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Abstract
The paper presents exact formulae related to the distribution of the first passage time τx of
the jump-telegraph process. In particular, the Laplace transform of τx is analysed, when a
jump component is in the opposite direction to the crossing level x > 0. The case of double
exponential jumps is also studied in detail.
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1 Introduction

Telegraph processes describe a movement of particles with finite velocities, which sequen-
tially change, according to the underlying finite state Markov process ε = ε(t). In the
most simple case of one-dimensional movement with two-state basis, flip-flop processes,
Brémaud (1999), such processes are well studied.

Let ε, ε(t) ∈ {1, 2}, be the two-state Markov process defined on the filtered probability
space (�,F ,Ft ,P), t ≥ 0. Let λ1, λ2 > 0 be the alternating switching intensities. The
asymmetric continuous telegraph evolution T = T (t), t ≥ 0, is defined by

T (t) =
∫ t

0
cε(s)ds, (1.1)

where c1, c2 ∈ R. Last years the processes of this type have been intensively studied with
generalisations in various aspects.

Telegraph processes with arbitrarily distributed inter-switching times and deterministic
alternating jumps are treated in detail by Di Crescenzo and Martinucci (2013). The gener-
alisation to the case of random alternating exponentially distributed jumps can be found in
Di Crescenzo et al. (2013). Martingale approach to jump-diffusion processes is developed
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by Di Crescenzo and Ratanov (2015). New generalisations directed to double stochastic
processes of this type appear in Ratanov (2013, 2014, 2017).

Comprehensive reviews of existing literature on this subject are presented in books
Kolesnik and Ratanov (2013) and Zacks (2017).

Recently, some new research directions have been proposed. The long-time behaviour
of variants of the continuous telegraph processes with position-dependent switching rates
are studied by Fontbona et al. (2016). The jump-telegraph process based on a fractional
Poisson process are studied in the paper (Di Crescenzo and Meoli 2018). The exponential
functionals for the jump-telegraph process began to be studied by Ratanov (2018).

Let
τx = inf{t > 0 | T (t) = x}

be the first passage time of the process T = T (t) through the level x, x > 0. For the
continuous telegraph process (1.1) first passage time τx and its distribution are well studied
beginning with Orsingher (1990), Foong (1992), and Foong and Kanno (1994). The detailed
analysis of the distribution of τx was undertaken by Zacks (2004, 2017). Generalisations on
the case of multiples level-crossings is made by Pogorui et al. (2015).

In the case of the asymmetric telegraph process (1.1) the explicit formulae for the distri-
bution of τx (assuming c1 > 0 > c2) can be written in terms of modified Bessel functions
I0 and I1:

P1{τx ∈ dt} = e−λ1t δx/c1 (dt) +
√

λ1λ2

ξ(t − ξ)
xI1

(
2
√

λ1λ2ξ(t − ξ)
)

θ(ξ, t)

P2{τx ∈ dt} = λ2

ξ

[
xI0

(
2
√

λ1λ2ξ(t − ξ)
)

− c2√
λ1λ2

√
t − ξ

ξ
I1

(
2
√

λ1λ2ξ(t − ξ)
)]

θ(ξ, t),

where

ξ = ξ(x, t) = x − c2t

c1 − c2
, t − ξ = c1t − x

c1 − c2

and

θ(ξ, t) = 1

c1 − c2
exp(−λ1ξ − λ2(t − ξ))1{0<ξ<t},

see e.g. in Bogachev and Ratanov (2011) and López and Ratanov (2014, [Theorem 3.1]).
By Pi we denote the conditional probability measure under the given initial state ε(0) = i,

Pi (·) := P(· | ε(0) = i), i ∈ {1, 2}. Recent paper (Ratanov 2017) concerns the distributions
of the the first passage time of the continuous self-exciting piecewise linear processes.

This paper provides a detailed analysis of this problem when a jump component is added:
process is jumping at times of velocity switchings.

Telegraph processes are useful for applications in various areas, including option pric-
ing models. The latter, that is, financial applications, is motivated by an attractive idea of
replacing Brownian motion (usually used to simulate the dynamics of market prices) by
movements with finite velocities, see Di Crescenzo and Pellerey (2002). Meanwhile, such
a direct replacement inevitably leads to arbitrage possibilities, Ratanov (2007).

To solve the problem, one can add to the continuous telegraph process, jumps occurring
at instants of velocity switching. This modification of the model helps to avoid arbitrage,
and also corresponds well to the modelling of oversold/overbought market situations.

When Brownian motion is replaced by a jump-telegraph process, the pricing formulae
for standard options have been obtained, see the detailed presentation in Ratanov (2007)
and Kolesnik and Ratanov (2013). However, some advanced tasks are very difficult in
this framework. For instance, for barrier option pricing (or, in general, for path-dependent
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options), distributions of the first crossing times of the underlying processes are required.
In the case of traditional models, such as famous Black-Scholes model, the explicit formu-
lae for such distributions are well-known, see e.g. Shiryaev (2007). Some solutions for a
jump-diffusion process are presented in Abundo (2000) and Ratanov (2010); for detailed
analysis in the case of double exponential jump amplitudes see Kou (2002) and Kou and
Wang (2003).

To the best of my knowledge, in the case of telegraph processes accompanied by jumps,
the distributions of the first crossing times are still unknown. In this paper (Section 3) we
present the explicit formulae for Laplace transforms of τx, x > 0, for the jump-telegraph
process in two special cases:

– jumps are negative;
– jumps are of double exponential distributions.

Appendix presents some particular cases of the behaviour of these Laplace transforms.
Section 2 recalls some properties of the jump-telegraph process.

2 Jump-telegraph Processes

Let {Yn}n≥1 be a sequence of independent random variables with alternating distributions
h1 and h2, which are independent of driving process ε.

In what follows, we will repeatedly use the Laplace transforms of these distributions,

ĥ1(ξ) :=
∫ ∞

−∞
e−ξyh1(dy), ĥ2(ξ) :=

∫ ∞

−∞
e−ξyh2(dy),

and the convolution operators defined by

H [φ] :=
∫ ∞

−∞
φ(x − y)hi(dy), i ∈ {1, 2}, (2.1)

for any test-function φ = φ(x), x ∈ (−∞,∞). In the case when φ|x<0 ≡ 1 this operator
takes the form

H [φ] = Hi(x) +
∫ x

−∞
φ(x − y)hi(dy), x > 0. (2.2)

Here Hi(x) = Pi{Y > x} = ∫∞
x

hi(dy) is the survival function of the jump distribution hi,

i ∈ {1, 2}. Note that for φ ∈ L1(−∞,∞)∫ ∞

−∞
H [φ]dx =

∫ ∞

−∞
φ(x)dx, i ∈ {1, 2}. (2.3)

Consider a jump-telegraph process, X = X(t) = T (t) + J (t), with alternating trends
c1, c2, c1 > c2, see (1.1), and with the jump component J (t) which is defined by

J (t) =
N(t)∑
n=1

Yn, t ≥ 0. (2.4)

The distribution of the Markov process (X(t), ε(t)), t > 0, is determined by the given
initial state ε(0) ∈ {1, 2}. Precisely, let P = P(x, t) be the matrix of density functions of
X(t) with the entries

pij (x, t) = P{X(t) ∈ dx, ε(t) = j | ε(0) = i}/dx, i, j ∈ {1, 2}.
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Let


 =
(

λ1 0
0 λ2

)
, �x,t :=

(
δ(x − c1t) 0

0 δ(x − c2t)

)
.

By conditioning on the first switching one can get

P(x, t) = e−t
�x,t + Q ∗ P(x, t). (2.5)

Here the double convolution Q ∗ P(x, t) is defined by

Q ∗ P(x, t) :=
∫ t

0
Qx,τ [P(·, t − τ)] dτ,

where

Qx,τ :=
⎛
⎝ 0 λ1e−λ1τH x−c1τ

1

λ2e−λ2τH x−c2τ
2 0

⎞
⎠

with convolution operators H ·
1 and H ·

2 defined by (2.1).
Equation 2.5 can be solved by applying the Laplace transform. Consider the double

Laplace transform L(ξ) of P as the matrix with entries Lξ,q [pij ], i, j ∈ {1, 2} :

Lξ,q [pij ] :=
∫ ∞

0
qe−qt

[∫ ∞

−∞
e−ξxpij (x, t)dx

]
dt = Ei

[
e−ξX(eq )1{ε(eq )=j}

]
.

Here eq is an exponentially distributed random variable, Exp(q), q > 0, independent of X,

and Ei[·] denotes the expectation with respect to Pi .
By definition

Lξ,q

[
e−λt δ(x − ct)

] =
∫ ∞

0
qe−qt

[
e−λt · e−cξ t

]
dt = q

q + λ + cξ
.

For any test-function φ = φ(x, t) we have

Lξ,q

[∫ t

0
λe−λτH x−cτ [φ(·, t − τ)]dτ

]

=
∫ ∞

0
qe−qt

[∫ ∞

−∞
e−ξxdx

∫ t

0
λe−λτdτ

∫ ∞

−∞
φ(x − cτ − y, t − τ)h(dy)

]
dt .

After the change of variables x → x + cτ + y according to Fubini’s theorem one can get

Lξ,q

[∫ t

0
λe−λτH x−cτ [φ(·, t − τ)]dτ

]

=ĥ(ξ)

∫ ∞

0
qe−qtdt

∫ t

0
λe−λτ

[∫ ∞

−∞
e−ξ(x+cτ)φ(x, t − τ)dx

]
dτ

=ĥ(ξ)

∫ ∞

0
λe−λτ−cξτdτ

∫ ∞

τ

qe−qt

[∫ ∞

−∞
e−ξxφ(x, t − τ)dx

]
dt

= λĥ(ξ)

q + λ + cξ
Lξ,q [φ].

Therefore, the double Laplace transformation applied to (2.5) leads to the algebraic equation

L(ξ) = A(ξ) + B(ξ)L(ξ) ⇔ (I − B(ξ))L(ξ) = A(ξ), (2.6)
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where

A(ξ) := Lξ,q

[
e−t
�x,t

] =

⎛
⎜⎜⎜⎝

q

q + λ1 + c1ξ
0

0
q

q + λ2 + c2ξ

⎞
⎟⎟⎟⎠

and

B(ξ) := Lξ,q [Q] =

⎛
⎜⎜⎜⎜⎝

0
λ1ĥ1(ξ)

q + λ1 + c1ξ

λ2ĥ2(ξ)

q + λ2 + c2ξ
0

⎞
⎟⎟⎟⎟⎠ .

Since

det (I − B(ξ)) = 1 − λ1λ2ĥ1(ξ )̂h2(ξ)

(q + λ1 + c1ξ)(q + λ2 + c2ξ)
= D(ξ ; q)

(q + λ1 + c1ξ)(q + λ2 + c2ξ)
,

where

D(ξ, q) :=(q + λ1 + c1ξ)(q + λ2 + c2ξ) − λ1λ2ĥ1(ξ )̂h2(ξ)

=q2 + 2q(λ + aξ) + [
(λ1 + c1ξ)(λ2 + c2ξ) − λ1λ2ĥ1(ξ )̂h2(ξ)

]
=(q − q1)(q − q2),

q1,2 = − (λ + aξ) ±√
d(ξ), d(ξ) = (μ + cξ)2 + λ1λ2ĥ1(ξ )̂h2(ξ)

and

λ = (λ1 + λ2)/2, a = (c1 + c2)/2, μ = (λ1 − λ2)/2, c = (c1 − c2)/2,

the inverse matrix (I − B(ξ))−1 can be obtained explicitly. As a result, Eq. 2.6 gives the
following explicit formulae:

Lξ,q [p11] = q(q + λ2 + c2ξ)

D(ξ, q)
, Lξ,q [p12] = qλ1ĥ1(ξ)

D(ξ,q)
, (2.7)

Lξ,q [p21] = qλ2ĥ2(ξ)

D(ξ, q)
, Lξ,q [p22] = q(q+λ1+c1ξ)

D(ξ,q)
. (2.8)

This result leads to some known useful formulae. For instance, by applying to (2.7)–(2.8) the
inverse Laplace transformation in time, L −1

q→t , the known formulae for the spacial Laplace
transform of X(t) can be obtained:

E

[
e−ξX(t) | ε(0) = 1

]

= 1

2
e−(λ+aξ)t

[
etd(ξ) + e−td(ξ) + λ1ĥ1(ξ) − μ − cξ

d(ξ)

(
etd(ξ) − e−td(ξ)

)]
,

E

[
e−ξX(t) | ε(0) = 2

]

= 1

2
e−(λ+aξ)t

[
etd(ξ) + e−td(ξ) + λ2ĥ2(ξ) + μ + cξ

d(ξ)

(
etd(ξ) − e−td(ξ)

)]
,

cf López and Ratanov (2012) and Ratanov (2018).
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3 First Passage Times

Let X = X(t) = T (t) + J (t) be the jump-telegraph process (see (1.1), (2.4)) and

τx := inf{t > 0 : X(t) > x}, x ≥ 0. (3.1)

We study the Laplace transform φ(x) = (φ1(x), φ2(x))′ of τx,

φ1(x) = φ1(x; q) :=E1
(
e−qτx

) = E{e−qτx | ε(0) = 1},
φ2(x) = φ2(x; q) :=E2

(
e−qτx

) = E{e−qτx | ε(0) = 2}, q > 0. (3.2)

By definition 0 ≤ φi(x) ≤ 1, ∀x. Because τx = 0 for negative x, we set φ1(x) ≡
1, φ2(x) ≡ 1, if x < 0.

Integrating by parts we have

φi(x) = Ei

(
e−qτx

) =
∫ ∞

0
e−qtdPi{τx < t} =

∫ ∞

0
qe−qt

Pi {τx < t} dt
=Pi

{
τx < eq

} = Pi

{
Xeq > x

}
, i ∈ {1, 2}.

(3.3)

Here Xt := sup0<s<t {X(s)}. Since the process is renewed after each switching, one can get
the following coupled integral equations:

(a) in the case of positive trends, c1 > c2 > 0,

φ1(x) = e−(λ1+q)x/c1 +
∫ x/c1

0
λ1e

−(λ1+q)τH x−c1τ
1 [φ2]dτ, x > 0, (3.4)

φ2(x) = e−(λ2+q)x/c2 +
∫ x/c2

0
λ2e

−(λ2+q)τH x−c2τ
2 [φ1]dτ, x > 0; (3.5)

In this case τ0 = 0 a.s. and φ1(0) = φ2(0) = 1;
(b) if both trends are nonpositive, 0 ≥ c1 > c2, these equations become

φ1(x) =
∫ ∞

0
λ1e

−(λ1+q)τH x−c1τ
1 [φ2]dτ, x > 0, (3.6)

φ2(x) =
∫ ∞

0
λ2e

−(λ2+q)τH x−c2τ
2 [φ1]dτ, x > 0; (3.7)

(c) if c1 > 0 ≥ c2, then the corresponding equations are (3.4) and (3.7).

Here H = H x is the convolution operator defined by (2.1)–(2.2).

Proposition 1 System of the integral Eqs. (3.4)–(3.5) (as well as (3.6)–(3.7) and (3.4),
(3.7)) has the unique solution in L1(0, +∞).

Proof Let (φ1, φ2) and (φ̃1, φ̃2) be two solutions of (3.4)–(3.5).
By (3.4) we have∫ ∞

0
|φ1(x) − φ̃1(x)|dx =

∫ ∞

0

∣∣∣∣
∫ x/c1

0
λ1e

−(λ1+q)τ · H x−c1τ
1 [φ2 − φ̃2]dτ

∣∣∣∣ dx,

which gives ∫ ∞

0
|φ1(x) − φ̃1(x)|dx ≤

∫ ∞

0
λ1e

−(λ1+q)τ Jτdτ, (3.8)

where

Jτ =
∫ ∞

c1τ

H x−c1τ
1

[|φ2 − φ̃2|
]
dx =

∫ ∞

0
H

[|φ2 − φ̃2|
]
dx,
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and by (2.3)

Jτ ≡
∫ ∞

−∞
|φ2(x) − φ̃2(x)|dx =

∫ ∞

0
|φ2(x) − φ̃2(x)|dx.

Therefore,

||φ1 − φ̃1||L1 ≤ λ1

λ1 + q
||φ2 − φ̃2||L1 . (3.9)

Similarly, by (3.5)

||φ2 − φ̃2||L1 ≤ λ2

λ2 + q
||φ1 − φ̃1||L1 , q ≥ 0. (3.10)

Since q > 0, by (3.9)-(3.10) φ1 = φ̃1, φ2 = φ̃2.
The proof for systems (3.6)–(3.7) and (3.4), (3.7) is similar.

Remark 1 In all three cases, (a), (b) and (c), by differentiation of systems (3.4)–(3.5),
(3.6)–(3.7) and (3.4), (3.7), one can see that the function φ(x) = (φ1(x), φ2(x))′ follows
the system of the integro-differential equations,{

c1φ
′
1(x) = − (λ1 + q)φ1(x) + λ1H [φ2],

c2φ
′
1(x) = − (λ2 + q)φ2(x) + λ2H [φ1], x > 0. (3.11)

We are looking for function φ(x), (3.2), as

φ(x) =
N∑

k=1

e−αkxAk, x > 0, Reαk > 0, (3.12)

with the indefinite coefficients Ak = (Ak1, Ak2)
′ and αk, k = 1, . . . , N . As will be shown

below, αk, k = 1, . . . , N, are the roots of the equation:

det(αC + 
α) = 0, (3.13)

where

C =
⎛
⎝c1 0

0 c2

⎞
⎠

and


α =
⎛
⎝−(λ1 + q) λ1ĥ1(−α)

λ2ĥ2(−α) −(λ2 + q)

⎞
⎠ .

More precisely, (3.13) has the form

(αc1 − λ1 − q)(αc2 − λ2 − q) = λ1λ2ĥ1(−α)̂h2(−α). (3.14)

3.1 Negative Jumps

To begin with, we study φ(x) = (φ1(x), φ2(x))′, assuming all jumps to be negative, Yn ≤
0, n ≥ 1, a.s., that is, the distributions h1, h2 are supported on (−∞, 0]. In particular, this
means that the model avoids overshooting, H 1(x) ≡ H 2(x) ≡ 0, x > 0, and process X(t)

is crossing the level x, x > 0, in a continuous way, that is, X(τx) = x.
Note that at least one of the trends should be positive, say c1 > 0; otherwise τx = ∞ a.s.

Further, since τx ≥ x/c1, c1 > 0, for any q > 0

0 < φ1(x), φ2(x) ≤ e−qx/c1 < 1, x > 0,
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and φ1, φ2 ∈ L1([0, +∞)). Therefore, by Proposition 1 function φ(x), defined by (3.2), is
the unique solution of the corresponding integral equations, see (a), (b) and (c).

It is useful to notice that in the case of negative jumps, function ψα(x) = exp(−αx),

Re(α) > 0, is the eigenfunction of the convolution operator H x, (2.1)–(2.2):

H x [ψα] =
∫ 0

−∞
exp (−α(x − y)) h(dy) = ĥ(−α)ψα(x), x > 0,

with the eigenvalue ĥ(−α) = ∫ 0
−∞ eαyh(dy). For a real positive α, the eigenvalue ĥ(−α) is

real, and it decreases, 0 ≤ ĥ(−α) ≤ 1.
Therefore, if φ is given by (3.12),

H x[φ] =
N∑

k=1

ĥ(−αk)e
−αkxAk . (3.15)

Theorem 1 Let c1 > 0, Yn ≤ 0, a.s. n ≥ 1, and φ(x) = (φ1(x), φ2(x))′ be defined by
(3.1)–(3.3). Let φ(x) be determined by the sum of exponentials, (3.12).

– If both velocities are positive, c1 > c2 > 0, then Eq. 3.14 has exactly two real and
positive roots, α1, α2 > 0, such that

0 < α1 < min

(
λ1 + q

c1
,

λ2 + q

c2

)
≤ max

(
λ1 + q

c1
,

λ2 + q

c2

)
< α2. (3.16)

Further,

φ(x) = exp(−α1x)A1 + exp(−α2x)A2, (3.17)

where constant vectors A1 and A2 are defined by

A1 = β̃2 + α̃2

�
(β̃1, −α̃1)

′, A2 = β̃1 + α̃1

�
(−α̃2, β̃2)

′ (3.18)

with

α̃1 := c1α1 − λ1 − q, α̃2 := c2α2 − λ2 − q; (3.19)

β̃1 := λ1ĥ1(−α1), β̃2 := λ2ĥ2(−α2), (3.20)

� := β̃1β̃2 − α̃1α̃2 > 0.
– If the velocities are of opposite signs, c1 > 0 > c2, then Eq. 3.14 has the unique positive

root α, 0 < α <
λ1 + q

c1
. In this case, φ(x) = exp(−αx)A, where A =

(
1
a

)
, with

a = − α̃1

β̃1
= −c1α + λ1 + q

λ1ĥ1(−α)
= λ2ĥ2(−α)

−c2α + λ2 + q
.

Proof We first consider the case of positive velocities, c1 > c2 > 0.
Let φ be defined by (3.12). By (3.4) –(3.5) due to (3.15) we obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N∑
k=1

Ak1e
−αkx =e−(λ1+q)x/c1 + λ1

N∑
k=1

Ak2

λ1 + q − c1αk

ĥ1(−αk)e
−αkx

[
1 − e−(λ1+q−c1αk)x/c1

]
,

N∑
k=1

Ak2e
−αkx =e−(λ2+q)x/c2 + λ2

N∑
k=1

Ak1

λ2 + q − c2αk

ĥ2(−αk)e
−αkx

[
1 − e−(λ2+q−c2αk)x/c2

]
,
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which gives

Ak1 = λ1ĥ1(−αk)

λ1 + q − c1αk

Ak2, Ak2 = λ2ĥ2(−αk)
λ2+q−c2αk

Ak1, (3.21)

k = 1, . . . , N,

and
N∑

k=1

Ak1≡λ1

N∑
k=1

Ak2ĥ1(−αk)

λ1 + q − c1αk

=1,
N∑

k=1
Ak2 ≡ λ2

N∑
k=1

Ak1ĥ2(−αk)
λ2+q−c2αk

Ak1=1.(3.22)

For each k, k = 1, . . . , N, the system (3.21) has a nontrivial solution Ak1, Ak2 if and only
if αk is the root of Eq. 3.14. This equation has explicitly two roots α1 and α2 which are
distinct, positive and satisfy (3.16), see Fig. 1 (right). Hence, φ(x) is defined by (3.12) with
N = 2.

Explicit formulae (3.18)–(3.19) for A1 and A2 can be obtained as the (unique) solution
of the equations (3.14) and (3.21)–(3.22).

Note that by definition (3.20), β̃1, β̃2 > 0, and by (3.16), α̃1 < 0 < α̃2; hence
� = β̃1β̃2 − α̃1α̃2 > 0.

The proof of the second part of the theorem is similar.
Let c1 > 0 > c2 and φ is defined by (3.12). In this case we have the system of (3.4) and

(3.7). By substituting (3.12) into this system by (3.15) we obtain
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N∑
k=1

Ak1e
−αkx =e−(λ1+q)x/c1 + λ1

N∑
k=1

Ak2

λ1 + q − c1αk

ĥ1(−αk)e
−αkx

[
1 − e−(λ1+q−c1αk)x/c1

]
,

N∑
k=1

Ak2e
−αkx =λ2

N∑
k=1

Ak1

λ2 + q − c2αk

ĥ2(−αk)e
−αkx,

which is equivalent to (3.21) with only one additional equation

N∑
k=1

Ak1 ≡
N∑

k=1

λ1ĥ1(−αk)

λ1 + q − c1αk

Ak2 = 1. (3.23)

Fig. 1 The solution of (3.14), on the left – case c1 > 0 > c2 and on the right – case c1 > c2 > 0
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Now, Eq. 3.14 has the unique positive root α, see Fig. 1 (left). Therefore, in (3.12) we have
N = 1 and the solution takes the form φ(x) = exp(−αx)A. Eq. 3.23 becomes

A11 = − β̃1

α̃1
A12 = 1,

which gives the result.

Remark 2 Since explicit formulae for φ are generally not available, the density function of
τx cannot be explicitly found.

Meanwhile, sometimes, the distribution of random variable τx can be written explicitly
using the inverse Laplace transform. For example, let c1 = c2 = c, c > 0, λ1 = λ2 = λ,

and the negative jumps be exponentially distributed with the mean value 1/b, b > 0. Hence,
ĥ1(−α) = ĥ2(−α) = b/(b + α).

This corresponds to the compound Poisson process with i.i.d. negative exponential jumps
and a positive trend. In this case, Eq. 3.14 can be simplified to the pair of quadratic
equations:

(cα − λ − q)(α + b) = ±λb, (3.24)

which gives the two real positive roots, α1 and α2: α1 is the positive root of
(cα − λ − q)(α + b) = −λb,

α1 = λ + q − bc +√
(λ + q − bc)2 + 4bcq

2c
= −b + 1

2c

(
q̃ +

√
q̃2 − 4bcλ

)
, (3.25)

where q̃ = q + λ + bc, and α2 is the positive root of (cα − λ − q)(α + b) = +λb,

α2 = λ + q − bc +√
(λ + q − bc)2 + 4bc(q + 2λ)

2c
.

Due to Theorem 1 , the Laplace transform of τx is given by (3.17). By definition, see (3.24),
α̃1 = −β̃1 and α̃2 = β̃2, see (3.19)–(3.20). Thus, formulae (3.18) give A1 = 1, A2 = 0 and

φ(x) = Ee−qτx = exp(−α1x), x > 0,

with α1 defined by (3.25).
By Prudnikov et al. (1992, formula (2.2.5-18)) the inverse Laplace transform of

exp(aq − a

√
q2 − z2) − 1, q > z,

is given by
az√

t2 + 2at
I1

(
z
√

t2 + 2at
)

,

where I1(·) denotes the modified Bessel function of the first order. By (3.25), the density
function p(t; x) of τx, p(t; x) = L −1

q→t (exp(−α1(q)x)) takes the form

p(t; x) = e−λt

[
δ (t − x/c) + x

√
λb√

t (ct − x)
I1

(
2
√

λbt (ct − x)
)]

, t > x/c. (3.26)

Further, the limit of α1 = α1(q) at q ↓ 0 depends on λ/c − b :

lim
q↓0 α1 =

{
λ − bc

c
, if λ > bc,

0, otherwise.
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Therefore, the boundary crossing probability is given by

P{τx < ∞} = lim
q↓0 φ(x) =

{
exp (−(λ/c − b)x) , if λ > bc ,

1, otherwise.

3.2 Double Exponential Jumps

Let the jump amplitudes Yn in the jump part J (t), (2.4), have alternating asymmetric double
exponential distributions with the densities

h1(y) =B−
1 e

b−
1 y1{y<0} + B+

1 e
−b+

1 y1{y>0},

h2(y) =B−
2 e

b−
2 y1{y<0} + B+

2 e
−b+

2 y1{y>0},
(3.27)

where b±
1 , b±

2 > 0, B±
1 , B±

2 ≥ 0 are given constants such that

B−
1

b−
1

+ B+
1

b+
1

= 1,
B−
2

b−
2

+ B+
2

b+
2

= 1,

see Kou (2002). The case B+
1 = B+

2 = 0 corresponds to the case of negative jumps which
is already studied. In what follows we assume that B+

1 , B+
2 > 0.

Let X = X(t) = T (t) + J (t), t > 0, be the jump-telegraph process with indepen-
dent alternating double exponential jumps. Note that some results of the paper by Kou and
Wang (2003), such as conditional memoryless property and conditional independence, can
be directly transferred to these processes.

Proposition 2 Let τx be the first passage time defined by (3.1).
For any x > 0 and β > 0

Pi{τx ≤ t, X(τx) ≥ x + β} = e−b+
i β

Pi{τx ≤ t, X(τx) > x},

Pi{X(τx) ≥ x + β | X(τx) > x} = e−b+
i β .

Further, if the process has overshoot, then the value X(τx)−x and the stopping time τx are
conditionally independent,

Pi{τx ≤ t, X(τx) ≥ x + β | X(τx) ≥ x}
= Pi{τx ≤ t | X(τx) ≥ x}Pi{X(τx) ≥ x + β | X(τx) ≥ x}.

Proof See Kou and Wang (2003, Proposition 2.1).

To analyse the distribution of τx in the case of double exponential jumps, we first need
to apply the convolution to exponentials. More precisely, applying the convolution H ,

defined by the double exponential density function hi, (3.27), to

ψα(x) =
{
exp(−αx), x > 0,

1, x ≤ 0,
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with Re(α) > 0, we have (see (2.2))

H [ψα] =B+
i

∫ ∞

x

e−b+
i ydy +

∫ x

−∞
e−α(x−y)

[
B−

i eb−
i y1{y<0} + B+

i e−b+
i y1{y>0}

]
dy

=B+
i

(
1

b+
i

+ 1

α − b+
i

)
exp(−b+

i x) +
(

B−
i

α + b−
i

− B+
i

α − b+
i

)
exp(−αx),

x > 0, i ∈ {1, 2}.
(3.28)

Secondly, we need to change our understanding of Eq. 3.13 in this circumstances. Since,

ĥi (−α) =
∫ 0

−∞
B−

i e(b−
i +α)ydy +

∫ ∞

0
B+

i e−(b+
i −α)ydy = B−

i

α + b−
i

− B+
i

α − b+
i

,

−b−
i < Re(α) < b+

i , i ∈ {1, 2},
Equation (3.13)/(3.14) becomes

(c1α−λ1−q)(c2α−λ2−q) = λ1λ2

(
B−
1

α + b−
1

− B+
1

α − b+
1

)(
B−
2

α + b−
2

− B+
2

α − b+
2

)
. (3.29)

As before we will find φ(x) = (
E1e−qτx , E2e−qτx

)′ in the form (3.12), φ(x) =∑N
k=1 e

−αkxAk, where αk, k = 1, . . . , N, are the roots of Eq. 3.29.

Note that αk �= b+
i , αk �= λi + q

ci

, i = 1, 2.

To find constant vectors Ak, k = 1, . . . , N, we will use the following linear equations:

N∑
k=1

Ak1

αk − b+
2

+ 1

b+
2

= 0,
N∑

k=1

Ak2

αk − b+
1

+ 1

b+
1

= 0, (3.30)

N∑
k=1

Ak1 = 1,
N∑

k=1

Ak2 = 1, (3.31)

(−c1αj + λ1 + q)Aj1 = λ1Aj2

[
B−
1

αj + b−
1

− B+
1

αj − b+
1

]
, j = 1, . . . , N,(3.32)

(−c2αj + λ2 + q)Aj2 = λ2Aj1

[
B−
2

αj + b−
2

− B+
2

αj − b+
2

]
, j = 1, . . . , N . (3.33)

The exact statement is presented below in Theorem 2.
We assume that all roots of (3.29) are not multiple. In the case of multiple roots usual

modifications can be applied to (3.12).

Theorem 2 Let jump amplitudes Yn, n ≥ 1, have alternating double exponential
distributions (3.27).

– If both velocities are positive, c1 > c2 > 0, then Eq. 3.29 has exactly four roots with
positive real parts, αk, Reαk > 0, k = 1, 2, 3, 4. Function φ(x) takes the form (3.12)
with N = 4.

Eight coefficients (Ak1, Ak2), k = 1, 2, 3, 4, can be found as the solution of the
linear system (3.30)–(3.32).
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– If the velocities are of opposite signs, c1 > 0 > c2, then equation (3.29) has exactly
three roots with positive real parts α1, α2 and α3. In this case function φ(x) takes the
form (3.12) with N = 3 and coefficients (Ak1, Ak2), k = 1, 2, 3, which are found
from (3.30), (3.32) and the first equation of (3.31).

– if both velocities are negative, 0 ≥ c1 > c2, then (3.29) has exactly two real positive
roots α1 and α2; function φ in the form (3.12) with N = 2 is determined by coefficients
(Ak1, Ak2), k = 1, 2, which are found from (3.30) and (3.32).

Proof Let φi(x) = ∑N
k=1Akie−αkx, i = 1, 2, and both velocities be positive, c1 > c2 > 0.

In this case, by definition (3.1) φ1(0) = 1, φ2(0) = 1, hence, Eqs. 3.31 are satisfied.
Substituting φ(x), defined by (3.12) into (3.4)–(3.5), by (3.28) we get

N∑
k=1

Ak1e
−αkx =

⎡
⎢⎣1 − λ1

N∑
k=1

Ak2

⎛
⎜⎝

B+
1

b+
1

+ B+
1

αk−b+
1

λ1 + q − c1b
+
1

+
B−
1

αk+b−
1

− B+
1

αk−b+
1

λ1 + q − c1αk

⎞
⎟⎠
⎤
⎥⎦ e−(λ1+q)x/c1

+ λ1B
+
1 e

−b+
1 x

λ1 + q − c1b
+
1

N∑
k=1

Ak2

(
1

b+
1

+ 1

αk − b+
1

)
(3.34)

+ λ1

N∑
k=1

Ak2

B−
1

αk+b−
1

− B+
1

αk−b+
1

λ1 + q − c1αk

e−αkx,

N∑
k=1

Ak2e
−αkx =

⎡
⎢⎣1 − λ2

N∑
k=1

Ak1

⎛
⎜⎝

B+
2

b+
2

+ B+
2

αk−b+
2

λ2 + q − c2b
+
2

+
B−
2

αk+b−
2

− B+
2

αk−b+
2

λ2 + q − c2αk

⎞
⎟⎠
⎤
⎥⎦ e−(λ2+q)x/c2

+ λ2B
+
2 e

−b+
2 x

λ2 + q − c2b
+
2

N∑
k=1

Ak1

(
1

b+
2

+ 1

αk − b+
2

)
(3.35)

+ λ2

N∑
k=1

Ak1

B−
2

αk+b−
2

− B+
2

αk−b+
2

λ2 + q − c2αk

e−αkx .

System (3.34)–(3.35) is equivalent to the system (3.30)–(3.33) of 2N + 4 linear equations.
Each of N systems of two Eqs. 3.32–(3.33) has a nontrivial solution Aj1, Aj2 if and only

if the corresponding αj is the root of the equation

det
(
αC + 
̃α

) = 0, (3.36)

where


̃α :=

⎛
⎜⎜⎜⎜⎝

−(λ1 + q) λ1

(
B−
1

α+b−
1

− B+
1

α−b+
1

)

λ2

(
B−
2

α+b−
2

− B+
2

α−b+
2

)
−(λ2 + q)

⎞
⎟⎟⎟⎟⎠ ,

cf (3.13). Equation 3.36 (or, equivalently, Eq. 3.29) has explicitly two negative real roots:
near points −b−

1 and −b−
2 . Further, there are exactly four roots α1, α2, α3, α4 with positive

real parts.
We have two typical cases. The first: all these four roots are real; the second: two real

roots and two conjugate complex, see the examples on Figs. 2 and 3. Appendix presents
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Fig. 2 The case c1 > c2 > 0 : four real positive roots

some algebraic relation between the parameters, which correspond to different situations in
the symmetric case.

Note, that in all cases αk �= b+
1 , αk �= b+

2 , αk �= λ1 + q

c1
, αk �= λ2 + q

c2
, k = 1, 2, 3, 4.

Therefore, due to (3.34)–(3.35) function φ is defined by (3.12) with N = 4; coefficients Ak

are determined as the (unique) solution of the eight (independent) Eqs. (3.30)–(3.32). See
also the numerical examples in Section 3.3.

Fig. 3 The case c1 > c2 > 0 : two real positive roots and two conjugate complex
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Fig. 4 The case c1 > 0 > c2 : three real positive roots

In the case of c1 > 0 > c2, modifications similar to the proof of Theorem 1 can be made.
Eq. 3.4 corresponds to (3.34). By (3.7) we have

N∑
k=1

Ak2e
−αkx = λ2B

+
2

b+
2 (λ2 + q − c2b

+
2 )

e−b+
2 x+

N∑
k=1

Ak1
λ2e−αkx

λ2 + q − c2αk

(
B−
2

αk + b−
2

− B+
2

αk − b+
2

)

+
N∑

k=1

Ak1
λ2B

+
2

(λ2 + q − c2b
+
2 )(αk − b+

2 )
e−b+

2 x .

Fig. 5 The case c1 > 0 > c2 : one real positive root and a pair of conjugate complex roots
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Here αk are the roots of Eq. 3.29, which in this case has exactly three roots with negative
real parts (see Figs. 4 and 5). The remaining three roots can be real positive, or one real
positive with a pair of conjugate complex with a positive real part (see Figs. 4 and 5 and the
numerical examples in Section 3.3). Coefficients Ak are determined as the (unique) solution
of (3.30), (3.32) and the first equation of (3.31).

The case of negative velocities, 0 ≥ c1 > c2, is analysed similarly. Equation 3.29 has
exactly two real positive roots, see Fig. 6. Thus N = 2 and coefficients Ak are determined
by four equations (3.30) and (3.32).

Remark 3 The appearance of conjugate complex roots, quite unexpected for such problems,
leads to weak damped oscillations in the behaviour of the functions φ(x). In the case c1 >

c2 > 0 and in the case c1 > 0 > c1 this takes a place under certain relation between the
parameters of the model. The explicit form of these relations is rather complicated to write
down. In Appendix we consider these conditions in very special symmetric case.

3.3 Numerical Analysis

3.3.1 Positive Trends, c1 > c2 > 0.

Equation 3.29 has exactly two real negative roots, near −b−
1 and near −b−

2 . All four other
roots have positive real parts. Hence, N = 4.

We have the system of twelve linear Eqs. 3.30–3.33 for eight variables (A1j , A2j ),

j = 1, 2, 3, 4. This system possesses a unique solution, since rank = 8.
In this case there are two possibilities. The first: all four roots with positive real parts are

real. The expression (3.12) for φ(x) depends on the eight real coefficients A1j , A2j , j =

Fig. 6 The case 0 > c1 > c2 : two real positive roots
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1, 2, 3, 4, which are uniquely determined by eight independent Eqs. 3.30, 3.31 and 3.32 .
The second: Eq. 3.29 possesses exactly two real positive roots and two complex conjugate
roots (with a positive real value).

The following numerical examples illustrate this observation. We assume q1 = q2 =
1, λ1 = 1, λ2 = 2, c2 = 1 and c1 = 2.

First, suppose that the jump values are distributed with density functions h1 and h2,
(3.27), with b−

1 = b−
2 = 1, b+

1 = b+
2 = 5 and B−

1 = B−
2 = B+

1 = B+
2 = 5/6. In this case

we have (3.12) with four positive real αk; the approximate expressions are given below:

φ1(x) = 1.0396e−0.8012x − 0.0557e−3.1988x + 0.0069e−4.6363x + 0.0092e−5.2577x,

φ2(x) = 0.6251e−0.8012x + 0.3702e−3.1988x − 0.0205e−4.6363x + 0.0852e−5.2577x .

Second, if b−
1 = b−

2 = 5, b+
1 = b+

2 = 1 and B−
1 = B−

2 = B+
1 = B+

2 = 5/6, the
corresponding expressions are

φ1(x) = 0.8142e−0.3092x + e−1.3183x (0.1596 cos(0.6255x) − 0.0494 sin(0.6255x)) + 0.0263e−3.0452x ,

φ2(x) = 0.8250e−0.3092x − e−1.3183x (0.1788 cos(0.6255x) + 0.1078 sin(0.6255x)) + 0.3538e−3.0452x .

Figures 7 and 8 show some plots of these functions given by (3.12) with different c1 =
2, 4, 8.

3.3.2 c1 > 0 > c2.

Let the trends be of opposite signs.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6
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1

Fig. 7 Laplace transforms φ1 = φ1(x) with c1 = 2, 4, 8 (from bottom to top); c2 = 1, λ1 = 1, λ2 =
2, q1 = q2 = 1, b−

1 = b−
2 = 1, b+

1 = b+
2 = 5 and B−

1 = B−
2 = B+

1 = B+
2 = 5/6

Methodology and Computing in Applied Probability (2020) 22:349–370 365



0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 8 Laplace transforms φ1 = φ1(x) with c1 = 2, 4, 8 (from bottom to top); c2 = 1, λ1 = 1, λ2 =
2, q1 = q2 = 1, b−

1 = b−
2 = 5, b+

1 = b+
2 = 1 and B−

1 = B−
2 = B+

1 = B+
2 = 5/6

In this case we have only three roots of (3.29) with positive real parts and we have the
only one boundary condition

N∑
k=1

A1k = 1.

instead of two Eqs. 3.31.
The approximate expressions of (3.12) with c1 = 2, c2 = −1, λ1 = 1, λ2 = 2, q1 =

q2 = 1, b−
1 = b−

2 = 1, b+
1 = b+

2 = 5 and B−
1 = B−

2 = B+
1 = B+

2 = 5/6 are given below:

φ1(x) = 0.9979e−0.8938x + e−5.0076x(0.002 cos(0.1466x) + 0.0062 sin(0.1466x)),

φ2(x) = 0.3296e−0.8938x + e−5.0076x(−0.0088 cos(0.1466x) + 0.0028 sin(0.1466x)).

See Fig. 9.
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Fig. 9 Laplace transforms φ1 = φ1(x) with c1 = 1, 2, 4 (from bottom to top); c2 = −1, λ1 = 1, λ2 =
2, q1 = q2 = 1, b−

1 = b−
2 = 1, b+

1 = b+
2 = 5 and B−

1 = B−
2 = B+

1 = B+
2 = 5/6
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Appendix: Conditions determining appearance of conjugate complex
roots

Consider the compound Poisson process with constant drift, X(t) = ct +∑N(t)
n=1 Yn, where

N(t) is a homogeneous Poisson process with parameter λ, λ > 0; {Yn}n≥1 are independent
identically distributed random jumps. For simplicity, we assume that Yn has the symmetric

Laplace distribution with the density function h(y) = 1

2
b exp(−b|y|), b > 0.

In this particular case, Eq. 3.29 is equivalent to the pair of equations:

cα − λ − q = λb2

α2 − b2
and λ + q − cα = λb2

α2 − b2
. (A.1)

Let c > 0 ( the case c < 0 can be analysed similarly). Since for q > 0

cα − λ − q|α=0 = −λ − q < −λ = λb2

α2 − b2
|α=0

and c > 0, all three roots of the first equation of (A.1) are always real: one negative and
two positive, see Fig. 10.

The second equation of (A.1) is equivalent to

f (α) := cα3 − (λ + q)α2 − cb2α + b2(q + 2λ)) = 0. (A.2)

This equation always has one negative root. The other two roots are real positive if and only
if function f (α) has a negative local minimum, minα>0 f (α) < 0, which is taken at the
stationary point

α∗ = λ + q +√
(λ + q)2 + 3b2c2

3c
. (A.3)

After the tedious algebra, one can see that the inequality minα>0 f (α) < 0 is equivalent to

λb2

c
< (b − α∗)

(
α∗ − λ + q

c

)
, (A.4)

where α∗ is defined by (A.3).

Fig. 10 c = c1 = c2 > 0 : three real roots of cα − λ − q = λb2

α2−b2
, two positive and one negative
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Note that condition (A.4) fails when b = (λ + q)/c, see Fig. 11.
If b �= (λ + q)/c, then (A.4) is valid only when the trend c is far from (λ + q)/b. More

precisely, if c ↓ 0, then α∗ ↑ +∞, in such a way that cα∗ ↓ 2

3
(λ + q), which ensures (A.4)

for a small c > 0. In contrast, if c → +∞, then α∗ → b/
√
3, which again gives (A.4) for a

sufficiently large trend c.
See Fig. 11: in case (1) (0 < c � (λ + q)/b) and in case (3) (c � (λ + q)/b) we have

two positive real roots; case (2) with moderate c corresponds to two conjugate complex
roots with a positive real part.

Consider another example. Let c1 = −c2 = c > 0 and the jump part is the same. In this
case, Eq. 3.29 becomes

(λ + q)2 − c2α2 = λ2b4

(α2 − b2)2
. (A.5)

Note that

(λ + q)2 − c2α2|α=0 = (λ + q)2 > λ2 = λ2b4

(α2 − b2)2
|α=0.

Hence, Eq. A.5 always has at least one positive real root, see Fig. 12.
Equation A.5 has two additional positive real roots if and only if there exists α > b such

that

f (α) := (α2 − b2)2 ·
[
(λ + q)2 − c2α2

]
> λ2b4,

see Fig. 12 (dashed parabola (λ + q)2 − c2α2 with small c which corresponds to three
real positive roots). Otherwise, Eq. A.5 has one real positive root and a pair of conjugate
complex roots with positive real part.

Since, the point of local maximum of f (α), α > b, corresponds to

α2 = b2

3
+ 2

3c2
(λ + q)2,

Fig. 11 c = c1 = c2 > 0 : the roots of λ + q − cα = λb2

α2−b2
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Fig. 12 c = c1 = −c2 > 0. The roots of (λ + q)2 − c2α2 = λ2b4

(α2−b2)2
: one real positive root and two

conjugate complex roots with positive real part (solid parabola); three real positive roots (dashed parabola)

Equation A.5 has three real positive roots if the following relation holds:

4

27

(
(λ + q)2 − b2c2

)3
> λ2b4c4,

which is equivalent to sufficiently small c, c < (λ + q)/b, such that

3(λ/2)2/3b4/3c4/3 + b2c2 < (λ + q)2.
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Brémaud P (1999) Markov chains, Gibbs fields, Monte-Carlo simulation, and queues. Springer, Berlin
Di Crescenzo A, Iuliano A, Martinucci B, Zacks S (2013) Generalized telegraph process with random jumps.

J Appl Probab 50(2):450–463
Di Crescenzo A, Martinucci B (2013) On the generalized telegraph process with deterministic jumps.

Methodol Comput Appl Probab 15(1):215–235
Di Crescenzo A, Meoli A (2018) On a jump-telegraph process driven by an alternating fractional Poisson

process. J Appl Probab 55(1):94–111
Di Crescenzo A, Pellerey F (2002) On prices’ evolutions based on geometric telegrapher’s process. Appl

Stoch Models Bus Ind 18:171–184
Di Crescenzo A, Ratanov N (2015) On jump-diffusion processes with regime switching: martingale

approach. ALEA Lat Am J Probab Math Stat 12(2):573–596
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