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Abstract

The theory of reciprocity is predicated on the assumption that people are willing to reward kind acts 
and to punish unkind ones. This assumption raises the question of what kindness is. In this paper, we offer 
a novel definition of kindness based on a notion of blame. This notion states that for player j to judge 
whether or not player i is kind to him, player j has to put himself in the position of player i, and ask if he 
would act in a manner that is worse than what he believes player i does. If player j would act in a worse 
manner than player i, then we say that player j does not blame player i. If, however, player j would be 
nicer than player i, then we say that player j blames player i. We believe this notion is a natural, intuitive 
and empirically functional way to explain the motives of people engaging in reciprocal behavior. After 
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developing the conceptual framework, we test this concept by using data from two laboratory experiments 
and find significant support for the theory.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Recent years have witnessed a growing literature on the theory of reciprocity. Founded on the 
seminal work of Rabin (1993) (henceforth Rabin)—further extended by Falk and Fischbacher
(2006), Dufwenberg and Kirchsteiger (2004), and other scholars—the theory of reciprocity is 
predicated on the assumption that people are willing to reward kind acts and to punish unkind 
ones.1 This approach raises the question of how to define kindness. In this paper, we offer a novel 
definition of kindness based on a notion of blame.

Put most simply, the notion of blame states that for player j to judge whether or not player 
i is kind to him, player j has to put himself in the position of player i, and ask if he would act 
in a manner that is worse than what he believes player i does. If player j would act in a worse 
manner than player i, then we say that player j does not blame player i for his behavior. If, 
however, player j would be nicer than player i, then we say that “player j blames player i” for 
his actions—i.e. player i’s actions are blameworthy.

This way of viewing kindness is distinctly different from other theories in a number of ways. 
Following the criteria that were discussed in Schotter (1990), our approach leads to an endoge-
nous, context-dependent, and process-oriented theory. It is endogenous because players judge the 
actions of others by their own standards, and not by some exogenous standards imposed by the 
analyst. In addition, our approach allows the standards people use to judge the actions of others 
to differ from person to person depending on their personal norms. This is crucial, as actions that 
bother one person may not bother other people at all, or those actions that strike some people as 
being fair may be very upsetting to others. Consequently, this feature differentiates our theory 
from the theories that impose an exogenous norm in order to determine what is considered kind. 
In the current framework, blame is self-referential: It only matters what you would have done 
in your opponent’s situation and not how the actions of others are compared to some exogenous 
norm.

Another important feature of our approach is that the theory is sensitive to the institutional 
setting. For instance, actions that are blame-free in a prison may certainly be blameworthy in 
civilian life. One cannot judge other people’s behavior in isolation—we need to know the con-
text they are in. This is fundamentally different than the existing theories, which assume that 
players’ preferences are independent of the context. For example, in a leading paper Levine
(1998) (henceforth Levine) takes this approach to analyze experimental evidence in ultimatum, 
centipede, and public goods experiments. Gul and Pesendorfer (2011) lay the foundations of in-
terdependence between behavioral types, independent of the environment that decision-makers 
interact.

1 For a comprehensive survey on reciprocity see Sobel (2005).
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Finally, our notion of blame judges the actions of people that lead to outcomes, and not merely 
the outcomes themselves. Thus, it is a process-oriented theory, and it differs from those theories 
that are outcome-based in that respect.

In this paper, we give a formal definition of what it means to put oneself in another player’s 
strategic position, how to construct blame, how blame affects a player’s preferences, and finally 
what an equilibrium looks like when people have blame-dependent preferences.

To provide a quick insight into how our theory differs from others, consider an ultimatum 
game played between two players, p (Proposer) and r (Receiver), whose preferences exhibit in-
equity aversion à la Fehr and Schmidt (1999) (henceforth F&S) or Bolton and Ockenfels (2000). 
Let ui(xp, xr) represent the preferences of player i when the final allocation is xp and xr for the 
Proposer and the Receiver, respectively.

Given F&S preferences, in the subgame perfect equilibrium of the game, the Receiver rejects 
an offer (xp, xr) if ur(xp, xr) < ur(0, 0). In our formulation of preferences that exhibit blame, 
the Receiver blames—hence perhaps rejects—an offer if that offer is less generous than the one 
he would have made had he been in the Proposer’s position. In other words, according to our 
hypothesis, the Receiver compares the offer (xp, xr) to the offer he would have made if he were 
the Proposer, say (x∗

p, x∗
r ). If the offer (xp, xr) is more generous than (x∗

p, x∗
r ), then he accepts 

the offer, otherwise he blames the Proposer. If blame causes a sufficiently high disutility for the 
Receiver, he will reject the offer.

Recently, Gurdal et al. (2013) have also studied the notion of blame. Gurdal et al. (2013) pro-
vide experimental evidence that in a simple principal-agent framework a subject (the principal) 
tends to punish another subject (the agent) who makes a decision on his behalf, not for the deci-
sion that he makes but for the outcome of his decision. More precisely, an agent is given a task 
to choose between a lottery and a safe alternative whose proceedings determine the earnings of 
the principal. Then, a public toss of a die determines the outcome of the lottery. In the last stage, 
the principal decides how to allocate a fixed amount of money between the agent and a random 
third party. In this carefully designed experiment, Gurdal et al. (2013) show that a principal is 
more likely to punish an agent based on the outcome of the agent’s decision. In Gurdal et al.
(2013) the notion of blame is equivalent to punishment and the focus is on the ex ante vs ex post 
evaluation of the agent’s performance. In contrast, our approach would determine blame by the 
difference of the principal’s expected payoff as a result of the agent’s decision, and what he could 
have received if he were in the agent’s position making the decision himself.

In Section 3.1.1 we will elaborate on the relation of our theory to those of F&S, Rabin and 
Levine in the context of our experiment.

1.1. Overview and summary

As our introductory discussion indicates, the essence of the notion of blame involves the 
examination of a counterfactual, i.e. imagining what you would have done if you were in the 
position of the person whose actions you are judging. In the lab, by allowing subjects to play all 
the roles in a game anonymously, we can operationalize this counterfactual thought experiment.

The two experiments reported in this paper do just that. In the first experiment, we take a sim-
ple dictator game and implement it in two stages. Even though the subjects know that there were 
two stages, they do not know what will transpire in stage 2 until the experiment is completed. 
In stage 1, the subjects split 10 tokens between themselves and another anonymous subject in 
the lab. In stage 2, the subjects are randomly matched with another subject in the lab. After they 
are matched, they are offered, as Receiver, the amount the subject that they matched with sent as 
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Sender in stage 1.2 The Receiver does not have the option of rejecting proposals. Rather, he can 
punish the Sender by reducing his payoff by 1 token at no cost to himself. Note that this design 
places each subject both in the role of a Sender and a Receiver in stages 1 and 2, respectively. 
Hence, in stage 2, when a subject receives an offer, he is able to compare that offer to the offer 
he made as a Sender in stage 1.

According to the theory of blame, the subjects should only punish if the offer they receive is 
less than the offer they made in stage 1. This prediction differs from the predictions of the theories 
that we mentioned vide supra. Our data suggest that a significant fraction of the subjects behave 
consistent with our prediction. Furthermore, subjects’ behavior is consistent with the theory of 
blame more often than the other theories.

Our second experiment uses the data generated by Carpenter et al. (2012) (henceforth CKS) 
who run a public goods experiment with punishment. Symmetric public goods games are useful 
for our purposes, because in such games, at the contribution stage, each player is in fact in the 
strategic position of others. Consequently, they can judge whether any other player acted more 
kindly or less kindly than they did. The experiment varies the network that players are connected 
through in the punishment phase, which allows us to better identify the punishment motives of 
the subjects as they change from one network to another.

Note that even though we present a full equilibrium analysis, our experiments aim only to 
examine whether or not subjects exhibit blame preferences. In order to test the equilibrium we 
would need to elicit first- and second-order beliefs of all our subjects which would be cumber-
some. Nonetheless, our experiments allow us unambiguously to test whether our subjects use 
blame as the basis for reciprocity.

This paper is organized as follows. Section 2 introduces the blame concept in a rigorous 
manner and provides an appropriate equilibrium concept. We also compute the equilibria of a 
formal example to further elaborate the equilibrium concept. Section 3 explains our experimental 
designs, discusses the theoretical predictions of various theories, analyzes the data, and states our 
results. Section 4 concludes.

2. Blame in games

2.1. Definitions

In order to introduce the notion of blame, we will follow the general psychological dynamic 
games framework of Battigalli and Dufwenberg (2009) (henceforth B&D). The literature of psy-
chological games pioneered by Geanakoplos et al. (1989) assumes that a player’s preferences 
not only depend on the outcome of the game, but also on the hierarchy of beliefs about the other 
players’ strategies and beliefs. B&D extend the theory to accommodate the possibility that play-
ers update their beliefs along a path in a sequential game. In B&D, preferences depend on both 
updated and conditional beliefs and beliefs of other players. This is a particularly important ex-
tension since it allows one to address the dynamic psychological effects that can be observed 
during the course of a game.

Our discussion will be confined to 2-player, finite-horizon, multi-stage games with perfect 
information under complete information. The purpose of this section is to provide a rigorous 
discussion of how we formulate blame in this framework. As B&D point out, this class includes 

2 In the remainder of the paper, we use the term “offer” for the dictator’s allocation decision despite the fact that it is 
not truly an offer since there is no rejection possibility.
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simultaneous moves games, perfect information games, and repeated games as special cases. For 
a discussion of the generalization to imperfectly observable actions, chance moves, and asym-
metric information we refer the reader to Section 6 in B&D.

Players, actions, and histories. Consider a multi-stage game consisting of 2 players N = {1, 2}. 
The set of histories is comprised of the initial history ∅ of length 0, as well as all finite histories. 
A history of length � is a sequence h = (a1, · · · , a�), where at = (at

1, a
t
2) is a profile of actions 

at time t ∈ {1, · · · , �}. We study games of perfect information, that is, a history h becomes public 
information as soon as it is realized.

H denotes the set of all non-terminal histories. We denote the set of finite actions available to 
player i at the history h ∈ H by Ai(h). If Ai(h) is singleton, then player i is not active. A history 
is terminal if and only if Ai(h) is empty for both players. We refer to a terminal history as an 
outcome, and denote the set of all outcomes by Z. In order to distinguish an outcome from a 
non-terminal history, we denote a generic outcome by z.

Each outcome z is associated with a material payoff for each player. The function πi : Z �→R

determines player i’s material payoff, πi(z), at the outcome z. Finally, for any h ∈ H ∪ Z

of length �, we define the set of histories that pass through h; Hh := {ĥ ∈ H ∪ Z : ĥ =
(h, a�+1, · · · , a�+m), for a profile of actions (a�+1, · · · , a�+m)}.
Meta-players. Our definition of blame makes reference to what a player would do in another 
player’s position: A player puts himself in the other player’s position and asks what he would 
do, and what beliefs he would hold, if he were in that position. More precisely, from player i’s 
perspective, there are two games to consider: the game he plays against player j , and the fictitious
game he plays against himself in player j ’s position. In order to formally address the latter game, 
we introduce meta-players that represent “a player who considers himself in the other player’s 
position.”

For each player i ∈ N , we define the meta-player 〈ij〉, for player i in player j ’s position, for 
j 	= i. Hence, given N = {1, 2}, we define the set of all players N̂ := {1, 2, 〈12〉, 〈21〉}. In the 
remainder of the paper, we use the notation i, j to refer to players in N , and we reserve the 
notation k, l for any player in N̂ .

Since player 〈ij〉 represents player i in player j ’s position, we assert that the actions that are 
available to player j at history h are also available to player 〈ij〉, i.e., A〈ij〉(h) := Aj(h) for all 
h ∈ H, i, j ∈ N . Similarly, we define π〈ij〉(z) := πj (z).

Strategies. For any player k ∈ N̂ , we denote the set of pure strategies by Sk . A strategy of a 
player k is a function, sk , which assigns an action in Ak(h) to each non-terminal history h ∈ H . 
We define S−k := ∏

l 	=k Sl .
Given a strategy profile (si, sk), we write ζ(si, sk) ∈ Z to denote the outcome induced by 

players i’s, and k’s strategies, for i ∈ N , and k ∈ {j, 〈ij 〉}.3 Given a history h ∈ H ∪Z, we define 
Sk(h) as the set of player k’s strategies that allow history h.4

Conditional beliefs. In order to define blame, we need two orders of conditional beliefs. We 
denote player k’s r th-order conditional beliefs by μr

k . The first-order conditional beliefs of player 

3 We define the outcome for (si , sk), where i ∈ N , and k ∈ {j, 〈ij〉}, because (si , s〈ji〉) does not induce any outcome, 
and (s〈ij 〉, s〈ji〉) is not relevant in our framework.

4 Formally, Si (h) := {si ∈ Si : for any z ∈ Hh ∩ Z, ζ(si , sk) = z for some sk ∈ Sk, k ∈ {j, 〈ij〉}}, and S〈ij〉(h) :=
{s〈ij 〉 ∈ S〈ij 〉 : for any z ∈ Hh ∩ Z, ζ(si , s〈ij〉) = z for some si ∈ Si }.
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k, μ1
k ∈ �H (S−k), are about other players’ strategies. His second-order conditional beliefs, μ2

k ∈
�H

(
S−k × ∏

l 	=k �H (S−l )
)
, are about other players’ strategies, and their first-order conditional 

beliefs. For player k, we write μk := (μ1
k, μ

2
k) ∈ Mk , where Mk is the set of hierarchies of his 

conditional beliefs, and define M := ∏
k∈N̂

Mk . Finally we write μ1
kl(·|·) := margSl

μ1
k(·|·), and 

μ2
klm(·|·) := margSm

marg�H (S−l )
μ2

k(·|·) for player k’s belief about player l’s strategy, and player 
k’s belief about player l’s belief about player m’s strategy, respectively.5 In the remainder of the 
paper we will write μ2

kl for μ2
klk for brevity.

Our definition of blame is based on the following conditional beliefs. For i, j ∈ N ,

• μ1
ij is player i’s belief about player j ’s strategy,

• μ1
i〈ij〉 is player i’s belief about the strategy that he would play, if he were in player j ’s 

position,
• μ1〈ij〉i is a belief that player i would hold about his own strategy in player j ’s position,

• μ2
ij is player i’s belief about player j ’s belief about his strategy,

• μ2
i〈ij〉 is player i’s belief about the beliefs that he would hold in player j ’s position about his 

own strategy.

Blame and preferences. Having discussed players’ beliefs, we are now ready to define blame, 
and incorporate it into players’ preferences. Let us focus on how player i judges player j , given 
his beliefs μi(·|h) ∈ Mi at history h ∈ H . To do this, we define the expected material payoff 
of player i based on his beliefs μi(·|h), when he plays against player j , and when he plays 
against 〈ij 〉. In the former case, we have

Eμi

[
πi

(
ζ(s)

)∣∣h] :=
∫

Si×Sj

πi

(
ζ(s)

)
dμ1

ij (sj |h)μ2
ij (si |h). (1)

Note that this is player i’s expected material payoff based on his beliefs about player j ’s strategy, 
and about player j ’s beliefs regarding his own strategy.

In the latter case, player i plays against himself in player j ’s position, i.e. player 〈ij〉. Hence, 
the outcome that is induced by this interaction is ζ(si, s〈ij〉). As a result, if player i were in player 
j ’s position, he would create an expected material payoff of

Eμi

[
πi

(
ζ(si, s〈ij 〉)

)∣∣h] :=
∫

Si×Sj

πi

(
ζ(si , s〈ij 〉)

)
dμ1

i〈ij〉(s〈ij 〉|h)μ2
i〈ij 〉(si |h), (2)

for himself.
The difference between player i’s expected material payoffs when he plays against player j

and player 〈ij〉 determines whether or not player i blames player j .

Definition 1. A player i ∈ N who holds beliefs μi is said to blame player j ∈ N at history h, if

δij (μi |h) := Eμi

[
πi

(
ζ(si , s〈ij 〉)

)∣∣h] − Eμi

[
πi

(
ζ(s)

)∣∣h]
> 0. (3)

Let us clarify the intuition behind the definition with the following statement from player i: 
I blame player j because the expected material payoff that I think he expects that I will get when 

5 For any probability measure μ on the product space X × Y we write margXμ to denote the marginal measure on X.
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I play against him, (1), is less than my expected material payoff if I played against myself in his 
position, (2). In other words, if I was in his position, I would be nicer to the player in my position 
than he is to me, δij (μi |h) > 0.

The next step is to define preferences of players. Let us define the psychological utility func-
tion of player i by Ui(z, μi) : Z ×M �→ R. In order to address the role of blame in players’ pref-
erences explicitly, we define the function ui(z, δij ), such that ui(z, δij (μi |h)) := Ui(z, μi(·|h)).

Now, let us discuss meta-player 〈ij〉’s preferences. In order to do that, we should define what 
blame means for meta-players. Note that the only blame term that needs to be scrutinized is δ〈ij〉i : 
How would player i blame himself when he puts himself in player j ’s position? Note that δ〈ij〉i
is determined by what “player i who considers himself in player j ’s position” believes player i
plays and what he would have done in player i’s (his original) position. Such blame is determined 
by player 〈ij〉’s preferences and his beliefs. Clearly, when player i places himself in player j ’s 
position he is free to hold any beliefs he wishes and if those beliefs differ from the action that 
player i ultimately intends to take, then player 〈ij〉 may blame player i, i.e., there may be self 
blame. In Appendix B, under an innocuous assumption, we prove that this in fact cannot be the 
case in an equilibrium. In the remainder of the paper, to simplify our analysis we will assume 
that there is no self blame between players 〈ij〉 and i.

We are ready to define the preferences of meta-players. Since meta-players’ preferences do 
not exhibit belief-dependence of the form that it takes psychological game theory to model, the 
utility function of player k ∈ N̂ \ N is uk(z) : Z �→ R.

Having defined players’ preferences, we can now formally define a blame game.

Definition 2. Given an extensive form with material payoffs, 〈N,H, (πi)i∈N 〉, we define a blame 
game as 〈N̂,H, (uk)k∈N̂

〉.

Example 1. Let us elaborate more on the preferences of player i ∈ N with an example. Let the 
utility function of player i be

ui(z, δij (μi |h)) := πi(z) +
(
bi − δij (μi |h)

)
πj (z).

This specification indicates that player i’s utility is determined by the sum of his material payoff, 
and a proportion of the other player’s material payoff. The term 

(
bi − δij (μi |h)

)
determines the 

weight attached to player j ’s material payoff. The first term bi is the weight that player i puts on 
player j ’s material payoff without any blame consideration. However, the second term captures 
the idea that if player i blames player j , the overall weight decreases. If player i does not blame 
his opponent, he assigns a constant, non-negative weight bi to his opponent’s material payoff. As 
player i blames more, the weight he assigns to player j ’s material payoff decreases, and in fact, 
when it is high enough (i.e. δij (μi |h) ≥ bi ), player i becomes hostile to player j . In this example, 
player i’s type is bi , indicates his altruism towards the other player as his innate characteristic.

Now, suppose that player 〈ij〉’s utility function is as follows:

u〈ij〉(z) := πj (z) + biπi(z).

When player i considers himself in player j ’s position, his utility is derived by the weighted sum 
of his material payoff (in player j ’s position) and sum of other player’s material payoff. Note 
that when he considers himself in player j ’s position, his preferences are not affected by any 
blame considerations towards himself. Moreover, in this example, player i retains the weight bi

in player j ’s position. In other words, when player i considers himself in player j ’s position, he 
still puts the weight bi on the material payoff of the other player; i.e. player i’s.
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2.2. Equilibrium

The equilibrium concept that we will define for a blame game, 〈N̂,H, (uk)k∈N̂
〉, is based 

on B&D who extend the sequential equilibrium of Kreps and Wilson (1982). The equilibrium 
concept requires randomized choices. In our discussion so far, we focused solely on pure strate-
gies. The interpretation of randomized choices—as in Aumann and Brandenburger (1995)—is 
that the randomized choice of a player k is equivalent to other players’ common first-order be-
liefs about player k’s strategy. Therefore, we define behavioral strategies σk = (σk(·|h))h∈H ∈∏

h∈H �(Ak(h)), as a vector of common first-order beliefs held by other players. In the tradi-
tion of Kreps and Wilson (1982), an assessment is a profile (σ, μ) := (σk, μk)k∈N̂

, where σ is 
a behavioral strategy profile and μ ∈ M . We assume that behavioral strategies are independent 
across histories. Then, we say that first-order beliefs about player k’s strategy are derived from a 
behavioral strategy σk , if for all l ∈ N̂, sk ∈ Sk ,

μ1
lk(sk|h) :=

∏
ĥ∈Hh\Z

σk(sk(ĥ)|ĥ).

Now we can define consistency of assessments.

Definition 3. As assessment (σ, μ) is consistent if

(a) (μ1
k)k∈N̂

is derived from σ ,

(b) second-order beliefs in μ assign probability 1 to first-order beliefs, i.e. for all i ∈ N , k ∈ N̂ , 
h ∈ H , μ2

ik(·|h) = μ1
ki(·|h).

In addition to consistency, sequential rationality is a requirement of equilibrium behavior. 
Note that for player i ∈ N , given his beliefs μi at history h ∈ H , a strategy si yields an expected 
utility

Eμi
[ui |h] :=

∫

Sj

ui

(
ζ(si , sj ), δij (μi |h)

)
dμ1

ij (sj |h).

Similarly, for player 〈ij〉 ∈ N̂ \ N , given his beliefs μ〈ij〉 at history h ∈ H , a strategy s〈ij〉 yields

Eμ〈ij〉 [u〈ij〉|h] :=
∫

Si

u〈ij 〉
(
ζ(si , s〈ij〉)

)
dμ1〈ij〉i (si |h).

As usual, we expect that players choose their strategies to maximize their expected utilities as 
defined above. We are ready to define the equilibrium.

Definition 4. An assessment (σ ∗, μ∗) is a sequential equilibrium, if it is consistent, and for 
all h ∈ H , and for l ∈ N̂ , sl ∈ Sl(h), if μ∗1

kl (sl |h) > 0 then sl ∈ arg maxsl∈Sl(h) Eμ∗
l
[ul |h] for all 

k ∈ N̂ .

Let us summarize what happens in the equilibrium of a blame game. A player i ∈ N judges 
the other player’s actions by comparing what he believes player j does with what he believes he 
would do in their positions. This comparison defines blame. His utility function ui is affected by 
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Fig. 1. A two-person extensive form game with blame.

blame, and in the equilibrium, given his beliefs he chooses the strategy that maximizes his ex-
pected utility. Also, when player i considers himself in player j ’s position, he chooses a strategy 
that maximizes u〈ij〉. Finally by consistency, all the beliefs are correct in the equilibrium.

2.3. A simple example

This section aims to illustrate the notion of blame and the equilibrium analysis by using the 
simple sequential game displayed in Fig. 1. Throughout the analysis, for ease of exposition, we 
will focus on pure strategy equilibrium.

In this game, there are three outcomes (L), (R,A), and (R,B), and the material payoffs corre-
sponding to them are given just below the terminal nodes.

Let the utility of players i and 〈ij〉 be as in Example 1.

ui(z, δij (μi |h)) := πi(z) +
(
bi − f

(
δij (μi |h)

))
πj (z),

u〈ij〉(z) := πj (z) + biπj (z).

Assume that 1 ≥ bi ≥ 0, and f is a non-decreasing function of blame, such that f (δij ) = 0 for 
all δij ≤ 0. Also, we assume that 0 ≤ f (δij ) ≤ 1. Our choice of functional form suggests that 
if player i does not blame his opponent, he assigns a constant non-negative weight bi to his 
opponent’s material payoff. As player i blames more, the weight that he assigns to player j ’s 
material payoff decreases, and in fact, when it is high enough (i.e. f

(
δij (μi |h)

) ≥ bi ) player i
becomes hostile to player j .

Before we move into equilibrium analysis let us illustrate how blame is computed for a par-
ticular set of beliefs. Consider the case where (i) player 2 believes that his strategy, if he were 
in player 1’s position, would be to play L, (ii) player 2 believes that player 1’s strategy is to 
play R, and (iii) player 2 believes that player 1’s belief about his strategy is that he plays B at the 
history (R). Note that if player 2 were in player 1’s position, playing L would lead to a material 
payoff of 4 for a player in his position. On the other hand, player 2 believes that player 1 plays R, 
and that player 1 believes that he will actually play B. As a result, he expects a material payoff 
of 2. Therefore, while he would give a material payoff of 4 to a player in his position, he believes 
that player 1 gives him a payoff of 2. Hence, by Definition 1, he blames player 1 by a magnitude 
of 2.

Since there is a unique history at which each player moves, we will suppress the history and 
write sk instead of sk(h). Recall that, in the equilibrium, higher order beliefs, and meta-players’ 
beliefs have to be the same by the consistency requirement. Hence, in the equilibrium analysis 
that follows, we focus only on the cases where μ1

ij = μ1〈ji〉j = μ2
ji .

As the first step, let us determine meta-players’ equilibrium behavior. In order to do that let 
us write their utilities.
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Table 1
Players’ blame.
(a) δ12

μ1
12(A|∅) = 1 μ1

12(A|∅) = 0

μ2
12(L|∅) = 1 4 − 4 4 − 4

μ2
12(L|∅) = 0 5 − 0 5 − 5

(b) δ21

μ1
21(L|(R)) = 1 μ1

21(L|(R)) = 0

μ2
21(A|(R)) = 1 4 − 4 4 − 0

μ2
21(A|(R)) = 0 2 − 4 if b2 ≤ 1/2 2 − 2 if b2 ≤ 1/2

4 − 4 if b2 ≥ 1/2 4 − 2 if b2 ≥ 1/2

Recall that by consistency of beliefs we impose that μ1
ij

=
μ2

j〈ji〉 = μ2
ji

.

u〈12〉(z) =
⎧⎨
⎩

4 + 4b1 if z = (L)

0 if z = (R,A)

2 + 5b1 if z = (R,B)

u〈21〉(z) =
⎧⎨
⎩

4 + 4b2 if z = (L)

0 if z = (R,A)

5 + 2b2 if z = (R,B)

From u〈12〉 we immediately observe that, by sequential rationality, s∗〈12〉 = B for any b1 ≥ 0. 
Player 〈21〉’s optimal behavior is determined as a response to his belief, μ〈21〉2, about player 2’s 
(his own) strategy. Note that, 〈21〉’s best reaction to μ〈21〉2(A) = 1 is L for all b2 ≥ 0, and his 
best reaction to μ〈21〉2(B) = 1 is R (resp. L) if b2 ≤ 1/2 (resp. b2 ≥ 1/2). Having established 
meta-players optimal behavior, we move on to determining players’ blame.

Tables 1a and 1b summarize players’ blame at the indicated beliefs. For player i’s blame δij , 
the columns indicate beliefs about player j ’s strategy (μ1

ij , μ
2
ji , μ

2
j〈ji〉), and the rows indicate 

beliefs about player i’s strategy (μ1
ji, μ

2
ij , μ

2
i〈ij〉).6 For example, player 2’s blame at history (R)

given beliefs μ2
21(A|(R)) = μ1

21(L|(R)) = μ2
2〈21〉(A|(R)) = 0 is δ21 = 0 for b2 ≤ 1/2, and δ21 = 2

for b2 ≥ 1/2. This is shown at the lower right corner of Table 1b. Let us explain. Player 2 believes 
that other players believe that he plays B. Since he believes that player 1’s strategy is R, his 
expected material payoff is 2. The material payoff that player 2 expects to get if he played against 
player 〈21〉 depends on b2. If b2 ≤ 1/2 player 〈21〉’s optimal strategy is R, which leads to the 
same material payoff of 2 for player 2. However, when b2 ≥ 1/2, player 〈21〉 plays L, which 
leads to a material payoff of 4. In summary, if b2 ≤ 1/2 player 2 would have followed the same 
strategy as player 1, and hence, he does not blame player 1. If b2 ≥ 1/2, contrary to player 1, 
player 2 would play L and would lead to a material payoff of 4, causing a difference of 2 in 
material payoffs. All the cases in Table 1 are computed similarly.

Let us now determine player 2’s equilibrium behavior at the history (R). First, note that by 
consistency we have μ1

21(L|(R)) = 0. By using Table 1b, we determine player 2’s utility at two 
outcomes (R,A) and (R,B) for different values of b2. Table 2 states these utilities.

The shaded cells in Table 2 indicate that the outcome—hence, the strategy of player 2—is 
consistent with the corresponding beliefs in the columns. This helps us to determine player 2’s 
optimal strategy in the equilibrium. In fact, we get

6 We only write μ1 , and μ2 in the columns and rows, respectively, since other beliefs are the same in the equilibrium.

ij ij
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Table 2
u2(z, δ21(μ2|h)) when μ1

21(L|h) = 0 at h = (R).

μ2
21(A|h) = 1 μ2

21(A|h) = 0 μ2
21(A|h) = 0

0 ≤ b2 ≤ 1 b2 ≤ 1/2 b2 ≥ 1/2

z = (R,A) 0 0 0

z = (R,B) 2 + 5(b2 − f (4)) 2 + 5b2 2 + 5(b2 − f (2))

Fig. 2. Characterization of sequential equilibria of the game in Fig. 1.

s∗
2 =

⎧⎪⎨
⎪⎩

A if 0 ≤ b2 ≤ f (4) − 2/5,

B if b2 ≤ 1/2,

B if b2 ≥ max{1/2, f (2) − 2/5}.
Finally, let us determine player 1’s equilibrium behavior. Observe from Table 1a that player 1 

blames player 2 (δ12 = 5) only under the beliefs that player 2 plays A, and player 1 plays R. In 
that case, his utility from playing L is 4 + 4(b1 − f (5)), and from playing R is 0. Therefore, for 
any b1 ≥ 0 he prefers to play L. Clearly, this is not consistent with the underlying beliefs that 
player 1 plays R. In all other cases, player 1 does not blame player 2 and he prefers L to R if and 
only if 4 + 4b1 ≥ 5 + 2b1; i.e., b1 ≥ 1/2.

Fig. 2 depicts different regions of the b1, b2 space, each determining a different equilibrium. 

The horizontal axis is b1 and the vertical axis is b2. We list the equilibria as 
[(

s1(∅), s〈12〉(R)
);(

s2(R), s〈21〉(∅)
)]

. We omit the beliefs since they are consistent with strategies in the equilibrium.

Note that there is multiplicity of equilibria in some regions. For example in the region where 
0 ≤ b1 ≤ 1/2 and 1/2 ≤ b2 ≤ f (4) − 2/5, there are two equilibria, namely 

[
(R,B);(B,L)

]
and [

(L,B);(A,L)
]
. In the former equilibria, player 2 is nice enough that he would play L if he were 

in player 1’s position. Therefore, he blames player 1 who plays R by δ21 = 2. However, player 
2’s blame is not strong enough to make him play A. As a result, player 1 who is relatively more 
selfish (b1 < 1/2) plays R, and player 2 plays B. The latter equilibrium is completely different. 
When player 2’s strategy is A, he blames player 1 even more (δ21 = 4) if player 1 plays R. This 
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blame is strong enough that player 2 indeed prefers to play A in case player 1 plays R. In order 
to avoid this, player 1 plays L.

3. Experiments

In what follows, we will discuss the two experiments conducted to test our notion of blame. 
The first is a modified version of a dictator game with punishment, and the second is an experi-
ment that investigates a public goods game with punishment, performed by CKS. Since the data 
produced by the CKS are richer than our dictator game data, we will be able to perform a more 
elaborate empirical analysis including a structural estimation. Taken together, these experiments 
offer significant support for our notion of blame.

Note that these experiments are not direct tests of our equilibrium concept but rather aim to 
test reduced form versions of our model concentrating only on the actions taken by our subjects 
in all positions and their punishment behavior. These actions are all the data we need to test the 
premises of our theory. In fact, our dictator-game experiment is not a game but rather an exercise 
performed to test whether or not the preferences of subjects are consistent with the notion of 
blame.

Put differently, our theory has two components: first one describes the preferences of players 
when involved in the counterfactual thought experiment concerning blame, and the second one 
delineates the strategic aspects of interaction, and its associated equilibrium. In both experiments 
we discuss here, we are exclusively interested in whether or not our subjects perform the blame 
thought experiment, and put themselves in others’ situations. In each experiment, the action 
a subject may take can be unambiguously ranked in terms of kindness. For instance, giving 
more in the Dictator game is kinder than giving less. (This is also the case for contributions 
to the public goods in the second experiment.) In this regard, the blame thought experiment is 
straightforward since in stage 1 all subjects are, by definition, in the position of each other. Then, 
in stage 2, according to the definition of blame, they are expected to compare how much they 
gave in stage 1 to how much they are offered by the subject they are matched with. If a subject 
gave more in stage 1, he blames the subject he is matched with.

3.1. Dictator experiment

The aim of our dictator experiment was to test the basic elements of our theory of blame fo-
cusing on subjects’ preferences and motivations for punishment. In order to do this, we designed 
an experiment that did not involve any strategic interaction. Rather, the experiment was a direct 
test of preferences involving blame. This design had the obvious advantage of holding strate-
gic considerations absent for our subjects, and not having them confound observed behavior. 
Later in this section, we also present the analysis of an experiment—which involves a strategic 
situation—run by CKS.

For our experiment, which was conducted at the experimental lab of the Center for Experi-
mental Social Science, 120 subjects were recruited from the undergraduate population of New 
York University. They engaged in one round of the experiment that lasted about 25 minutes. The 
show up fee was $8, and subjects earned on average $16.72.

The task that our subjects faced was extremely simple. It was composed of two stages. Sub-
jects were not informed about the content of stage 2 before they completed stage 1. However, at 
the beginning of the session, they were informed that there would be two stages.
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In stage 1, the subjects played a dictator game. That is, they were asked to split 10 tokens 
(convertible to dollars at the rate of 1 token = 1$) between themselves and an anonymous subject 
in the room. After all the subjects made their choices they were randomly divided into two 
equally sized groups called Senders and Receivers, and then randomly matched in pairs. If a 
subject was chosen to be a Sender, his payoff was equal to what he decided to keep for himself 
of the 10 tokens. If he was chosen to be a Receiver, his payoff was equal to the amount given to 
him by the Sender whom he was matched with. Subjects were not told their payoff from stage 1 
until after both stages of the experiment were completed.

After stage 1 was completed, subjects moved on to stage 2, where they were randomly 
matched with another subject in the lab. After they were matched, they were offered, as a Re-
ceiver, the amount that the subject whom they were matched with sent as a Sender in stage 1. In 
other words, if a subject was matched with a person who gave 3 tokens in stage 1, he was offered 
3 tokens in the stage 2 as his payoff while the other subject received 7. Receivers did not have the 
option of rejecting proposals; however, they could, if they wished, punish the Sender that they 
were matched with by reducing his payoff by 1 token at no cost to themselves. In order to elicit 
their response, we used the strategy method: rather than having the subjects punish directly, we 
asked them to set a cutoff before seeing the offer.7 If the offer was equal to or less than the cut-
off, 1 token would be removed from the Sender’s payoff. For example, say that a subject chose a 
cutoff of 4. If the subject was matched with a Sender who offered 3 tokens in stage 1, and kept 
7 for himself, then the computer would reduce the Sender’s payoff by 1 token from 7 to 6. If the 
Sender gave 5 tokens and kept 5 tokens, his tokens would not be reduced, and his payoff would 
stay at 5.

The stage 2 payoff was determined as follows. After subjects made their choices in stage 2, 
the computer randomly determined whether they were a Sender or a Receiver. If a subject was 
designated to be a Receiver, the subject whom he was matched with was designated to be a 
Sender, and vice versa. A Sender’s payoff was equal to what he decided to keep for himself in 
stage 1 minus 1-token reduction if there was a punishment.

The total payoff for the subjects in the experiment was equal to the sum of earnings in stage 1 
and 2 plus the show up fee.

The data of interest generated by the experiment are the stage 1 offers and the stage 2 cutoffs 
since those are the basic ingredients both for our theory and other theories.

In the next section, we will determine the predictions of four theories that could be applied in 
this experimental environment. We will then analyze the data in the light of these predictions.

3.1.1. Theoretical predictions
If theories are to be of interest, they must generate predictions that are distinctly different 

from those of other competing theories, and be testable using a simple and transparent experi-
ment. The experiment outlined above, we believe, is an excellent testing ground for our theory of 
blame because it is straightforward and makes considerably different predictions from all of the 
other leading theories that can be used to explain the data it generates—i.e., the F&S’s Inequity 
Aversion Model, Rabin’s Theory of Reciprocity, Levine’s Theory of Interdependent Preferences, 
and our Theory of Blame.

7 While some investigators have suggested that behavior may be different when subject behavior is elicited using the 
strategy method, Brandts and Charness (2011), in a review paper, found limited support for this conjecture especially 
when the number of contingencies elicited in the strategy is small. A similar point is made in Brandts and Charness
(2000) where they compared the “hot” and “cold” elicitation methods and found no significant difference.
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Fig. 3. Prediction of the theory of blame.

Our goal in this section is to describe the behavior predicted by these theories for the particular 
experiment we have just discussed. Throughout this section, we assume that a subject assigns a 
utility v(x) to a material payoff x. For expositional ease, let us assume that v is increasing, 
continuous, and concave.

Since our experiment asks subjects to first divide 10 experimental tokens, and then to decide 
on a punishment to be directed at those whose division they think is worthy of punishment, 
we will investigate each contending theory to determine their predictions on this division and 
punishment behavior. More precisely, we will discuss a subject’s optimal allocation between 
himself, 10 − x∗, and another subject, x∗, and also determine whether the same individual is 
willing to punish a subject who gives him y when he is in the Receiver position.

Blame
Let us begin with the predictions of our theory. Note that since the Sender’s problem in stage 1 

is simply choosing an optimal allocation, a subject i chooses x ∈ [0, 10] to maximize v(10 −x) +[
bi − f

(
δij (μi |h)

)]
x, where f is a non-negative and increasing function such that f (0) = 0 for 

all δij ≤ 0. In stage 1, since subjects make a simple allocation decision, there is no room for them 
to blame anyone. Hence, in stage 1, we assume that δij (μi |∅) = 0 for any subject i. It is therefore 
straightforward to see that the optimal amount x∗ a subject will send is a non-decreasing function 
of bi .

The amount x∗(bi) is what subject i with bi will optimally offer to an anonymous subject 
when he is asked to allocate a material payoff of 10 as a Sender.

Now suppose that the subject is in the Receiver’s position in stage 2 and he is offered an 
amount y. Based on the premise of our theory, he evaluates this offer based on what he would 
have offered as a Sender. Since, he was in the Sender’s position in stage 1, we assume that he 
updates his preferences by incorporating blame δij (μi |h) = x∗(bi) − y. As a result, the Receiver 
may find it optimal to punish the Sender for the offer y if y < y∗(bi) := x∗(bi) − f −1(bi).

Fig. 3 summarizes these observations. The bold line indicates the Sender’s optimal offer. 
Since the choice of f is arbitrary the punishment cutoff y∗(bi) is below x∗(bi) for any bi . The 
important feature is that both the offer, x∗(bi), and the punishment cutoff, y∗(bi), are increasing 
in a subject’s bi . Moreover, x∗(bi) ≥ y∗(bi) for any bi .
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Fig. 4. Prediction of the theory of inequity aversion.

Inequity aversion
The view that individuals can exhibit inequity aversion is studied by F&S.8 According to this 

theory, although a person likes more material payoff, he gets disutility from being far off from 
others. Based on F&S’s formulation of such preferences, in our problem, a subject chooses an 
offer x to maximize

v(10 − x) − α max
{
2x − 10,0

} − β max
{
10 − 2x,0

}

where α > β ≥ 0, and v is a concave and continuous function.9 Note that the larger a subject’s β
parameter, the nicer he is when acting as a Sender since he dislikes having more than the Receiver. 
In that sense, it is directly comparable to our bi . Also note that the α parameter is relevant when 
the subject receives less than 5 (allocates more than 5 to the Receiver) while the β parameter is 
relevant when the subject receives more than 5 (allocates less than 5 to the Receiver).

Since it is never optimal for a subject to allocate more than 5 to the Receiver (given α > 0), 
it will be the β parameter that will determine a subject’s allocation when acting as a dictator. 
Hence, x∗(β), which is the optimal amount a subject with parameter β will offer, increases in β . 
However, it never exceeds the most equitable allocation 5, because beyond 5 the subject bears 
a disutility from inequity aversion, and receives less material payoff. The bold line in Fig. 4
illustrates the optimal offer.

Now, we turn to the question of when a subject punishes a Sender in stage 2. Let y be the offer 
that a Receiver gets. Any offer y < 5 creates a disutility since α > 0. Therefore, the Receiver will 
find it optimal to punish any offer y < 5 since punishment reduces the existing inequality at zero 
cost. Also note that a Receiver who offered x∗ > 0 when he is in the Sender position must 
necessarily have β > 0. Therefore, for any offer y ≥ 5, since the punishment further increases 
the inequality, the Receiver does not find it optimal to punish the Sender. Only when x∗ = 0 it is 
possible that β = 0, and hence, the subject is indifferent between punishing any offer y.

8 Bolton and Ockenfels (2000) study the same idea with a different formulation of preferences. Since the predictions 
of the two papers are the same, we do not provide a separate discussion.

9 In the original formulation of F&S, the utility derived from the material payoff is 10 − x. Therefore, depending on 
the value of β , Sender will offer either 0 or 5. The concavity of the v function makes the giving behavior smoother and 
provide a better match to data.
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The Fig. 4 depicts this behavior. The bold line indicates the optimal offer x∗(β) of a subject 
as a Sender, and the gray area indicates the offers that will be punished. Note that the behavior 
under F&S differs qualitatively from that of our blame theory because, while in our theory the 
punishment cutoff is an increasing function of a subject’s bi , under F&S, the punishment thresh-
old is a constant of 5, and independent of a subject’s α. This provides a very strong prediction for 
the F&S’s theory, which is that all offers below 5 will be punished. This prediction is distinctly 
different than the prediction of the theory of blame.

Kindness
Most reciprocity theories rely on an exogenous norm of kindness in order to determine how 

kind people are.10 For instance, in the theory of Rabin, “[...] players have a shared notion of 
kindness and fairness and that they apply these standards symmetrically.” The main postulate of 
this theory is that people return kindness with kind acts, and unkindness with mean acts. Ac-
cording to Rabin, kindness is defined with reference to a predetermined allocation (e.g. equitable 
allocation) on the Pareto frontier of possible payoffs. If a player believes that his opponent’s 
strategy leads to an allocation that is worse than this predetermined one, then the player finds his 
opponent’s act unkind. Although Rabin shows that the results are valid for a large class of such 
reference points, they are all exogenously determined.

According to Rabin’s model, a subject in the Dictator position (in stage 1) would offer zero 
because subjects are motivated to be kind only when they observe others to be kind towards 
them. However, in stage 2, the subjects observe kindness (or lack thereof) of the Sender. If we 
apply Rabin’s original “egalitarian” kindness standard, a Sender who offers more (less) than 5 is 
considered kind (unkind). Therefore, according to a strict interpretation of the Rabin model, we 
expect Senders to offer zero in stage 1, and Receivers to set a cutoff of 5 in stage 2.

Note that, while the F&S’s prediction is indistinguishable from Rabin’s in stage 2 (both sug-
gest a cutoff of 5) F&S allows for positive offers in stage 1.

Interdependent preferences
Levine takes a novel approach in formulating altruism and reciprocity by using orthodox 

game theoretical tools.11 In particular, in order to analyze experimental data, Levine models the 
underlying game as a Bayesian game, where the types determine how altruistic or kind a subject 
is towards another subject. A simplified version of the preferences are as follows.

v(10 − x) + ai + λaj

1 + λ
x.

That is, each subject i has a type ai ∈ (−1, 1), which determines the weight they assign to the 
other player’s material payoff. Players are also sensitive to the type of who they are playing 
against. In particular, the utility function posits that the weight is higher if the opponent is nicer; 
i.e. higher aj . Also, the intensity of the sensitivity is captured by a parameter λ. Clearly, if λ = 0, 
player i is not affected by whom he plays against. As λ > 0 increases, the player becomes more 
sensitive. Therefore, for λ > 0, player i is nicer against a nice player.

In our experimental setup, in stage 1, since a Sender does not know whom he plays with, he 
chooses x to maximize

10 See Blount (1995), Falk et al. (2003), Falk and Fischbacher (2006), Falk et al. (2006), Falk et al. (2008) for leading 
examples.
11 For a more general approach we refer the reader to Gul and Pesendorfer (2011).
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Fig. 5. Prediction of the theory of Levine.

v(10 − x) +
∫

ai + λaj

1 + λ
dF(aj )x

where F is the distribution of types.
It is easy to determine the optimal offer x∗(ai) of player i. Since the weight is an increasing 

function of ai , the optimal offer is non-decreasing in ai . Recall that in our experiment we keep 
stages 1 and 2 strategically independent. Therefore, the type of a player is directly revealed 
through his offer y, which he chose as a Sender in stage 1.

In stage 2, whether or not a Receiver punishes a Sender depends on his and the Sender’s type. 
In fact, if ai < −λaj the Receiver punishes. This in fact suggests that there is an inverse relation 
between what an agent offers and his punishment threshold. The intuition is simple. According 
to Levine’s formulation, how much a player cares about the material payoff of another player 
increases both in the other player’s kindness (type) as well as his own kindness. Hence, a spiteful 
player may possibly punish another player despite his kind offer. Similarly, a very nice agent 
does not punish anybody except maybe a very spiteful people.

Finally, note that Levine’s theory differs from ours: in the theory of blame if a player is nicer he 
expects more from others because he is judging them by his own standards; for Levine, however, 
nicer people are more tolerant to the spiteful behavior of others because, in some sense, the two 
types are averaged in determining how much a subject cares about his opponent.

As a result, Levine’s theory predicts punishment behavior that is opposite of ours. In our 
theory, punishment cutoffs are increasing in how nice subjects are, and nice people demand nice 
behavior. Yet in Levine’s theory, punishment cutoffs are decreasing in how nice a subject is.

Fig. 5 illustrates the discussion.

3.1.2. Experimental results
In light of the predictions discussed above, we will first present the results of our experiment 

by concentrating on the relationship between the offers made in stage 1 and the cutoffs stated in 
stage 2. It is important to note that, the theories we discussed made stark and qualitatively differ-
ent predictions. While the F&S (and other inequality averse models like Bolton and Ockenfels, 
2000) predict that cutoffs will be 5 no matter what the offer a subject made in stage 1, the theory 
of blame predicts that cutoffs increase in the offers made. On the other hand, Levine suggests 
the opposite: cutoffs are a decreasing function of offers. Therefore, the only theory suggesting a 
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positive relationship between the offers and the cutoffs is the theory of blame, and below we will 
also demonstrate that our data is consistent with such a positive relationship.

It is important to note that we are not interested in having a horse race among theories. We 
believe that no single theory can explain the varieties of behaviors that people exhibit, either in 
experiments, or in life. Therefore, numerous theories are needed to explain observed behavior. 
What is of potential interest, however, is how the population of people is distributed across these 
theories. To this end, we present another calculation where we look at the conformity of four 
theories to the data for each offer made in stage 1. What we demonstrate is that while our theory 
of blame does a good job at organizing the data, it is not the only theory with explanatory power.

First, we observe that 36 out of a total of 120 subjects offered 0 in stage 1. This is not surpris-
ing given the results of typical dictator games in the literature. Of these 36 subjects, 12 also set 
0 as their cutoff, while 24 set a positive cutoff. Such behavior is consistent with subjects being 
either selfish or spiteful. However, trying to test various theories using the data generated by the 
subjects who offered 0 is not very satisfactory. For example, if we allow subjects to be spiteful, 
and have a non-positive weight, bi ≤ 0, on the material payoff of others, our theory can explain 
all those observations. Restricting subjects to care about the payoff of others, bi > 0, implies that, 
since 0 is at the bottom of the support of offers and cutoffs, our theory can be supported only 
if those subjects who offered 0 in stage 1 also set cutoffs at 0 in stage 2 (which, as mentioned 
above, 12 out of 36 subjects did). Levine’s theory cannot fail because it predicts an inverse rela-
tion between the offers and the cutoffs; hence an offer of 0 is not in conflict with a non-negative 
cutoff. (Setting 0 in both stages is a boundary case of that theory, yet, when allowed, makes any 
observation consistent with it.) F&S is satisfied when a subject offers 0 in stage 1, only if he then 
sets a cutoff of 5 in stage 2 (of which 11 subjects did). Such a subject would prove himself to 
be selfish in stage 1 (β = 0), and envious in stage 2 (α > 0). Rabin’s theory, like F&S, is also 
consistent with offering 0 in stage 1, and setting a cutoff of 5 in stage 2 given his formulation 
of kindness, and assuming that the only kind offer in a dictator game is 5 (the midpoint of the 
Pareto frontier).

Given this discussion, a better place to look for confirmation of the theory of blame is in the 
interior of the offer set where people make positive offers. Not only does our theory separate here 
more naturally but also it makes most sense in a situation where people are not completely selfish 
as those people are the type who would care enough to put themselves in the place of others. On 
the other hand, selfish or spiteful types are less likely to engage in a thought experiment involving 
blame.

As stated above, the most direct confirmation of our theory will be derived from establishing 
that the cutoffs that subjects set are increasing functions of their stage 1 offers. Since only our 
theory posits an increasing relationship between these two variables, if such a relationship is 
established, it will provide support exclusively for our theory.

In order to investigate this relationship, we use a simple OLS regression, where we regress 
the cutoff set by our subjects as a function of the offers they made in stage 1. The results of this 
regression are presented in Table 3.

When this regression is run on the full data set (including both 0 and positive offers), we 
find that the offer variable is positive and marginally significant (p < .080). When we remove 
those subjects who made 0 offers, however, the coefficient is significant (p < .045) and positive. 
The fact that the relationship between offers and cutoffs is positive lends support to our theory 
exclusively, since ours is the only one that posits a positive relationship.

These regressions, while supportive of our theory, do not capture the subtleties of the predic-
tions made by the four theories both when subjects make zero or positive offers in stage 1. In 
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Table 3
Relationship between cutoffs and offers.
Positive offers

Coefficient |t | p > |t |
offer .284 2.04 .045

(.139)
constant 3.080 6.180 .000

(.499)

N = 83, AdjR2 = 0.370

All offers

Coefficient |t | p > |t |
offer .200 1.76 .080

(.113)
constant 3.416 10.13 .000

(.337)

N = 120, AdjR2 = 0.018

Standard errors in parentheses.

Table 4
Predictions for zero and positive offers.

Theoretical prediction: Theoretical prediction:
Stage 1 offer x = 0 Stage 1 offer x > 0
Cutoff (y) Cutoff (y)

Blame y = 0, if bi ≥ 0
y > 0, if bi < 0

Blame y ≤ x, dy/dx ≥ 0

F&S y = 5 F&S y = 5
Levine y ≥ 0 Levine dy/dx ≤ 0
Rabin y = 5 Rabin y = 5

order to give a quick look at how these predictions differ when we move from the set of subjects 
who chose 0 in stage 1 to those who made positive offers, we present Table 4.

One quick point about Table 4 is in order. First, note that the predictions of theory of blame, 
Rabin, and F&S are rather straightforward. For example, our theory of blame predicts that when 
subjects make positive offers, they set cutoffs below their offer. Therefore, a subject’s behavior 
complies with the theory of blame, if his cutoff is not higher than his offer. For the Rabin and 
F&S theories, we categorize subjects as satisfying those theories if in stage 2, they set a cutoff 
of 5.12

Deriving the predictions of Levine’s theory is more complicated for two reasons. First, his 
theory only suggests that the offers and cutoffs are inversely related. However, since the subjects 

12 Rabin (p. 1298) discusses a generalization that incorporates pure altruism in his model. Clearly, this generalization 
explains positive offers that we observe in stage 1. In this settings, the more the dictator gives in stage 1, the kinder 
he is. Hence, it is reasonable to expect that the less kind the stage 1 choice is, the more likely is a punishment in stage 2. 
However, Rabin’s generalization does not produce a clear cut relationship between a subject’s stage 1 offer and his 
stage 2 cutoff, as it is sensitive to the functional form of the utility function. Therefore, in the current analysis, we say 
that a subject’s behavior is consistent with Rabin’s theory, if his cutoff is 5.
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Fig. 6. Compliance with theories.

make a single decision, we can not test Levine’s theory at the individual level. (Our regression 
results above already indicate that it lacks support on the aggregate level.) Second, Levine’s 
theory is embedded in a game of incomplete information, where the cutoffs that subjects set 
depend on their inference about the type of subjects they are playing against, given that subject’s 
offer. Hence, in order to know if subjects are acting consistently with his theory, we need to 
derive the function relating a subject’s offer to his type, and then investigate whether his decision 
is a best response to this information.

In order to do this, we perform a simple calibration exercise, which we will explain next. 
Suppose that a subject i’s utility function is, u(x) = ln(10 − xi)+ ai+λaj

1+λ
.13 In stage 1, subject 

i does not know the type of the subject he plays against when he makes an offer; therefore 
he responds to the mean type ā−i .14 Given λ, subject i chooses xi that maximizes his utility. 
Although the first order condition determines ai as a function of ā for those who make a positive 
offer, we can pin down a similar relationship for those who offer zero. To do that, we fix an ā
and compute ai for those subjects who make positive offers. For those who offer 0, we use their 
stage 2 punishment behavior to determine their type.15 This exercise determines a new ā, which 
may not be consistent with the ā assumed at the start of the exercise. Hence, in order to provide 
consistency, we iterate on ā and λ until we converge to a fixed point.

The upshot of this exercise is that subjects who make positive offers in stage 1 imply that 
they have positive types (ai > 0); hence, will only punish negative types. However, since the 
only types that are identified as negative types are those who offered 0 in stage 1, our calibration 
exercise implies that the subjects making a positive offer in stage 1 must set a zero cutoff in 
stage 2. Therefore, Levine’s theory would predict that any subject offering positive amounts in 
stage 1 will set a zero cutoff in stage 2.

Fig. 6 presents fraction of subjects whose behavior is consistent with the Rabin, F&S, Levine, 
and the theory of blame for each x sent at stage 1, based on our calculations.16 Fig. 6 is in-
teresting because it indicates that as stage 1 offer increases, the consistency of our data with 
various theories changes. For example, Levine’s theory is trivially satisfied when the offer is 0 
no matter what the cutoff is. As a result, we see that 100% of the observations are consistent 

13 Our exercise is robust to any concave utility function for a subject’s material payoff. Using the log function is done 
for reasons of simplicity.
14 We denote the mean of the sample excluding player i by ā−i .
15 For xi > 0 the first order condition is ai+λā−i

1+λ
= 1

10−xi
from which we can derive a subjects type as ai = [ 1+λ

10−xi
−

λ n
n−1 ā

]
n−1

n−1−λ
. When xi = 0, ai <

[ 1+λ
10−xi

− λ n
n−1 ā

]
n−1

n−1−λ
. However, we can pin down ai when we observe subject 

i’s punishment behavior in stage 2 since he will punish if ai + λaj < 0.
16 We only include offers made up to 5 since there were too few observations for offers of 6 or more.
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with them. For the theory of blame, when stage 1 offer is 0, we find that the consistency rate 
is 32.4%.17

For F&S, when the offer is 0 the cutoff must be 5 which is true for 29.7% of the observations. 
This is a curious result because while their stage 1 behavior indicates purely selfish motives, their 
stage 2 behavior indicates strict inequality aversion.

As offers are positive and increasing, we see an increase in the percentage of observations 
consistent with the theory of blame, a fall in the predictive powers of the Levine theory, and an 
increase in F&S and Rabin theories.

In summary, the data generated by our experiment lend support to the idea that the subjects 
used elements of blame in their punishment behavior. That is not to say that there is not support 
for other theories. As discussed, when the offers are positive, the predictive ability of the theories 
changes. It is important to note that our theory’s predictive is consistently higher for subjects 
who make higher offers, whereas the predictive power of the alternative theories we investigate 
changes. Also, the fact that we are able to establish a positive relationship between offers and 
cutoffs tends to diminish support for F&S, and Rabin, both of whom suggest that there is no 
relationship between offers and cutoffs, and Levine who posits a zero cutoff for positive offers in 
our experiment.

3.2. Public goods experiment

3.2.1. Experimental design
In order to provide more evidence supporting our theory of blame, we should be able to detect 

it in other experiments as long as they have two main features: (a) subjects are allowed to punish 
others (or reward them) and, (b) subjects are placed in identical symmetric situations so they 
know how they would behave if they were in another person’s shoes.18

Such requirements are easily satisfied by public goods experiments with punishments where—
as in Fehr and Gächter (2000)—subjects are allowed to punish others. In such symmetric games, 
a subject can engage in the blame thought experiment since he knows how much he contributed 
to the public goods, and can therefore compare his behavior to others, and see if he wants to 
blame and punish them.

However, such data must be used with caution, since most, if not all, of these experiments are 
embedded in a complete network, where all subjects can see the contributions of all others, and 
punish as many people as they wish. This network structure is not the best to use in assessing 
the motives for subject punishment, since it is steeped with free riding, and other coordination 
problems, which easily mask the motives for punishment. For example, suppose that subject 
i is in such a public goods game with three others, and he observes the contributions of all 
three. In addition, say that it is common knowledge that each person can observe and punish 
whomever he wants. Whether or not subject i punishes, then, becomes a function of his beliefs 
about whether or not the others in his group will punish, and he might easily decide to free ride 
on their punishments. Furthermore, who subject i punishes is also a complex coordination game 
since he obviously would want to punish the subject who has contributed the least, yet as such 
a person is more likely to be punished by others, subject i might decide to punish the second 

17 For theory of blame, if we allow bi ’s to be negative, in fact 100% of the subjects would be consistent when their offer 
was zero. In our computations, we restricted bi to be non-negative.
18 While Iriberri and Rey-Biel (2011) demonstrate that revealed subject preferences can change when subjects are placed 
in an experiment with role uncertainty, we observe no such effects in our experiments.
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lowest, etc. The point is that subject i’s punishment behavior may be a poor indicator of his 
preferences because it is confounded by these strategic considerations.

A better way to identify a subject’s true preferences or motives for punishment would be to 
look at behavior in a different network where such coordination and free riding problems are 
absent. Such an exercise was done by CKS, where they look at four-player public goods games 
with punishments under a variety of network architectures. The best of these architectures for our 
purposes is called the directed circle, where subjects are arranged in a circle, in which Subject 1 
can observe and punish Subject 2, Subject 2 can observe and punish Subject 3, Subject 3 can 
observe and punish Subject 4, and finally Subject 4 can observe and punish Subject 1. In this 
case, each person has the sole responsibility to observe and punish just one person; hence there 
is no free riding or coordination problems, and therefore, the motivation for punishing is clearer.

In their experiment, the subjects first play a standard Voluntary Contribution Game in two 
stages. In stage 1, they contribute and receive feedback regarding their payoffs, and the mean 
contribution of the others in their group. In stage 2, after observing their stage 1 information, 
they decide whether or not to punish, and by how much. Punishment points directed at another 
subject reduce the target’s payoff by 10% for every one point used by the subject.

3.2.2. Results
There are a number of theories that can explain punishment in such public goods games. One 

theory, investigated by De Quervain et al. (2004), is a norm-based theory that says people punish 
others if they violate a group contribution norm. This norm is set exogenously, possibly based 
on some commonly held theory of fairness. A similar notion of social norm is also mentioned 
in Charness and Rabin (2002). In Fehr and Gächter (2000), the norm is that those who fail to 
contribute the mean amount or more are candidates for punishment. According to the theory of 
blame, however, the standard used to determine punishments is not an exogenously defined norm, 
but rather a personal and individual standard; based on how the person himself would behave in 
the situation being examined.

For the public goods game, the subjects who subscribe to the theory of blame, should punish 
only if the other subject contributed less than they did, and never punish those who contributed 
more, whether or not those people contributed more than the average of the group.

These different theories of punishment can easily be investigated using the CKS data, and 
running a simple random effects probit regression, where the probability of punishment is a 
function of the difference between a subject’s contribution and that of the other subject whom 
he observes (the target), the difference between the target’s contribution and the group’s mean, 
and the mean itself. Let pci be the public goods contribution of subject i, pc−i be the target’s 
contribution, and m be the mean of the group’s contribution in a given period. More formally the 
regression run is

Pr(punishment) = α + β1�
+
other + β2�

−
other + β3(pc−i − m) + β4(m) + εi,

where �+
other := pci − pc−i if pci − pc−i > 0, and 0 otherwise; and �−

other := pci − pc−i if 
pci − pc−i < 0, and 0 otherwise. If the theory of blame is responsible for punishment behavior, 
we would expect that coefficient β1 to be positive and significant, while all other coefficients 
should be zero since all that should matter for punishment is whether or not a subject’s contri-
bution was more than the contribution of the target, which is captured by �+

other . The regression 
results are presented in Table 5.

As we see in Table 5, consistent with our expectations, the only variable with a statistically 
significant coefficient is �+ . The positive coefficient means that a subject is more likely to 
other
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Table 5
Punishment behavior in CKS: directed circle.

Coefficient Z p > |Z|
�+

other
.153 4.86 .000
(.032)

�−
other

.046 1.45 .148
(.032)

(pc−i − m) −.038 −1.16 .246
(.030)

mean −.014 −.44 .663
(.033)

constant −1.422 −2.24 .025
(.636)

N = 240, Wald χ2(4) = 45.92, Pr > χ2 = .000.
Robust z-statistics are reported in parentheses (clustering at 
the subject level).

be punished the further his contribution falls below that of the person who observes him. The 
relationship of the target’s contribution to the mean is insignificant. The coefficient in front of 
the mean variable itself is negative but again insignificant. The negativity of the coefficient makes 
sense because, as the mean increases, being below it is less of a transgression.

This simple regression lends support for the theory of blame, and disconfirms the idea that 
punishment behavior is determined by the observed behavior of a subject in relation to some 
exogenously determined norm. What matters is how much a subject’s contribution differs from 
that of the person who is watching him—a personal norm.

There are more ways of looking at the CKS data which allows us to better explore the sub-
tleties of our theory. For example, the decision to punish in a public goods game is a two-tiered 
decision, where first a subject decides whether or not to punish, and then, how much to punish. 
In order to take this into account we estimate a hurdle model. The hurdle regression consists of 
two steps. First, we fit a logit regression on whether or not to punish (the binary choice on the ex-
tensive margin) using the same set of explanatory variables mentioned above (i.e., the difference 
between subject i’s public contribution and that of his target allowing for non-linear effects for 
positive and negative differences, the difference between the target’s contribution and the group’s 
mean, and the mean itself). Next, we fit a Poisson regression of the punishment level using the 
same set of explanatory variables

This hurdle model is estimated via maximum likelihood method to jointly estimate the two 
probabilities described above on the CKS data both for the directed circle and the complete 
networks. We do this in order to emphasize our point that, when testing theories of punishment 
for public goods games instead of previously used complete networks, the directed circles are the 
most relevant as issues of coordination and free riding on the punishments of others are absent. 
The results of this estimation are presented in Table 6.

As we established in the previous exercise, the key driver of both the decision to punish and its 
magnitude is the difference between the punisher and the target’s contribution levels (see columns 
(1) and (2) in Table 6). Note, however, that this difference only matters when it is positive or when 
the target contributes less than the punisher. This is consistent with our theory since blame only 
exists when this difference is positive. Again, we observe that any variable referring to the mean 
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Table 6
Hurdle model estimation.

Directed circle Complete network

(1) (2) (3) (4)
Punishment margin Extensive Intensive Extensive Intensive

(pci − pc−i )
+ .212∗∗∗ .034∗ .054∗∗∗ .001

(.040) (.018) (.020) (.010)
(pci − pc−i )

− −.007 −.041 .160∗∗∗ −.049∗∗∗
(.033) (.027) (.019) (.018)

(pci − mean) .040 −.019 .128∗∗∗ −.008
(.040) (.019) (.021) (.014)

mean .004 −.010 −.018 −.076∗∗∗
(.043) (.019) (.018) (.013)

constant −1.885∗∗∗ 1.607∗∗∗ −.132 2.055∗∗∗
(.762) (.427) (.281) (.196)

Observations 238 238 716 716

Robust standard errors in parentheses.
∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .10.

contribution of the group is not significant in explaining neither the decision to punish nor its 
magnitude.

These results change when we move to the complete network (columns (3) and (4)), where 
subjects can punish any of the three other subjects in their group. Here we see that even though 
a positive difference in the contribution level of the punisher and the target is a significant deter-
minant of the decision to punish or not, it is not significant for the magnitude of the punishment. 
More interestingly, however, a negative difference between the contribution of the punisher and 
the target is significant both for the punishment decision and its magnitude. This means that in 
the complete networks there seems to be a significant amount of what has been called “anti-social 
punishment” as people are punishing those who contribute more than they do.

Such anti-social punishment has been a source of great interest (see Herrmann et al., 2014, 
Thöni, 2014, Monin, 2007 amongst others), and many explanations have been offered. Fehr and 
Gächter (2000) list random error, improvement of the relative position (status preferences), and 
revenge as possible explanations. Thöni (2014) explains anti-social punishments by assuming 
that subjects are inequality averse. However, it is important to note that, when tested using a 
complete network public goods game, the question of anti-social punishment is confounded by 
matters of preference, i.e., inequality aversion, do-gooder degradation, revenge, as well as strate-
gic issues of coordinated punishment and free riding. The directed circle design eliminates most 
of these strategic issues as each subject is only responsible for punishing only one other person, 
and cannot even see the contributions of others. In other words, the directed circle allows for 
isolating the pure preference for punishment, which cannot be done using a complete network.

For example, take the revenge motive. In a complete network, when a low-contributing subject 
is punished and is able to observe the contributions of all the subjects, he might very well assume 
that he is punished by a high-contributing subject. In the next round, he may seek revenge and 
punish that subject. However, in the directed circle, there is no room for revenge because a subject 
can neither see the contribution of the person who punished him nor is he able to punish.

Also, note that only in the complete network, variables that are connected to the mean contri-
bution of the group are significant. This is a direct artifact of the feature of this network which 
allows each subject to see the contributions of all the subjects, and as a result, punishers are more 
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likely to punish those who are the most egregious free riders. What is missing in this design is 
the counterfactual of whether or not these subjects would punish others whose contribution were 
above the mean but below theirs. The directed circle is well suited for answering that question.

Finally, we use the CKS data to do a more structural estimation exercise. The rationale be-
hind this exercise is derived from what determines punishment in our model. According to our 
model, in a public goods game punishment is a combination of the weight that subjects place on 
the material payoffs of others, and on how sensitive they are to blame. The subject who place 
more weight on the other’s payoff, and who is not likely to be bothered when he is exploited, is 
unlikely to punish. By using the CKS data can we can identify the interaction between these two 
effects.

Let us look at the problem faced by our subjects in stage 2 of the experiment after they have 
made their contributions in stage 1. In stage 2, they know the amount they contributed in stage 1, 
and depending on the network they play in, they are able to see either the contributions of all the 
other three subjects (complete network) or that of the one person they are monitoring (directed 
circle). Assume that the utility of a subject in stage 2 is given as follows (for the complete 
network):

(B − gi + γG − c
∑
j 	=i

kj ) − e
− ∑

j 	=i βi (B−gj +γG−kj )

where B (equal to 25 in the experiment) is the endowment of subject i, gi is subject i’s contribu-
tion to the public goods, γ is the marginal per capita return to investment in the public goods (0.4 
in the experiment), kj is subject i’s punishment of j , c ∈ [0, 1) is the cost of punishment (c = 0.5
in the experiment), and G = ∑

i gi is the total contribution of subjects to the public goods in 
stage 1. Finally, the blame-adjusted altruism parameter is,

βi = bi − max
{[ πii − πij

πmax − πmin

]α

,0
}
,

where bi is subject i’s specific component that captures his degree of altruism towards the oppo-
nent, which we assume follows a normal distribution bi ∼ N(μ, σ 2). Inside the blame term, πii

denotes what i’s payoff (before punishment) would have been if j were to make a contribution 
in stage 1 equal to what i made, instead of the contribution j actually made, while πij is i’s 
payoff (again before punishment) using j ’s actual stage 1 contribution. πmax and πmin are the 
maximum and minimum possible payoffs for a given player—in this case the difference in i’s 
payoff between contributing nothing and contributing everything to the public goods given what 
the other n − 1 subjects have contributed.19 The denominator thus serves as a normalization, and 
will always be (1 − γ )B = 15.20 Finally, α captures the measure of subjects’ blame-sensitivity. 
The objective of the subject in stage 2 is to choose a vector of punishments, kj ’s, to maximize 
his utility.

The first term of the utility function captures the stage 1 payoff of subject net of the cost of 
punishments he makes, while the second term is the sum of the payoffs of others (net of the 
punishments he imposes on them) weighted by his blame adjusted altruism term.

The utility function above is defined for the complete network. In a directed circle, player i can 
only monitor one specific player j when making his punishment decision. Utility is therefore,

19 This is independent of what the other subjects have contributed.
20 Note that this normalization determines the units by which we measure the sensitivity to blame parameter, α.
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Table 7
Structural estimation: punishment.

Directed circle Complete network

α 1.231∗∗∗ 1.002∗∗∗
(.001) (.001)

μ 1.525∗∗∗ 1.833∗∗∗
(.000) (.000)

σ 3.276∗∗∗ 3.968∗∗∗
(.003) (.000)

Robust standard errors in parentheses.
∗∗∗ p < .01, ∗∗ p < .05, ∗ p < .10.

Fig. 7. Estimated distribution of bi ’s.

(B − gi + γG − ckj∗) − e−βi(B−gj +γG−kj ),

where it is assumed that player i monitors player j∗ while player j monitors player i.
By the first-order conditions, we have the optimal punishment decisions in the complete net-

work (a very similar condition holds for the directed circle):

kj = ln(−cβ−1
i )

βi

+ 3B −
∑
j 	=i

gj − 3γG −
∑
l 	=i,j

kl .

We develop a Method of Simulated Moments (MSM) estimator for the structural estimation. 
The parameters μ, σ, α are: The mean and standard deviation of the bi distribution, and the power 
parameter inside the blame term. The aim of the estimation is to minimize a distance measure 
between model-implied moments and their empirical counterparts.

The results of this estimation for both the complete network and directed circle are presented 
in Table 7 with the associated bi distributions in Fig. 7.

These estimates confirm the results of the hurdle model in the sense that the blame parame-
ter, α, is greater in the directed circle than in the complete network. This difference is significant 
at the 1% level (p < .000). The distribution of bi ’s indicates that the subjects tend to be only 
mildly altruistic with mean bi’s of 1.525 and 1.833 for the directed circle and complete network, 
respectively (significantly different at the 1% level (p < 000)) and with a healthy fraction of the 
mass of the bi distribution taking on negative values. This is not surprising because we only con-
sider the data from the punishment stage of the experiment where the subjects have little scope 
to show their altruistic concerns for others.

One note of caution regarding these estimates is that we do not claim that these specific values 
of α, μ, and σ are parameter values that we consider relevant for other games or situations. As we 
stated before, we consider blame to be a context-dependent theory where acts that seem blame 
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free in one context can be emotionally charged in another. As a result, the blame parameter esti-
mated here (especially since it is unit sensitive given our normalization) may not be transferable
to other games or situations. (Note that α varies across our two networks indicating that even 
within the context of a public goods game, the blame parameter differ depending on the network 
used.)

Despite this caveat, these estimates are intuitively appealing. First, given that many subjects 
free ride, it is not surprising that our parameter estimates indicate only mild altruistic sentiments 
among our subjects. This is reinforced by the fact that subjects do punish relatively frequently 
indicating that α should be significantly greater than zero, which is in our estimates using both 
our directed circle and complete networks.

4. Conclusions

In this paper, we have proposed and tested a theory of kindness that is an essential ingredient 
to any theory of reciprocity. Simply put, our theory of kindness states that in judging whether 
or not player i has been kind to player j , player j would have to put himself in the strategic 
position of player i, and ask himself how he would have acted under identical circumstances. 
If j would have acted in a worse manner than i acted, then we say that j does not blame i for 
his behavior. If, however, j would have been nicer than i was, then we say that “j blames i” for 
his actions (i’s actions were blameworthy). After presenting a formal definition of this concept, 
we investigated how it can be applied to the analysis of a dynamic psychological game, and then 
discussed the notion of a sequential equilibrium.

Using a simple modified dictator game experiment and a public goods game with punishment, 
we demonstrated that our theory has substantial amount of explanatory power, especially when 
compared to the other competing models.

The theory of blame we present has some features that are both intuitively and empirically 
appealing. First, as we have argued, theories of kindness or fairness should be endogenous or 
at least be based on the individual tastes and preferences of the person making an assessment. 
One-size-fits-all theories that impose the same norm (i.e., equity) on all decision makers fail to 
capture the individual differences in kindness assessments.

Appendix A. Experimental instructions

This is an experiment in economic decision-making. If you make good decisions you may be 
able to earn a good payment, which will be given to you at the end of the experiment.

Experimental procedures
The experiment is composed of two stages. We will hand out instructions for Stage 2 after we 

are finished with Stage 1.

Stage 1
In Stage 1 of the experiment you will be given 10 tokens. Your task will be to divide this 10 

tokens between you and an anonymous other person in this room. That means you will be asked 
to state how much of the 10 tokens you want to give to the other person, and therefore how much 
you would retain for yourself.

After you have made your choice, you will be randomly divided into two equally sized groups 
called Senders and Receivers and you will be matched in pairs. If you are chosen to be a Sender
your payoff will be equal to what you have decided to keep for yourself of the 10 tokens. If you 
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are chosen to be a Receiver, your payoff will be the amount given to you by the Sender you 
matched with.

You will not be told your payoff from Stage 1 until after the entire experiment is completed.

Note. The number you will be asked to enter in the screen will be the amount you want to give 
to another anonymous person in the room paired with you.

Stage 2
In Stage 2 of the experiment you will be randomly matched with another subject in the lab. 

This random matching will be independent of the one performed in Stage 1 so there is very little 
chance you will be matched with the same person. After you are matched you will be offered, as 
a Receiver, the amount your matched pair member sent as a Sender in Stage 1. In other words, 
if your matched pair member was a person who gave 3 tokens in Stage 1, you will be offered 3 
tokens in Stage 2 as your payoff and your pair member will get 7.

Although you cannot change the amount you are given, you have the option to reduce the 
amount your match pair member keeps for himself/herself by deciding whether to reduce his/her 
payoff by 1 token. You can do this is a slightly indirect manner. Rather than stating whether you 
want to reduce your match pair member’s tokens or not after you see the amount given to you, we 
will ask you before you see the offer to state an amount below which you will decide to reduce 
the pair member’s payoff by one token. Call this number your cutoff and assume for illustrative 
purposes that you entered a cutoff of 4 into the computer. If your matched pair member gave you 
3 tokens and kept 7 tokens for himself/herself, since 3 is less than cutoff of 4, the computer will 
reduce your matched pair member’s payoff by 1 token from 7 to 6. If the other person gave you 
5 tokens and kept 5 tokens, his/her tokens will not be reduced and will stay 5.

Your final payoff will be determined as follow. After you have made your choice, the computer 
will randomly determine whether you are a Sender or a Receiver. Clearly, if you are a Receiver
then your match pair member is a Sender and vice versa. If you are chosen to be a Sender your 
payoff will be equal to what you have decided to keep for yourself of the 10 tokens in Stage 1 
minus any 1-token reduction by your pair member. If your math pair member decided not to take 
a token away, you will receive your payoff undiminished. Otherwise, you will receive one token 
less than what you kept for yourself. If you are chosen to be a Receiver, your payoff will be the 
amount given to you by your match.

Final payoff
Your final payoff from the two stages of the experiment will simply be the sum of your payoffs 

in each Stage. You will be paid $1 for each token you have at the end of the experiment.

Appendix B. Self blame

So far, we based our discussion on the assumption that player i does not blame himself when 
he puts himself in player j ’s position. In this section, we will show that this assumption in fact 
holds as a result in any equilibrium. In order to do that, we have to extend the framework to 
include higher-order meta-players and their beliefs. Note that whenever our current notations 
and concepts naturally extend to this general framework, we do not introduce them again.

Let N0 := N , N1 := {〈ij 〉 : i, j ∈ N0}, Nn := {〈ki〉 : k ∈ Nn−1, i ∈ N0}, and N∗ = ⋃∞
n=0 Nn. 

In addition, if k = 〈li〉 for some l ∈ N∗, then we write 〈ki〉 = k, i.e. we rule out a player putting 
himself in the same position twice in a row, as it is irrelevant in our theory. Note that a player 
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k ∈ N∗ \ N takes the form k = 〈· · · 〈〈〈ij 〉i〉j〉 · · · 〉. In this case, we denote the original player i

by φ(k) := i.
We maintain the assumption that the material payoff and the actions available to player 

〈ki〉 ∈ N∗ are the same as those of player i ∈ N ; i.e. A〈ki〉 = Ai and π〈ki〉 = πi , for i ∈ N , and 
k ∈ N∗. Furthermore, we introduce the following “self consistency” assumption.

Assumption (Self consistency). For any 〈ki〉 ∈ N∗, if φ(k) = i then u〈ki〉 = ui .

This means that when the original player φ(k) eventually considers himself back in his own 
position, he retains the same preferences. Put differently, when a player puts himself in his own 
position while he considers being in the other player’s position his preferences are consistent.

For any player k ∈ N∗, strategies and conditional beliefs are defined exactly as before, and 
hence we do not repeat the definitions here. In order to define player k’s blame we need to write 
the expected material payoff when he plays against an opponent in N , and against himself in the 
opponent’s position. Let k = 〈li〉 for some l ∈ N∗, then

Eμk

[
πi

(
ζ(sk, sj )

)∣∣h] :=
∫

Sk×Sj

πi

(
ζ(sk, sj )

)
dμ1

kj (sj |h)μ2
kj (sk|h),

Eμk

[
πi

(
ζ(sk, s〈kj 〉)

)∣∣h] :=
∫

Sk×Sj

πi

(
ζ(sk, sj )

)
dμ1

k〈kj〉(s〈kj 〉|h)μ2
k〈kj 〉(sk|h).

Therefore, a player k = 〈li〉 ∈ N∗ who holds beliefs μk blames player j ∈ N at history h by

δkj (μk|h) := Eμk

[
πi

(
ζ(sk, s〈kj 〉)

)∣∣h] − Eμk

[
πi

(
ζ(sk, sj )

)∣∣h]
.

This allows us to define player k’s psychological utility function Uk(z, μk(·|h)). As before, 
for player k = 〈li〉, we define the function uk(z, δkj (μk|h)) such that uk(z, δkj (μk|h)) :=
Uk(z, μk(·|h)), and assume that uk is non-increasing in δkj .

Behavioral strategies, players’ assessments, and consistency of an assessment are defined ex-
actly as before in Section 2.2. Consequently (the sequential equilibrium) Definition 4 applies to 
the blame game 〈N∗, H, (uk)k∈N∗〉. We are ready to state the result, which we call no self-blame.

Proposition 1 (No self-blame). Let the assessment (σ ∗, μ∗) be a sequential equilibrium of the 
blame game 〈N∗, H, (uk)k∈N∗〉. For any k ∈ N∗ \ N , such that φ(k) = i and 〈kj〉 = k, we have 
δki = 0.

Proof. Suppose that assessment (σ ∗, μ∗) is a sequential equilibrium. Also, let k ∈ N∗ \ N such 
that φ(k) = i and 〈kj〉 = j , then for any h ∈ N we have

δki(μ
∗
k |h) = Eμ∗

k

[
πi

(
ζ(sk, s〈ki〉)

)∣∣h] − Eμ∗
k

[
πi

(
ζ(sk, si)

)∣∣h]
.

First observe that μ2∗
ki = μ1∗

ik , and μ2∗
k〈ki〉 = μ1∗〈ki〉k by consistency of beliefs (Definition 3 (b)). 

Moreover, μ1∗〈ki〉k = μ1∗
ik by consistency of beliefs (Definition 3 (a)); hence, μ2∗

ki = μ2∗
k〈ki〉.

Observe that

Eμ∗
i
[ui |h] =

∫

S

ui

(
ζ(si , sj ), δij (μ

∗
i |h);bi

)
dμ1∗

ij (sj |h) and,
j
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Eμ∗〈ki〉 [u〈ki〉|h] =
∫

Sj

u〈ki〉
(
ζ(s〈ki〉, sj ), δ〈ki〉j (μ∗〈ki〉|h);bi

)
dμ1∗〈ki〉j (s〈ki〉|h).

Since μ1∗
ij = μ1∗〈ki〉j by consistency, and ui = u〈ki〉 by self consistency, we have σ ∗

i = σ ∗〈ki〉. Con-

sequently, in the equilibrium, μ1∗
ki = μ1∗

k〈ki〉. This immediately implies Eμ∗
k

[
πi

(
ζ(sk, s〈ki〉)

)∣∣h] =
Eμ∗

k

[
πi

(
ζ(sk, si)

)∣∣h]
. Thus, δki(μ

∗
k |h) = 0. �

The critical assumption behind this result is self consistency. In order to further elaborate 
suppose that k = 〈ij 〉. Then, in the equilibrium the meta-player 〈ij〉 does not blame i (himself) 
because what he believes i plays is the same as what he would have done in that position simply 
because i’s preferences are exactly the same as “player i who considers himself in player j ’s 
position” puts himself in player i’s position.
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