
and Ψ (·) is the distribution function of the standard normal

distribution N (0, 1).
We arrive to the following result.

Theorem 3 The call-option price is given by

ΦK(x;U) = e−λ∗
i UϕK(xec̃iU , σi

√
U)+

∞∑

n=1

∫ U

0
gi(τ, U ; n)ϕK (x̃in(τ ), Σi(τ )) dτ, (5.7)

where function ϕK is defined by Eq. 5.6.

By easy computing we can compare pricing formula (5.7) with the standard Black-
Scholes pricing. Let H = (x − K)+ be the payoff function of the call option with strike
K and ϕK(x, σ

√
U) be the corresponding option price with the time to maturity U , see

Eq. 5.6. The implied volatility IV = IV(K/x,U) of model (2.8) is defined as the solution
with respect to σ of the equation

ΦK(x; U) = ϕK(x, σ
√

U). (5.8)
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The implied volatility plots (volatility smiles) with respect to the moneyness, K/x, demon-
strate the difference between the jump-diffusion model with switchings and the standard
Black-Scholes model.

Equation 5.8 has been resolved numerically with the different sets of the given parame-
ters of the model. We assume the time to maturity U = 1, the initial asset price x = 100,
and the strikes K to be variable, where the moneyness K/x varies from 0.5 to 3.5. It appears
that the volatility smiles look different depending on various ratios of the model data.

The numerical results based on the pricing formula (5.7) and on the definition of implied
volatility (5.8) are presented by the implied volatility plots, Figs. 1, 2, 3, 4, 5 and 6.

Compare the computation results for different choices of the equivalent martingale mea-
sures. First, we consider the case with the switching intensities of the equivalent martingale
measure that are defined by λ∗

i = −ci/hi , Figs. 1 – 4, and the Radon-Nikodym derivative
defined by Eq. 4.6. Figures 1 and 2 correspond to the symmetric case with the parame-
ters λ∗

1 = λ∗
2 = 10, c1 = −c2 = −1, h1 = −h2 = 0.1 and with different diffusion

coefficients. Figures 3 and 4 demonstrate the case of the asymmetric observable parameters.
Figures 5 and 6 describe the case of asymmetric parameters λ∗

i with λ∗
i �= −ci/hi . We

denote δ = IVmax − IVmin

m
, where IVmax, IVmin are the maximal/minimal implied volatility

w.r.t. the moneyness and m = (IVmax + IVmin)/2 is the medium.
We observe that in the case of λ∗

i = −ci/hi (Figs. 1 – 4) the implied volatility varies
less than in the case which corresponds to λ∗

i �= −ci/hi (Figs. 5 and 6). For example, plots

moneyness
0.5 1 1.5 2 2.5 3 3.5

ve
ga

0

5

10

15

20

25

30

35

40

Fig. 7 Vega: λ∗
1 = λ∗

2 = 10, c1 = 0.3, c2 = 1.9, h1 = −0.03, h2 = −0.19, σ1 = σ2 = 0.1



844 Methodol Comput Appl Probab (2016) 18:829–845

moneyness
0.5 1 1.5 2 2.5 3 3.5

ve
ga

0

5

10

15

20

25

30

35

40

jump-diffusion
Black-Scholes

Fig. 8 Vega:λ∗
1 = 1, λ∗

2 = 10, c1 = −1, c2 = 0.1, h1 = 0.1, h2 = −0.1, σ1 = 0.05, σ2 = 0.2

of vega for the cases of the data of Figs. 3 and 6 are presented in Figs. 7 and 8 respectively.
Vega for our model is defined as the derivative of Φ with respect to implied volatility,

V (K/x) = ∂Φ

∂IV
. To compare we also draw the Black-Scholes vega (w.r.t. volatility σ = m).

Observe that in Fig. 7 the curves practically coincide.

6 Conclusion

We offer some reasonable choice of equivalent martingale measures for option pricing
in an incomplete market model based on the jump-diffusion process with simultaneously
alternating drift parametrs, variances and jumps.

It is a common mistake to believe that the Esscher transform (4.5) always provides the
minimal relative entropy. It is correct for the models based on Lévy processes, see Fujiwara
and Miyahara (2003), and for the model based on the diffusion with regime switching, but
with missed jump component, Elliott et al. (2005). Nevertheless, for model (2.8)-(2.9) based
on Brownian motion with jumps and with switching regimes the Esscher transform does
not produce the minimal relative entropy, see the detailed analysis in (Di Crescenzo and
Ratanov 2015).

Some numerical verifications of this conclusion are provided on the basis of the explicit
option pricing formulae (5.7) obtained in Section 5. Figures 1–6 demonstrate a rich diversity
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of the volatility smiles. This ensures that the simple model (2.8)-(2.9) might be useful for
various practical purposes.

We also compare the plots of vega (see Figs. 7 and 8) for model (2.8)–(2.9) and for the
Black-Scholes.
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