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ABSTRACT
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4 AJUMP TELEGRAPH MODEL FOR OPTION PRICING

1. INTRODUCTION

Option pricing models based on the exponential Brownian motion have well known limitations.
These models have infinite propagation velocities, independent log-returns increments on separated
time intervals among others. Moreover it is widely accepted that financial time series are not Gaussian.

To make the models more adequate with reality various models were suggested including
those with stochastic volatility or with jumps. But most of these models create the market
incompleteness and other difficulties (see e.g. [12]).

It seems natural to replace in the basic models a Brownian motion by a finite velocity ran-
dom evolution (with statistically dependent increments). However, it is known that such sub-
stitution creates arbitrage opportunities. To avoid arbitrage, we propose a model with jumps
occurring at the instants of tendency changes. This model converges to the Black-Scholes model,
if the size of the jumps vanishes, but the velocities of the asset’s return and the frequencies of
jumps go to infinity in a particular manner.

J. C. Cox, S. Ross [4]-[5] and R. C. Merton [11] initiated the research of the option pricing
models with jump diffusion processes, but these models are usually motivated by empirical ad-
equacy. In addition, most of these models are incomplete market models, and there is no perfect
hedging in this case. In this paper the basic idea behind the use of jump processes is that the jumps
eliminate arbitrage possibilities. This is the complete market model and hedging is perfect.

More specifically, our model is based on the so called inhomogeneous telegraph process (see
[7]), which is a continuous time random motion with constant velocities alternating at indepen-
dent and exponentially distributed time intervals. We assume the price of a risky asset follows
this process with jumps at the times of velocity changes. Unfortunately, the underlying process
is not a Lévy process, and therefore the general theory does not work.

The text is organized as follows. Section 2 presents the inhomogeneous telegraph processes
and the martingales related to the telegraph evolutions and to the driving inhomogeneous Pois-
son process. The Girsanov theorem for the telegraph processes with jumps is obtained as well.
In Section 3 we introduce the main model. We consider a frictionless financial market, where a
riskless asset has constant return rate » and a risky asset price is given by the stochastic expo-
nential £(X + J). Here X = X () is the integrated telegraph process and | = ] () is the pure jump
process. Both are driven by the common inhomogeneous Poisson process. The martingale mea-
sure and the HEsscher transform are constructed. In Section 4 we derive the fundamental equa-
tion for the option price and the strategy formulas. The left continuity in time of the portfolio
dynamics is proved as well. The closed formulas for the price of the standard call option are
presented. These formulas are analytic tractable and combine the outlines of the Black-Scholes
and Merton formulas. Appendix contains the exact formulas for the distributions of the under-
lying processes, which are necessary for the call option price formula.

This paper exploits the ideas presented by the author on the 2nd Nordic-Russian Sympo-
sium on Stochastic Analysis [14] and continues the author’s previous paper devoted to the
homogeneous telegraph model [15].
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NikITA RATANOV 5

2. NO HOMOGENEOUS TELEGRAPH PROCESSES AND MARTINGALES.
CHANGE OF MEASURE

2.1 TELEGRAPH AND POISSON MARTINGALES

Consider the process 0=0 (t ), t >0 with values +1 such that

P(o(t+Ar)=1|o(t)=-1)= A At+0(Ar),
P(o(t+Ar)=-1o(t)=1)=AAr+0(Ar),
At—=0

A, 4>0,and 0=(0)=¢, where ¢ is a random variable with two values 41. The time inter-

vals 7,-7,,,j=12,.. separated by instants 7,,j=1,2,.. of value changes are independent and
independent of ¢ random variables. Denote by N(?) the number of value changes of ¢ in time
4 e o(t)=E=)0,

Let ¢, <c,. We denote V(t)=c,,, and X(1)= jo V(s)ds.

The process N=N(?), >0 is inhomogeneous Poisson process, with alternating parameters.
A, The process (X,1”) is called the (inhomogeneous) telegraph process with states (c_,A.,) and

(e, )

For 2, =4 and —c_, =¢ =c the processes V(r)=Ec(-1)"" and X(t)=<§c‘[;(—l)N(“')ds,t20 are well
known [6], [7]-[8] and they are called the telegraph and integrated telegraph processes respec-
tively. It is known that if 2, ¢—eo and c2/ A—l, the process X(?) converges to the standard

Brownian motion.

The inhomogeneous process is less known (see e.g. [3], where the exact distributions of
inhomogeneous X(?#) are calculated).

N(1)

Let /i, h e (—0,00) and /=JO=X A, .1>0 be g pure jump process with jumps at the Pois-
=1
son times T, j = ,2,....

Lemma 2.1 The conditional expectations j()=EJ@t)|E=0), n,(t)=EN@®)|E=0) and
v,(V=EWV()|E=0), 0 =%1,t20, can be calenlated as follows

[

jd(t):%t+ftaaa —, 2.1

1

1 ()=t + A by ——. (2.2)

Noviembre de 2004



6 AJUMP TELEGRAPH MODEL FOR OPTION PRICING

VO‘ (t) =8 + 2’(rdc)iN ’ (23)

2244, _ ol +c A 4 Ah, — A h A=A

"% "Moo p =l6 o 4 =Zc o

A ) A 2 (g A 2 o A ) o A

where A=+, H=h_ +h, V=

Remark 2.1 In homogeneous case A, =4 =4, ¢ =a+c,c,=a—c formulas (2.2)-(2.3) are known:

t

n ()=2At,v,(t)=a+oce™.

Proof. Formulas (2.2)-(2.3) follow from (2.1). Indeed, the Poisson process N(?), >0 is the
pure jump process with 4, =1 and thus H=2 and q, =5, .

Moreover, V(f)—c,,t>0 is again the pure jump process with alternating jump values
h,=c,—c,,0=%1. Thus =0 and a, =—(c, —c_,)). Then, equality (2.3) follows from (2.1) and

c,—A(c,—c )/ A=g

To prove we note that expectations j (r),0 =+1 fit the equations

p
SO =y o =T )+ 2y (2.4)
t>0

with initial data j_ |_,=0. To prove it note that conditioning on a switch at the time inter-

val (0, At) we have

Jo(t+ At = (1= 2,A0) j, () + A, At (f_, (1) +h, ) +0(Af)
At —0

Since Aa,-Aqa,=Ah,—A b, and a_, =-a, the unique solution of system (2.4) is given by
(2.1).

The following formulas are the evident consequence of Lemma 2.1.

Corollary 2.1 [ et (X (t ),V(t )), t >0 be the telegraph process with states (c,,A) and (c_,2.). Let

J=J(t), t=0 be the jump process driven by the same Poisson process and it has values h,,. Then the

conditional expectations are given by

EJ)| F;):J(s)+/lTH(t—s)+;tGaa$ (2.5)
E(N()|F) = N(s) +y(t =)+ Ak, % (2.6)

EV()|F)=g+Ad,e™ ™, 2.7)

Borradores de investigacion - No. 58



NikITA RATANOV 7

1= M9

E(X@O)|F)=X(s)+g(t=9)+A,d, (2.8)

with 6=0(s), s<t.
From these formulas it is easy to obtain the following theorem.

Theorem 2.1 Ler (X(¢),V(t)) be the telegraph process with states (c,,A) and (c.,A.). Let

N(t)

J=J == hoery . Then the processes
=

. B V()
N(@)=N(t)—-At+vX I

,t20

and

)N((t):X(t)—gH@,tzo

are the martingales. Moreover, X +J is the martingale if and only if Ak, =—-c,, h,c, <0,

o=x=1

AL A -,

Here n, g and Y are defined in Lemma 2.1 and v e ¢ —c.

= bO' / do' .
Proof. From formulas (2.5) and (2.8) it follows that X + . is the martingale if and only if
e _
g+ 2 09
a,+d;, =0
The unique solution of this system is h, =—c, /4, .
From (2.6) and (2.7) we have for h, =—c_ /4,

E(X()|F)=X(s)+g(t-9)
+A,d, (1-e ™)/ A
—gt+(g+A,d, ")/ A
The martingale property of N follows from &, =8,v and g+A,d, =c, =V (s).

From formulas (2.7)-(2.8) it follows that for s<¢

E(X(0)|F)=X(s)+g+(t~s)
+A,d (1-e )/ A
—gt+(g+A,d, ")/ A

=X(s)—gs+(A,d, +g)/A

Noviembre de 2004



8 AJUMP TELEGRAPH MODEL FOR OPTION PRICING

with ¢ =0(s). It is sufficient to note that g+ A d, =c, =V(s).
2.2 GIRSANOV THEOREM

Let X(¢), t>0 be the telegraph process with the states (c,,,A,),¢, >c , A, >0, N(t), >0 be

the driving Poisson process.

Fix time horizon T . Let

*

d
d

™

Z(1) =

=e(X +J),0<t<T (2.9)

Aot

be the density of new measure p* relative to p. Here is the telegraph process with the

*

N(t)c
. * @) . . . . . .
states (¢, ,A,), 7/ =—21, Ny is the pure jump process with the jump values r,"=-c,"/4,,.
=

o(t’/-)

All processes are driven by the same inhomogeneous Poisson process n. E,(+) denotes the

stochastic exponential. We suppose that ¢,” <A_,0 =+1.

Integrating we obtain
Z()=¢" K (1), (2.10)

where K*(I)ZH(HM*(S)). Here AJ'(s)=J"(s)-J (s-) -

s<t

Let us consider the sequence «,™, which is defined as follows

kK =K_"(+h"), n>1 (2.11)

Thus if =2k,
K, 7 =(1+h,) A+R )", n>1 (2.12)
and if =2k +1
(I+h, )Y (4 h ), (2.13)
Therefore k'(t)=ky,,°, whete ¢ ==+] indicates the initial direction of the market’s trend.

It is easy to see that two telegraph processes y* and y, driven by the same Poisson process
N, are connected by

X' ) =uX@) +at, (2.14)

where

gl _amel
Yy (2.15)

Borradores de investigacion - No. 58



NikITA RATANOV 9

and

c—l*cl — cl*c—l
== (2.16)

¢, —c,
The following theorem replace the Girsanov theorem in this framework. We denote

k,=1+h =1-c/A,,0=%1

Theorem 2.2 Under the probability with density Z (t) relative to p, process N=N(t), t>0 is again the

Poisson process with intensities 2. =4 k =4 ,—c, and X =ik =24-c .
Proof. Let x,(t)= P(N(t)=n|é=0) and m., " (t)=P(N()=n|{=0), n=0,1,2.... Probabilities

7, (t),0 =11 solve the system

dr” o -

= 2,7 () + 2, m (£),6 >0
X
79 =0, n21, n=1

From (2.10)-(2.14) it follows

w7, =E(2(r)

£=0)

SN
=k., e p 7 (x,t)dx

Lvyon)
2.17)

with 4 and a, which are defined in (2.15)-(2.16). Here p,”, n>0 atre the probability den-

sities of the current position of the process X (), 0<¢<7, which has n turns with respect to
measure P, i.e.: for any measurable set A
P(X(t))e AN(1)=n|é=0

:J.A p,,(")(x,t)dx (218)
Exploiting equation (A.1) we obtain from (2.17)

d 3 (o)
Pe =(a—-A, + ,Llca)n,,_ﬂ(d)(t)

+ld (1- ca* / l(, )77.',,.,,71(76) )
The following evident equalities complete the proof:
a-2A, +uc,=c, =2, ==X,

A, (=c, 1 2,)=2A,,

Noviembre de 2004



10 A JUMP TELEGRAPH MODEL FOR OPTION PRICING

©) —
7w, |, o=0,n21,

P07 =8 ().
Corollary 2.2 Under the probability P* with density Z(t) relative to P, the process X=X(1), 0<¢<T s

the telograph process with the states (¢, A"y and (c,,A) with 2" = Ak, =A, —c, .0 ==1.

Equgtion Chapter (Next) Section 3

3. DYNAMICS OF THE RISKY ASSET AND THE MARTINGALE MEASURE

We assume the bond price is B(r)=¢",r>0. To introduce the price process for a risky asset,

let X(1), +>0 be the telegraph process with the states (c,4,) and (c¢.,4), and

N(t)

J=J0= ko hy>-1
j=1

We suppose the price of risky asset follows the equation

ds()=S@-)d (X (t)+J(t)),t>0. (3.1)
Here the process S(#), +>0 is right-continuous.

Integrating we obtain

S(0) =S, (X +J) =S,k (0), (3.2)
where

k(@) =[J(+AT(s)) =7, S, =S(0)

s<t

The sequence N is defined in (2.11)-(2.13) (with /+7 instead of h+7").

We assume the following restrictions to the parameters of the model

>0, o==I. (3.3)

Since the process N is the unique source of randomness, it is possible the only one equiva-
lent martingale measure. To construct it we are looking for the respective martingale in the

form X"(r)+J (t),t 20. By Theorem 2.1 we suppose that A 4~ =-c,.
Lemma 3.1 Let Z(t)=¢, (X +J"), 120 with h, =—c, /A, be the density of probability relative to P.
The process (B(1)"S(t)),, is the P"-martingale if and only if

* Co—F
Cy =Ao + P ,0==*1. (3.4)

(<2

Borradores de investigacion - No. 58
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Proof. First notice that by Corollary 2.2 X (¢)—rt is the telegraph process (with respect to )
with the states (¢, —r,4, —¢,"),0 =*1. From Theorem 2.1 it follows that X (¢)-rt+J(¢), ¢ >0 is the
P -martingale, if and only if (A, —¢," ), =—(c, —r).

Thus ¢," =2, +(c,—r)/h, and h =—c, /A, =-1-(c, —r)/Ah,. From condition (3.3) it follows
h'>-1and A, =4, -c, =(r—c,)/h,>0. Therefore Z=Z(t)=¢,(X +J") really defines the new
probability. Theorem is proved.

Remark 3.1 In the symmetric case A =2, =X, h,=—h=cl/A, ¢,=a+c and c =a—c these formulas

means ¢, =A-A(c+a-r/c)=A(r—a)lc, ¢, =A-A(c—a-r/c)=-A(r—a)/c and #=AA—CC=M”CZ_Q),

which coincides with formula (1.8) of [15].
It is known [7] (see also [9], [13]) that (homogeneous) telegraph process X=X(7), > () con-

verges to the standard Brownian motion w(?), >0, 1if ¢, 1 -, ¢2/A — 1. Moreover, we have the

following theorem (at least for the symmetric case A, =A,c =a—c,c,=a+c).

Theorem 3.1 [er A =4 =1 —, ¢c 5o,

cIA—-v?

a’/A—v, . (3.5)
Let h,,h, >0 and

a+AB/2—u (3.6)
where B=In(1+h )(1+h)—0.

Then model converges in distribution to the Black-Scholes model:

S(5)—L2 5, 3.7)

with v=\v}+v’.

Proof. Let f(z,1)= Ee”’® be the moment generating function for Y (1) X (¢)+Inx(r). We prove

here the convergence
f(z,t) > exp(uzt +v*z°t /1 2), (3.8)

which is sufficient for the convergence of one-point distributions in (3.7). From (2.14)-
(2.106) it follows that

f(z,0)= Ee™' O = gf (X" ()rat+ing (1))

_ ezal ZJ:DQ ez(xc+nB/2)pit (x’ t)dx,
n=0

Noviembre de 2004



12 A JUMP TELEGRAPH MODEL FOR OPTION PRICING

where ys is the standard telegraph process with the states (-1,A), (-1,A) and p,*,n>0 ate
the probability densities of x*(r) defined in (2.18). By (A.4)-(A.6)

f(Z, t) ~ ™ ‘ro e z ean/Zpﬂst (X, t)dx
e n=0

= gAY _[i e”p(x,t)dx

where p(x.t) is the density of telegraph process X (¢) (A with the states (+¢,2), 7 = 26 ~ 4.
Then notice that
A—A+az=Ae""? ~1)+az

B AzB  Az’B?
2

+az

From - it follows that (JAB/2 ~—a//A and
A—A+az— uz+v,’z>/2.
The densities p(s¢) converge to the probability density of v, w(r):

1 -x? /21,

p(x,t) > e
P VN2t

Summarizing we obtain (3.8). The complete proof of (3.7) is a bit tricky and it is omitted.

Remark 3.2 Condition (3.6) in this theorem means that the total drift a+AB/2 is asymptotically finite.
Here a=(c_,+¢)/2 is generated by the velocities of telegraph process X and summand AB/2 represents the
drift component (possibly with infinite asymptotics) which is provoked by jumps. If in (3.6) the limit of AB/2
is finite, then a — o = const and in (3.7) the drift volatility term v, =0.

Further, by (3.5)-(3.6) NABI2——v,, and so ~[\B/2 has the sense of the jump component of volatility.
Equation Chapter (Next) Section 4

4 PRICING AND HEDGING OPTIONS

4.1 FUNDAMENTAL EQUATION
Consider the function
F(t,x,0)=e""E, [ f(" k(T -1)|E=0], (4.1)

o=x=1

where E” denotes the expectation with respect to mattingale measure P, which is defined in
Lemma 3.1. The density Z(#) of P relative to P is defined in (2.10)-(2.13). It is clear that

Borradores de investigacion - No. 58
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F=F(,5(),0(t)) is the strategy value at time 7 of the option with the claim f{S,) at the maturity
time 7.

Conditioning on the number of jumps we can write

Fltx,0) =03 [ ek p., @ (r. T~ )y
n=0 e

(o)

where p.,'” is the probability density of telegraph process X(?) with respect to martingale

measure . The densities P" are defined as in (2.18).

Function F solves the following difference-differential equation, which plays the same role
as the fundamental equation in the Black-Scholes model. Exploiting equation (A.1)(with

A=Ak, =A —c, =(r—c,)/h, instead of A, see Appendix), from (4.1) we obtain

aa—F(th)+c x—(t,x,0)=(r+ A, )F(t,x,0)— A, e "™ ZJ f(xe’x,%)p. nl( Ny, T —1t)dy

By equalities (2.11) the latter equation takes the form

(t X,0)+c, xa (t, xO')—[r+ P

- = ]F(t,x,O') - F;CG F(t,x(1+h,),~0) 4.2)

(2 (<2

Remark 4.1 Note that the above equations do not depend on 1., as in the Black-Scholes model the respective
equation does not depend on the drift parameter. By contrast, this system is hyperbolic.

4.2 Left continuity of the strategy values

Fix time horizon T and consider a trading strategy n, =(¢,,2,), 0<¢<T. The value at time
¢t of the strategy is given by F =¢,S(t)+e.e”, 0<:<T. This strategy is self-financing
ifdF,=dF (t,5(t),0(t))=¢,dS(t)+ @,re"dt.

Thus

N(1)

F=F+ j 0. S(s)V(s)ds+j o r”ds++2(p 5@, -)

(/)

By the equality o, =e™ (F, —¢,5(t))
N(1)
F=Fy+r| Fds+[ oSV (s)-r)ds+ Zq% 0 S@;-)
On the other hand
N(1)

F =F, +j —(5,5(5), o(s))ds+j —(s S(s),0()S(s)V (s ds+2(F. -F,).

Comparing the latter two equations we have between jumps

Noviembre de 2004



14 A JUMP TELEGRAPH MODEL FOR OPTION PRICING

oF JF

* =T S0 o-n

From the fundamental equation it follows that between the jumps we have

¢ = oS (t;(;(gt)—r)[F(t,S(t)aG(1))_F(t,S(t)(1+ha(t)),—0'(t)):|
_FESO1 Ay ) -0 ()= F (£5().0.()) (4.3)
S(t)ha(,)

The jump values of ¢ are

_ B R _F<T./’S(T/)’G(T./))_F<T./’S<T./_)’_G<T./))
= S@ e, - S(t,~)hoce (4.4)

Formulas (4.3)-(4.4) remind the CRR and BS-formulas for the amounts of risky asset held
over the time.

¢

Lemma 4.1 The strategy ¢,,0<t<T s left-continuons.

Proof. To prove ¢,_=¢, first notice that by (3.2)

S(e, )14y, )=5(0) (4.5)
Applying (4.5) to (4.3)-(4.4) it is easy to finish the proof.
4.3 PRICING OF CALLS

We consider now the standard call option with the maturity time 1" and with the strike K.
Hereafter we suppose that K < S, . The strategy value 7 has the form

F=e""E_ (S(T-0-K)'

— S(t)U(G(f)) (yt , T— t) _ Ke—r(T—I)u(G(t)) (yt , T— t) (4 6)

Here y, =inK/S(t), functions y© and 4, are defined by formulas (A.7)-(A.8) and (a.12)-
(A.16) in Appendix (with A, =(r—c,)/h,, o ==1).

Examples

1. Merton model.!

Assume that ¢ ,=¢=c, h=h,=-h, A, =A4=A. Then equation (3.1) has the form
dS(t)=S(t-)(cdt—hdN (1))

! This model is called the Merton model (see [10], [11]), but [11] contains the reference to [4]. See also [5].

Borradores de investigacion - No. 58
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where N=N(?), t>0 is the (homogeneous) Poisson process with parameter 2> (. From call
option pricing formula (4.6) we obtain

F,=S,U(InK /S,,T)—Ke""u(lnK / S,,T) (4.7)
Here for b, 0<h/<1, ¢>r from (A.7)-(A.8), (A.12)-(A.16) we have

Uy, T)=¥(n,, A" (1-h)T)

u(y,T)="(n,,A'T),

where ‘P(N,Z)Zﬁo,ezz”l; ,

and for s <0, c<r

Uy, T)=1-¥(n,, A" (1-h)T),

u(y,T)=1-¥(ny,A'T).

Here A" =(c-r)/h>0. By n, we denote

. aln(1=h)+hA" _ —cT
ny = inf {n: S,"" AT 5 B(T) 1K}=[—1§(1_h)}

The model of this paper generalizes the Merton model. In this generalization we have the
following three principal cases.

2.1f x(1+h )(A+h)>1, then we have In(1+h_)+In(1+h)>0. Thus the call option price formula
has the form with

u(y.T)= [Z (B, Oy ) @By = Ay D+ Y, () Oy )@, (A —M*’T’},

U(y, T) = e_Z:T .|:Z (IG*)'HI (Za*)ﬂ(bznn(/i;* - ZG*’ T) + Z (IG*)ﬂ(Ifc*)ﬂ(DZn (zo'* - Zo'*’ T):|

Here and below A" =(r—c,)/h, >0, I, =A"(1+h,)=(r—c,)1+h,)/h, >0 and

= y—c_st—=In(1+h,)
"l (k) +In(+ ) |

n, = r Gl +1
2 In(+ )+ In(1+ )

3. If (1+h)(A+h)<1, then we have In(1+h )+in(1+h)<0. The call option price is given by
the same formula (4.7) with

Noviembre de 2004
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-1 ny—1
u(ya T) = eila T.|:Z (/10'*)"4rl (/’L_O_*)n CDZnH (A’o’* - A’—o-* > T) + 2 (/10'*)” (A‘—G*)n (DZn (/10'* - /’L—a*ﬂ T):| 5
n=0 n=0

. -1 il —. — ., ny—1 R —. — .,
U(yaT):elaT.[Z(/la )n l(/l—o‘ ) CDZnH(A’a _A’—o- sT)+z(/lo‘ ) (A'—O' ) (DZn(/IO' _;L—a 9T):|
n=0 n=0

Here n,n, are defined as above.
4. If (Q+h)(1+h)=1, then In(1+h_)+In(1+h)=0. In this example we can consider two cases.

If ¢ ,T+in(1+h,)<c,T and Spe“"(1+h,)< K <e“", then

oo

u(p.T)=u,()=e™"Y (3,) (A, ) ®,,(4 -1, 1),

U(y, T) = UO — e—[ﬁ*ri(%*)nﬂ (ZG*)n q)zﬂ (ATO_* —ZG*7T)
n=0

and F,=S,U,(T)-Ke " u,(T).

If ¢ ,T+in(l+h,)>c,T and Se“"(1+h,)>K >e“", then
w(y.T)=u,(T)=e™" Y (2, V" (A,)'®,,, (4, -1, .T)
UG ) =U, =TS (B A, Y 0,0, X, 1)

n=0

and F, =S,U,(T)-Ke "u,(T).

It is easy to write the above formulas, if the market parameters have the another relations.
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APPENDIX. COMPUTING THE EXACT DISTRIBUTIONS OF THE TELEGRAPH
PROCESS

Let X =X{?), t > (0 be the inhomogeneous integrated telegraph process with the states (c¢_,A.,)
and (c,4). We denote by p,(x,t), 0 =+1, n>0 the generalized probability densities of the

current position of the process which has 7 turns (see (2.18)).

First notice that functions p,”(x,), ¢ ==+1 form the solution of the following equations:

ap, ", . o
o TGy =hn

n=1

(A1)

with zero initial conditions: p,“|_=0, n>1. Equation (A.1) after change of variables

p, (@ =Tty @) yith v=AA/Ac=(A4 —A,) /¢, —c,) takes the form

(o) (o)
aqn P apn — (-0)

a oo (A.2)

Integrating we obtain

7, (x,0)=2, .[; q:") (x—c,(t—s),s)ds,

. (A.3)
For 5 =( it is clear that
P 7 (x,0)=e*d(x—c,1)
and
4,7 (x, ) =" d(x—c,t).
Applying equation (A.3) we have
g\ =2, [ d(x =, (1-5)—c_s)ds

= %xe ((et—x)(x—c_0))
Repeatedly integrating, by (A.3) we obtain as well
O G(x'cnjz:fcf)j'x)n_l 0((c—(x—c.0). "
nz1

and
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AJUMP TELEGRAPH MODEL FOR OPTION PRICING

AMA o(x—c t) (e t—x)" i ~
(Ac)2n+l (n,)z 9 ((Clt x)(x C_lt)), (A5)

nx1

(5)
q2n+l ()C, t) =

where Ac=¢,—c, >0 and 6=6(x) denotes the Heaviside function.

Therefore
(o) _ _—(At+w) _ (o)
pn (.X', Z) =e qn (x7 t)’
ot (A.6)
= A, —Ac
Here A =% —ve, :101_—311‘ In the symmetric case 4 =4,=1 we have j=}, v=0 and
1 -1

We consider now telegraph process X = X(z) with jumps | = J§2), t >( with jump values
h,>-1. Let

(o2

oo

W (n,0)=Pe(X+J)>e" )= u,” (3.0 (A7)
and
U0 = B (XD )= 20,7000 (A.8)
Here

w 0= [ p 0

. (
y=Ink, (@)

and

oo

U=k " _[ e'p,' " (x,t)dx

y—lm(”(")

From equation we obtain the following equations for u,” and U, :

(o) (o)
a”a"t ni)+e, a‘g a0 =g, @ (1) + Aty (=B 1),
)y (A.9)
n21
and
(o) aU (o) © o)
B (e, S (1,0 = e = =1 U ) 2, (B )U, (=B, .0,
3 (A10)
n21

Borradores de investigacion - No. 58



NikITA RATANOV 19

with b, =In(1+4,) and with the following initial conditions u,” |_,=U,” |_,=0, n>1. For n=0

it is clear that
u,” =e0(c,t ~ y)
U, 7 =0 (c, t - p).

We find the solution of (A.9) in the form u,” =e™*'g, @ (c,t—y)®,(A, — A ,,1). From equation
(A.9) it follows that

dd

(A0 =MD (=A,0),

= A,0)=e"®,_(-A,1)

n=>1

and

87 =2,8 7 (y+b, —(c, —c ),

o=xl1

with @, =1, g,(»)=6(y) and ®@,_,=0, »n>0. The latter system has the unique solution

g;)ﬂ(y) =(A,)"A,"0 (y-i—(n+l)b¢7 +nb_ —(c,—c, )t),

2o (=)' A" +0(y+nb, +nb.,),
n=0

For the sequence ®,(2,1), 120, 120, A#0, we have ®,=1, ®, =(" -1)/A and

d*® dd
A=A (AN + @, (A1) (A.11)
or
1 0 t=s
) :ﬂ(eﬂ D —1)®,,(s)ds,
n=2

System (A.11) has the solution of the form

@ (A1)= 1 i(lt)k (k—n.g_Nn}

A e k! k—n
nx1

(A.12)

n+1 m my! . .
where N, :|: > ]—1 and (ml ]Z—m o l_m T 0<m,<m,.If A, =21 =2 the solution looks easier
2 2 1 2/

® (0,t)=¢"/n!. To prove it we substitute (A.12) in differential equation (A.11) and notice

that 1+N, ,=N,.
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20 A JUMP TELEGRAPH MODEL FOR OPTION PRICING

Finally, the solution of system (A.9) is

u(m (y, Z) — ef/lgzldnﬂl_dnq)

(Mg =g, 0)0(c_ot = y+(n+1)b, +nb_,), (A.13)
U (1) =e A A @y, (A = Ay, 0)0(c_ot — y+nb, +nb_,) (A.14)
and the solution of system (A.10) is
W ()= ™A D, (A, — A, 000(c_ ot~ y+ (n+1)b, +nb,), (A.15)
u, (n0)=e 1T D,, (A, — A, .00(c_yt—y+nb, +nb_,) (A.16)
with 4, =4, (1+h,), A, =A, +r—c,, s==+1. For martingale measure, i.e. A, =(r—c,)/h,, we have
A=A

Remark. Functions ® (A1) can be rewritten in hypergeometric form [1] (see also [2])

_ s ()
Qﬂ(l,t)—N gg(k+n)!(k+l)...(k+Nﬂ)

|
nt

n

~

"1F1(Nn +1L;n+1;A1).

N

Here hypergeometric function | F (e, ,z) is defined as follows (see e. g [2], formula 1.6)

n

& a(a+l). . (a+n-1)
B = 2 B ) (B 1)
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