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Empirical evidence of jump behaviour in the
Colombian intraday bond market

Abstract

Simulations and empirical studies suggest that incorporating a discontinuous jump process
in asset pricing models improve volatility forecasting, pricing of instruments, and hedging
positions in a portfolio. In this work we analyze high frequency market data of Colombian
sovereign bonds in order to study the presence or absence of discontinuities in the price
generating process. In addition, the behaviour of multivariate jumps (cojumps) and stylized
facts of this market are also studied. We find that sovereign debt titles experiment jumps
independently of maturity. Furthermore, short term bonds cojump in greater magnitude than
long term bonds, though the low liquidity of the market makes an analysis of the long term
segment of the term structure much less rich in comparison. Finally, a significant monday
and thursday jump seasonality is found in most results, though no explanation for this effect
seems obvious.

Resumen

Simulaciones y estudios emṕıricos sugieren que la incorporación de procesos de saltos
discontinuos en la modelación de precios mejoran el pronóstico de volatilidad, la valoración
de activos, y el hedging de las posiciones de un portafolio. En este trabajo se analiza el mercado
de alta frecuencia de bonos soberanos de Colombia para estudiar la presencia o ausencia de
discontinuidades en la formación de precios. También se estudia el comportamiento de saltos
multivariados (cosaltos) y distintos hechos estilizados de este mercado. Encontramos que los
t́ıtulos de deuda soberana experimentan saltos con frecuencia. Además, los t́ıtulos de corto
plazo cosaltan en mayor cantidad que los bonos de largo plazo. Sin embargo, la baja liquidez
del mercado dificulta el análisis de estos eventos. Finalmente, para la mayoŕıa de resultados
encontramos una estacionalidad significativa de saltos los d́ıas lunes y jueves. Aun aśı, las
causas para este efecto no saltan a la vista.
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Chapter 1

Introduction

The mathematical modelling of financial assets is a key aspect of quantitative portfolio man-
agement. Stock market participants use it for pricing instruments, hedging positions, and fore-
casting uncertainty. Pricing models assume that an asset’s log-price follows a time-continuous
diffusion process, usually a geometric brownian motion. However, empirical studies and simu-
lations suggest that incorporating pure jump processes is necessary for a correct specification
of these models (Johannes, 2004). Additionally, Johannes and Andersen, Bollerslev, and
Diebold find that explicitly expressing discontinuities in price models improves volatility fore-
casting, while Piazzesi finds improvements in the pricing of US treasuries when incorporating
FOMC news announcements as potential jump events (Johannes, 2004) (Andersen et al.,
2007) (Piazzesi, 2005).

Recent literature extends the notion of price jumps to include cojumps, i.e., simultaneous
jumps present in different assets; these cojump phenomena were first studied by Barndorff-
Nielsen and Shephard (Barndorff-Nielsen & Shephard, 2004a). Bollerslev, Law, and Tauchen
find strong evidence for modest-sized but highly significant cojumps in a panel of high-
frequency stock return data (Bollerslev et al., 2008). Additionally, Novotnỳ and Urga find
common discontinuities in stock prices within a portfolio. They prove these cojumps can be
diversified by means of a correct combination of assets, though a method to find the combi-
nation which eliminates these jumps is left as a future endeavor (Novotnỳ & Urga, 2017).

Most of the work previously cited is focused on the equity market. Unlike stocks, fixed
income instruments share many characteristics among themselves, and are usually only differ-
entiated by maturity and coupon. Dungey, McKenzie, and Smith find “significant evidence of
jumps and cojumps in the US term structure” in response to macroeconomic news announce-
ments. Furthermore, around one fifth of cojump activity occurs independently of news. The
authors look at this cojump activity and interpret their findings in the light of several theories
about the formation and evolution of the term structure of the yield curve (Dungey et al.,
2009).

In order to test the presence of jumps, many of the previous literature uses the test
statistic developed by Barndorff-Nielsen and Shephard (Barndorff-Nielsen & Shephard, 2004b)
in which two measures of realized volatility are compared and contrasted: realized variance
(RV) and bi-power variation (BV). By taking the difference between the former and the
latter, we can obtain a notion of the size of a potential discontinuity (see (Barndorff-Nielsen
& Shephard, 2004b), (Andersen, Bollerslev, & Diebold, 2003), (Huang & Tauchen, 2005)).
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Intuitively, jumps are interpreted as the discrepancy between these two measures of realized
volatility.

First, this paper begins by testing for jumps using high frequency Colombian sovereign
bond data. Second, jump behaviour is described and characterized by analyzing the frequency
and magnitude of its activity. Third, following the procedure presented in (Dungey et al.,
2009), cojumps across various assets are compared in the context of the two main theories
of term structure formation: the expectation’s theory of the term structure and the market
segmentation/preferred habitat model. Fourth, we search for stylized facts based on weekly
activity of the bond market.

Results indicate that bonds distributed throughout the Colombian yield curve commonly
experience jumps independently of maturity. Furthermore, an average of 46.989% of jumps
occur simultaneously across two assets. Most commonly, it is the bonds in the shorter end of
the term structure which jump simultaneously, though illiquidity hinders a robust analysis for
assets on the long end of the yield curve. Daily seasonalities are found in both univariate and
multivariate jump activity, with both types of jumps being least likely to occur on Monday.
Cojumps are most likely to occur on Wednesdays or Thursdays, depending on the sampling
frequency. Furthermore, a panel logit model finds a persistent Thursday effect for almost all
sampling frequencies.

The rest of the document is organized as follows. Chapter 2 contains an overview of the
bond transaction database, along with considerations about sampling frequencies and meth-
ods. Chapter 3 presents an in-depth showcasing of results and the corresponding discussion.
Finally, chapter 4 concludes. As a complement to the discussion above, a theoretical frame-
work is included in this chapter. It presents a summary of the different econometric methods
on which this work is based, as well as a brief discussion of the two theories of term structure
formation previously mentioned.

1.1 Theoretical framework

Continuous time diffusion models are a vital tool in modelling the price evolution of financial
instruments. Their analytic convenience makes them an extremely useful tool for drawing
interpretations and simplifying hedging calculations on which modern financial derivatives
are based on. These models commonly assume that the change of an asset’s log-price pt
follows the stochastic differential equation:

dpt = µtdt+ σtdWt (1.1)

where µt is the instantaneous drift given by a locally bounded variation process and σt is a
strictly positive volatility process with well defined limits. Wt is a Brownian motion. Under
the premise of equation (1.1) the j-th intraday log-return is defined as rt,j = pt,j−pt,j−1. The
associated quadratic variation of this model is given by:

〈r, r〉t =

∫ t

0
σ2
sds (1.2)

For this work, we will assume that a bond’s log-price is given by:

dpt = µtdt+ σtdWt + dLJ(t) (1.3)
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The new third term is a pure jump Levy process, where LJ(t) − LJ(s) =
∑

s≤τ≤t κ(τ) is
the jump size. We assume that this is a particular case of Levy process known as a Poisson
compound process. Additionally, we also assume constant jump intensity λ and jump size
κ(τ) as an identically distributed (i.i.d.) random variable. Now, the quadratic variation for
this model is:

〈r, r〉t =

∫ t

0
σ2
sds+

Nt∑
j=1

κ2
t,j (1.4)

Assymptotically, realized variance (RV) can give us a good approximation of the quadratic
variation:

Definition 1. Realized variance:

RVt =

M∑
j=1

r2
t,j

This means that, for our jump-diffusion model, the realized variance converges to expres-
sion (1.4) in the limit:

lim
M→∞

RVt =

∫ t

t−1
σ2
sds+

Nt∑
j=1

κ2
t,j (1.5)

Equation (1.5) gives us an estimate of daily volatility which captures the effect of the volatility
process σt as well as the magnitude of variance attributed to discontinuous jumps, given by∑Nt

j=1 κ
2
t,j

Barndorff-Nielsen and Shephard (Barndorff-Nielsen & Shephard, 2004a) and their follow-
ing extensions in (Barndorff-Nielsen & Shephard, 2005a) and (Barndorff-Nielsen & Shephard,
2005b) suggest that, under reasonable assumptions, bi-power variation enables a consistent
estimator of quadratic variation that is robust to jumps:

Definition 2. Bi-power variation:

BVt = µ−2
1

M

M − 1

M∑
j=2

|rt,j ||rt,j−1|

This definition of bipower variation (BV) is multiplied by a coefficient of standardiza-
tion µk which allows for a direct comparison with RV. This coefficient is given by µk ≡
2k/2Γ [(k + 1)/2] /Γ (1/2) for k > 0. Asymptotically, we have:

lim
M→∞

BVt =

∫ t

t−1
σ2
sds (1.6)

We can use the fact that BV is robust to jumps, while RV is not, in order to obtain a
notion of the size of a jump. By taking the difference between (1.5) and (1.6), asymptotically,
we get:

RVt −BVt →
∑

t−1≤τ≤t
κ2
τ (1.7)
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Equation (1.7) implies that we can obtain a consistent estimation for the size of daily jumps.
Despite this, for finite samples, the difference between RV and BV is not guaranteed to be
positive. Nonetheless we can truncate its value at zero and consider only positive values.

Instead of analyzing the magnitude of jumps, it is more interesting to study the relative
contribution of jumps to price variance. Thus, an initial expression the jump statistic (JS) in
(Barndorff-Nielsen & Shephard, 2004a) is given by:

JSt =
RVt −BVt√(

µ−4
1 + 2µ−2

1 − 5
) ∫ t

t−1 σ
4
sds
→ N (0, 1)

Where the original difference in volatilities is now divided by a coefficient which standardises
the statistic’s distribution. This coefficient introduces the term

∫ t
t−1 σ

4
sds, which determines

the scale of equation (1.7) in units of conditional standard deviation (see (Huang & Tauchen,
2005)). A jump-robust estimate of this term is given by tripower quarticity (TQ):

Definition 3. Tripower quarticity

TQt = Mµ−3
4/3

(
M

M − 2

) M∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j |4/3 →
∫ t

t−1
σ4
sds

TQ is accompanied by the scale normalizing constant M since each absolute return is of the
order

√
∆t. Since M is of order 1

∆t , the whole expression approaches a well defined limit.
Even so, Huang and Tauchen find that simply using TQ tends to over-reject the null

hypothesis of no jump (Huang & Tauchen, 2005). In its place, they propose the following
modification:

JSt =
RVt −BVt√(

µ−4
1 + 2µ−2

1 − 5
)

max
(
BV 2

t , TQt
) (1.8)

Several authors ((Barndorff-Nielsen & Shephard, 2005a), (Andersen, Bollerslev, Diebold,
& Ebens, 2001), (Andersen, Bollerslev, Diebold, & Labys, 2003)) argue that finite sample
performance may be improved by basing the jump test on the log-difference of the realized
measures, i.e.:

JSt =
log(RVt)− log(BVt)√(

µ−4
1 + 2µ−2

1 − 5
)

max
(
BV 2

t , TQt
) (1.9)

This implies that the numerators of equations (1.8) and (1.9) have the same asymptotic
distribution. According to Huang and Tauchen this is due to the fact that the first-order
Taylor expansion term of both numerators, centered around the asymptotic mean of RV and
BV (i.e.

∫ t
t−1 σ

2
sds), have the same distribution. Then, the difference of both realized (and

log-realized) measures generate the same asymptotic distribution (Huang & Tauchen, 2005).
Thus, equation (1.9) is the expression used to test the presence of jumps in our empirical
application.

1.2 Liquidity preference and preferred habitat

The theories of liquidity preference and preferred habitat/market segmentation are two the-
ories about how the term structure of the yield curve forms and evolves in time. Liquidity
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preference argues that yields of longer dated bonds are higher due to a liquidity risk pre-
mium. This liquidity risk premium arises from the greater possibility of capital loss in long
term bonds in comparison to shorter term debt. Consequently, a greater risk of loss would
imply that long dated bonds are more reactive to macroeconomic news announcements and
external shocks than short bonds. Thus, we would expect to find greater jump activity in
bonds of large maturities.

On the other hand, the preferred habitat hypothesis argues that individual investors op-
erate in different segments of the term structure according to their own particular interest.
Thus, movements in the yield curve respond to supply and demand pressures of investors
who populate different sections of the market. For example, speculators who want to max-
imize profits may be more interested in trading short maturity bonds due to their liquidity.
In contrast, pension funds or insurance companies may choose to trade long term bonds
to fund future liabilities. Originally, this models assumes a rigid segmentation of markets.
Modigliani and Sutch argue against this premise, proposing that investors may operate out-
side of their preferred segments if a risk premium compensates their aversion to reinvestment
risk (Modigliani & Sutch, 1966).

In this context, since prices respond to local behaviour of different investors, the short,
medium, and long term yields would be independent of one another. Thus, it is reasonable
to expect that if speculators and arbitrageurs tend to operate in the short end of the term
structure, news and announcements may cause greater impact on short yields. At the same
time, long bonds would be reactive to news relevant to the long term state of the economy.
This qualitative overview of two theories of term structure behaviour will give us the guiding
principles in our analysis of jump behaviour.
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Chapter 2

Data

Our database consist of intraday transactions on the Mercado Electrónico Colombiano (MEC)
operated by the Bolsa de Valores de Colombia (BVC). Data entries span dates from January
2nd, 2017 to December 28th, 2018. This includes operations for a total of 485 trading days
in these years. Colombian sovereign debt is issued in Colombian peso (COP) and Unidad de
Valor Real (UVR)1. Despite having data for both types of assets, only COP issuances are
considered since they are more liquid.

Mnemonic conventions for Colombian debt titles enconde information about the bond’s
coupon, year of issuance, and maturity. For example, TFIT16240724 is a fixed coupon treasury
(TFIT) issued in 2016 (TFIT16) with expiration date 24th of July 2024 (TFIT16240724). For
the sake of brevity we will denote bonds only by their expiration year in our discussions, i.e.,
we will refer to TFIT16240724 as T24.

2.1 Bond selection criteria

Bonds are selected for analysis according to the following criteria: i) Liquidity: since the
jump detection approach detailed in the theoretical framework is based on the asymptotic
distributions of realized measures of variance, the most active assets will return the best
results; ii) Maturity: the two theories of term structure formation discussed in section 1.2
give us preemptive expectations of the jump activity of bonds of different maturities. Thus,
choosing bonds with maturities distributed along the term structure allows for an interesting
comparison of jump behaviour in light of those hypothesis.

For the case study of Colombia, these two criteria present a serious challenge. The local
market has few agents trading day to day, which means liquidity is generally low. Additionally,
most of these agents trade mainly short and medium term bonds. This means long term debt
is much more illiquid since market participants buy or sell long term bonds mostly to comply
with regulations and to match long term liabilities. Consequently, analysis at the shorter end
of the term structure will be much richer in comparison to the longer end.

To aid in bond selection, table 2.1 displays daily descriptive statistics for all bond trans-
actions. Maturity, total trading days, and average and median transactions are presented,
as well as average and median inter-arrival times (IAT). IAT is defined as the time interval

1A Unit of Real Value (UVR) represents the acquisitive power of the Colombian peso, and is defined as the
price of a predetermined bag of goods and services.
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Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT

TFIT16240724 7 485 189.971 198 1m 29.047s 13s

TFIT15240720 3 472 23.961 18 7m 18.138s 1m 16s

TFIT06211118 1 435 15.573 11 8m 32.520s 1m 40.5s

TFIT10040522 5 455 6.771 5 18m 42.474s 5m 56s

TFIT06110919 2 394 5.233 4 18m 54,712s 4m 16s

TFIT16300632 15 352 4.258 2 20m 04.405s 5m 35s

TFIT15260826 9 315 3.404 1 19m 42.871s 6m 35s

TFIT08261125 8 133 0.891 0 27m 06.659s 9m 30s

TFIT16180930 13 92 0.625 0 24m 55.545s 7m 36s

TFIT11241018 1 105 0.559 0 27m 40.795s 10m 25.5s

TFIT16280428 11 75 0.285 0 28m 51.778s 8m 00s

Table 2.1: Descriptive statistics of daily transactions throughout our sample; e.g., T24 av-
erages 189.971 daily transactions in our database, with each trade happening almost every
minute and a half on average. Maturities are in reference to 2017.

between transactions, thus, IAT is lower for more liquid assets and greater for illiquid ones.
Values reported in this table help us quantify the daily liquidity of each title. For exam-
ple, the T24 bond averages 189.971 transactions each day. Furthermore, IATs suggests that
each transaction occurs every minute and 29 seconds on average. This means that this bond
is much more liquid that the T20 title, which trades around 24 times each day, with each
transaction occurring every 7 minutes and 18 seconds on average.

The bonds chosen for analysis are: TFIT06211118, TFIT06110919, TFIT15240720, TFIT-
10040522, TFIT16240724 and TFIT16300632, hereafter T18, T19, T20, T22, T24, T32 in our
discusions. Even though these are the bonds which trade the most, illiquidity remains a real
challenge. Only T18, T20 and T24 average more than 10 transactions per day, while the only
long term bond (T32) averages 4.25 transactions per day. The most traded bond is T24 with
189.971 daily operations on average.

2.2 Data sampling and microstructure noise

In order to apply the jump test in equation (1.9), our trade data must be sampled at equal
discrete time intervals (Dungey et al., 2009). Sampling high frequency data entails the fol-
lowing trade-off: choosing a high sampling frequency captures more information about the
evolution of the real-time price formation process at the cost of greater microstructure noise.
On the other hand, a lower sampling frequency minimizes noise, at the expense of masking
information about the asset’s instantaneous market price.

Even though optimal sampling frequency tests exist, their results differ for different bond
maturities ((Zhang, Mykland, & Aı̈t-Sahalia, 2005), (Bandi & Russell, 2006)). Different
sampling frequencies for different bonds makes comparisons across different assets impossible.
For this reason, instead of using optimal frequency tests, empirical literature cited so far
applies several sampling frequencies for assets under consideration in order to compare and
contrast the effects which sampling frequency has on the jump test. We will replicate this
procedure, sampling at 5, 10, 15, and 30 minute intervals.
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The optimal sampling method is also a source of debate among academics. Dungey et al
(Dungey et al., 2009) take the last price within a time bucket as representative of the market
price within that interval. Sheppard (Sheppard, 2006) argues that this approach may lead to
scrambling problems2 and could also bias the covariance of returns to zero for larger sampling
frequencies.

On the other hand, Lee and Mykland propose a non-parametric approach which assumes
that market noise has a zero-mean distribution. This way, taking local averages of prices
within time intervals asymptotically removes noise from the underlying market price (Lee &
Mykland, 2012). Even though the authors assume that data is of ultra high frequency, we
will adopt this method as our sampling procedure since scrambling problems are of greater
magnitude for the more illiquid assets we are studying.

2.3 Additional statistics

This section presents additional information about daily bond transactions. Tables 2.2 and
2.3 present the same statistics as table 2.1 for each year in our sample. Figures 2.1 through
2.6 showcase the number of transactions of the selected bonds during all trading days of
2017-2018. Additionally inter-arrival time distributions for the selected bonds are included.
As previously mentioned, IAT for more liquid assets are smaller than for illiquid assets since
the time between transactions is shorter, thus, their values would cluster near zero in the
distribution. We have decided to crop IAT values at 3600 seconds since intervals larger than
an hour are uncommon.

Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT

TFIT16240724 7 242 233.636 226 1m 15.378s 12s
TFIT15240720 3 229 10.463 8 14m 47.167s 4m 17s
TFIT06211118 1 242 25.727 24 7m 9.708s 1m 24s
TFIT10040522 5 220 5.095 4 22m 4.609s 7m 39s
TFIT16300632 15 142 2.244 1 26m 43.930s 9m 17s
TFIT06110919 2 214 6.711 5.5 19m 19.944s 5m 51,5s
TFIT15260826 9 196 5.500 2 17m 23.907s 5m 33s
TFIT08261125 8 0 0 0 — —
TFIT16180930 13 78 1.178 0 24m 21.121s 7m 8s
TFIT11241018 1 96 1.062 0 27m 38.963s 10m 27s
TFIT16280428 11 20 0.165 0 19m 9.950s 1m 23.5s

Table 2.2: Descriptive statistics of daily transactions during 2017.

2Taking the last price in each time bucket could result in intervals of uneven length. Since we need equal
length intervals, this problem is known as scrambling.
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Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT

TFIT16240724 6 243 146.486 137 1m 50.813s 14s
TFIT15240720 2 243 37.403 34 5m 21.236s 58s
TFIT06211118 – 193 5.461 4 15m 49.509s 4m 44.5s
TFIT10040522 4 235 8.440 7 16m 49.719s 5m 7s
TFIT16300632 14 210 6.263 4 18m 2.294s 5m 16.5s
TFIT06110919 1 180 3.761 2 19m 32.676s 5m 34.5s
TFIT15260826 8 119 1.317 0 32m 47.567s 16m 57s
TFIT08261125 7 133 1.778 1 27m 6.659s 9m 30s
TFIT16180930 12 14 0.074 0 54m 37s 45m 56.5s
TFIT11241018 – 9 0.058 0 28m 39.800s 3m 42s
TFIT16280428 10 55 0.403 0 33m 22.395s 12m 16s

Table 2.3: Descriptive statistics of daily transactions during 2018.
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Figure 2.1: TFIT06211118: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Figure 2.2: TFIT06110919: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Figure 2.3: TFIT15240720: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Figure 2.4: TFIT10040522: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Figure 2.5: TFIT16240724: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Figure 2.6: TFIT16300632: a) Daily transactions for 2017-2018; b) Inter arrival time distribution
cropped at 3600 seconds
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Chapter 3

Empirical results

3.1 Univariate jumps

Table 3.1 summarizes the results of applying equation (1.9) for 5, 10, 15, and 30 minute
sampling frequencies at a 5% significance level. Despite trading for 472 out of the 485 total
days, the T20 bond exhibits the most active jump behaviour at all frequencies except 30
minutes; jumping 68.4% of the time at 5 minute frequency and 55.2% on average. On the
other hand, the T24 and T32 bills are among the least likely to jump. T24 jumps 55.7% of
the time at the 5 minute sampling frequency, but this rejection rate quickly drops below 30%
for all other frequencies. Meanwhile, the T32 rejection frequency increases for lower sampling
frequencies.

This trend of lower sampling frequency resulting in higher rejection rates is unexpected,
since the presence of noise in higher sampling frequencies should generate more rejections of
the test statistic. Out of the six bonds studied, this inverse relationship between frequency
and rejection is present in the more illiquid assets: T19, T22, and T32. Table 3.1 reveals

Mnemonic Avg. trans. Rejection freq. No. of jump days Rejection freq. No. of jump days

5 minutes 10 minutes
TFIT06211118 15.573 0.623 271 0.568 247
TFIT06110919 5.233 0.340 134 0.365 144
TFIT15240720 23.961 0.684 323 0.606 286
TFIT10040522 6.771 0.352 160 0.418 190
TFIT16240724 189.971 0.557 270 0.272 132
TFIT16300632 4.258 0.276 97 0.304 107

15 minutes 30 minutes
TFIT06211118 15.573 0.494 215 0.386 168
TFIT06110919 5.233 0.411 162 0.398 157
TFIT15240720 23.961 0.547 258 0.369 174
TFIT10040522 6.771 0.411 187 0.426 194
TFIT16240724 189.971 0.245 119 0.140 68
TFIT16300632 4.258 0.307 108 0.318 112

Table 3.1: Rejection frequency of the jump test for all sampling frequencies
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Figure 3.1: Time series of jump test results in proportion to the critical value at 30 minute
sampling frequency and at a 95% confidence interval.

that these assets increase the number of detected jump days when the sampling frequency
decreases, which may indicate that the lower sampling frequency captures more information
about transaction dynamics in illiquid assets. Thus, when the average of the time buckets is
taken, the longer time intervals allow for a more representative average price.

On the other hand, more liquid bonds generate larger rejection rates as the sampling
frequency increases. For example, the rejection rate for T24 grows from 0.14, 0.245, 0.272,
and 0.557 as the sampling frequency increases from 30, 15, 10 to 5 minutes. This result is
consistent with intuition that greater data granularity comes with greater noise, as well as
with conclusions presented by Dungey et al. in their empirical study of US treasuries. Unlike
their work, which finds that jumps are not as prevalent for longer term bonds in comparison
with short term bonds, we find no relation between maturity and univariate jump rejection
frequency.

Graphical representation of jump test results for the 30 minute sampling frequency are
shown in figure 3.1. This plot shows the value of the jump statistic for each day in proportion
to its critical value. It is clear by observation that jumps are a common occurrence for fixed
income instruments, which suggests that simultaneous jumps across different assets are a real
possibility. We study the cojumping behaviour in detail in the next section. Univariate test
results for different sampling frequencies are included in section 3.5.

13



Mnemonic Co-exceedances Total jumps Mnemonic Co-exceedances Total jumps
0 1 2 3 0 1 2 3

5 minute sampling 10 minute sampling
TFIT06211118 47 132 76 16 271 TFIT06211118 69 120 51 7 247
TFIT15240720 39 166 102 16 323 TFIT15240720 78 141 60 7 286
TFIT16240724 27 129 98 16 270 TFIT16240724 22 66 37 7 132
TFIT16300632 4 29 48 16 97 TFIT16300632 12 47 41 7 108

15 minute sampling 30 minute sampling
TFIT06211118 66 104 40 5 215 TFIT06211118 76 70 20 2 168
TFIT15240720 91 123 39 5 258 TFIT15240720 74 75 23 2 174
TFIT16240724 27 54 33 5 119 TFIT16240724 15 36 15 2 68
TFIT16300632 23 51 29 5 108 TFIT16300632 43 47 20 2 112

Table 3.2: Number of coexceedances for each bond at all sampling frequencies.

3.2 Multivariate jumps

As a complement to the univariate jump test, we can also consider the case of multiple bonds
of different maturities jumping on a given day. This cojump behaviour can be gauged by
studying coexceedances, an approach developed by Bae, Karolyi, and Stulz in the context
of financial contagion and occurrence of extreme events (Bae et al., 2003). A coexeedance
occurs when, on a particular day, a bond of maturity i exceeds the jump statistic’s critical
value given that a bond of maturity j has also surpassed the critical value for the same day.
This would imply that the assets have jumped synchronically at the daily level.

More formally, the procedure is as follows. We begin by looking at the individual time
series of JSi,t values for each bond. A dummy variable di,t indicates if a bond of maturity i
exceeds the statistic’s critical value at day t:

di,t =

{
1 JSi,t > JScritical

0 otherwise

With the series of dummy values for each bond, the number of coexceedances will be given
by the sum of all di,t for i 6= j given that j = 1:

Ej,t|dj,t=1 =

n∑
i=1, i 6=j

di,t (3.1)

We have decided to limit the cojump analysis to the T18, T20, T24, and T32 emissions,
since the first three are the most liquid and T32 is the longest dated bond in our database.
This means that the number of coexceedances will range in values from 0 to 3, where 0
indicates the number of unique jumps and 3 the number of times when all bonds jump in a
given day.

Table 3.2 presents the coexceedance results for all sampling frequencies as well as the total
number of jumps. Interestingly, jumps of two assets are the most common event by a wide
margin, followed by unique jumps. The least common occurrence is the simultaneous jump of
all four bonds. Furthermore, these results persist across all maturities and sampling frequen-
cies, which may point to an underlying dynamic which causes this behaviour in Colombian
sovereign bond market.
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Averaging the 2 asset cojump proportions across bonds and maturities (except for T32
at 5 minutes) accounts for 46.989% of all jump activity. This implies that when the term
structure experiences a jump, it generally does so in tandem with another part of the curve.
Identifying which ends move with which is difficult since all coexceedances of two assets are
very similar in proportion, though, in magnitude, it is clear that T18 and T20 experience
much more 2-asset co jumps at all frequencies. In section 3.3, the phenomenon of cojump
pairs is described in more detail.

3.3 Cojump pairs

By limiting our view to coexceedances of only two assets, we can see how their cojump
behaviour evolves in time. We do this by defining a counter which keeps track of every time
a coexceedance occurs for a pair of bonds. Everytime Ej,t|dj,t=1 = 1, the counter goes up
by 1. When graphing this counter’s values as a time series, this procedure has a convenient
interpretation, since the steepest curve indicates the most active pairing of cojumping bonds.
Figure 3.2 shows the evolution of the cojump pairs for all sampling frequencies considered:
T18-T20 as a green dashed and dotted line; T18-T24 as a solid orange line; and T20-T24 as
a dashed blue line. Figure 3.3 graphs the same dynamic for the T24-T32 (dash and dot),
T20-T32 (solid), and T18-T32 (dashed) pairs.

Our interest lies in comparing cojump behaviour of bonds distributed throughout the term
structure. Thus, the analysis that follows is made more clear by referring to these pairs by
the difference of their constituent’s bond maturities. From smallest to largest difference, the
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Figure 3.2: Time evolution of cojump pair activity at a) 5 minute sampling; b) 10 minute
sampling; c) 15 minute sampling; d) 30 minute sampling frequency for pairs of 2Y, 4Y, and
6Y difference in maturity.
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Figure 3.3: Time evolution of cojump pair activity at a) 5 minute sampling; b) 10 minute
sampling; c) 15 minute sampling; d) 30 minute sampling frequency for pairs of 8Y, 12Y, and
14Y difference in maturity.

pairs will be: T18-T20: 2Y pair; T20-T24: 4Y pair; T18-T24: 6Y pair. The second set would
be T24-T32: 8Y pair; T20-T32: 12Y pair; T18-T32: 14Y pair.

Results at 5 minute sampling tend to align with the preferred habitat theory, since the
two pairs of closest maturities, 4Y and 2Y, show the most (and second most) cojump activity.
4Y jumps 185 times, 2Y does so 161 times, while 6Y counts 129 coexceedances in our sample.
Comparisons with the 10, 15 and 30 minute samplings show that 2Y is consistently the most
active pair, with 4Y and 6Y being second and third. These results strengthen the case for
cojump behaviour following the market segmentation hypothesis, which foresees bonds of
nearer maturities reacting similarly to external shocks. Yet, for sampling frequencies of 10,
15, and 30 minutes, the 4Y and 6Y pairs tend to move more in tandem with one another.
This low cojump number is explained by the low univariate activity of the T24 bond at those
frequencies, since T24 only jumps on 132, 119, and 68 days respectively (see table 3.1). Thus,
pairs which contain T24 will have fewer days on which a possible coexceedance may occur.

Meanwhile, casual observation of figure 3.3 tells us that pairs of dissimilar maturities are
much less active than ones with similar maturities. Across all samplings, 12Y shows the most
coexceedances, followed by 14Y (except at 5 minutes) and 8Y. Thus, we find no constructive
evidence for either theory of the term structure of interest rates. Yet, we may replicate the
argument that low univariate jump activity is responsible for the low cojump count for these
pairs. In this case, it is the low activity of T32 which constrains the number of days for a
coexceedance to occur. Since T20 is the most active bond, it has the most chance of cojumping
with the T32 bond. By the same logic, T24 is the least active bond, making the T24-T32 pair
the least likely to cojump. Our results for sampling frequencies other than 5 minutes reflect
that this is indeed the case.
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Mnemonic Weekdays Mnemonic Weekdays
M T W Th F M T W Th F

5 minute sampling 10 minute sampling
TFIT06211118 0.193 0.226 0.181 0.189 0.211 TFIT06211118 0.235 0.189 0.205 0.182 0.189
TFIT06110919 0.155 0.238 0.195 0.214 0.198 TFIT06110919 0.140 0.241 0.185 0.227 0.206
TFIT15240720 0.148 0.214 0.218 0.196 0.225 TFIT15240720 0.145 0.178 0.255 0.206 0.215
TFIT10040522 0.106 0.206 0.275 0.250 0.163 TFIT10040522 0.116 0.221 0.221 0.237 0.205
TFIT16240724 0.104 0.201 0.179 0.276 0.239 TFIT16240724 0.104 0.201 0.215 0.250 0.229
TFIT16300632 0.072 0.237 0.278 0.227 0.186 TFIT16300632 0.112 0.178 0.243 0.215 0.252
Daily avg. 0.130 0.220 0.221 0.225 0.204 Daily avg. 0.142 0.201 0.221 0.220 0.216
Coexceedance 0.168 0.211 0.211 0.205 0.205 Coexceedance 0.160 0.208 0.219 0.205 0.208

15 minute sampling 30 minute sampling
TFIT06211118 0.210 0.210 0.185 0.193 0.202 TFIT06211118 0.221 0.132 0.250 0.235 0.162
TFIT06110919 0.147 0.225 0.236 0.209 0.182 TFIT06110919 0.195 0.155 0.224 0.207 0.218
TFIT15240720 0.135 0.172 0.233 0.233 0.228 TFIT15240720 0.155 0.208 0.214 0.196 0.226
TFIT10040522 0.128 0.230 0.182 0.262 0.198 TFIT10040522 0.134 0.222 0.232 0.227 0.186
TFIT16240724 0.142 0.216 0.204 0.222 0.216 TFIT16240724 0.102 0.242 0.210 0.236 0.210
TFIT16300632 0.111 0.222 0.241 0.231 0.194 TFIT16300632 0.134 0.214 0.214 0.232 0.205
Daily avg. 0.146 0.213 0.214 0.225 0.203 Daily avg. 0.157 0.196 0.224 0.222 0.201
Coexceedance 0.151 0.202 0.221 0.214 0.212 Coexceedance 0.157 0.197 0.217 0.206 0.223

Table 3.3: This table shows the daily distribution of jump test results which exceeded the
critical value at 5% significance for all sampling frequencies.

3.4 Stylized facts of the Colombian bond market

This section studies daily jump seasonalities in two ways: first, the daily distribution of the
jump test results is studied in subsection 3.4.1. This allows us to more formally define a panel
logistic regression model for a binary outcome of jump versus no jump. This approach lets us
include central bank announcements. These results are presented in subsection 3.4.2.

3.4.1 Daily distribution of jumps

It is possible that both univariate and multivariate jumps exhibit daily seasonalities. For
example, Das explicitly models day-of-the-week effects on jump behaviour and finds that
jumps are more likely to jump on Wednesdays due to option expiry effects (Das, 2002). Even
though the procedure we have followed does not capture daily effects, we can observe the
distribution of jumps and cojumps to check for daily patterns. Results of this analysis are
presented in table 3.3.

For all sampling frequencies and almost all bonds, the least likely day for a jump to occur
is Monday. Only T18, and T19 at 30 minute sampling, deviated from this behaviour. On the
other hand, the assets studied did not reflect any particular seasonality for a most common
jump day. On average, Wednesday was the most likely day for jumps at 10 and 30 minute
sampling frequencies, with 22.1% and 22.4% of jumps happening on this day of the week on
average. At 5 and 15 minute sampling frequencies, Thursday was the most common jump
day, with 22.5% of jumps occurring that day for both frequencies.

Results for cojumps exhibit some similarity to univariate jumps. Analyzing only jumps of
more than one asset (coexceedance > 0) no particular day at any sampling frequency stands
out as one where a cojump is most likely to happen. As was the case for univariate jumps,
least likely day for cojumps is once again Monday. The apparent monday effect found in
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idiosyncratic jumps and cojumps contradicts findings for US treasuries presented by Dungey
et al., where the authors do not find any evidence of daily seasonalities for neither jumps nor
cojumps (Dungey et al., 2009). Day of the week effects are studied more formally in the next
subsection, as well as the effect of interest rate announcements on jump activity.

3.4.2 Interest rate announcements and jump activity

Having found daily seasonalities in both jump and cojump behaviour, we can now search for
the impact of interest rate announcements in jump activity. To do this, we define a panel
logistic model which specifies the event of a jump occurring as a function of weekdays and
interest rate announcements. The model is specified as follows:

I(J∗i,t ≥ 1) = β0 +
4∑
j=1

βkDk + αDNEWS + τi + εi,t (3.2)

where J∗i,t is the result of the jump test applied to bond i at day t in proportion to the critical
value. The identity function transforms the continuous values of the jump test into a binary
outcome model which takes a value of 1 when the critical value is exceeded and zero otherwise.
The Dk terms control for day of the week, from Tuesday through Friday. We expect the βk
coefficients to be positive since we found that Monday is the least likely day for a jump to
occur. The error term τi captures fixed effects common to each issuance, while the εi,t models
idiosyncratic innovations at the daily level.

εi,t ∼ iidN (0, σ2
ε)

Now, we need to consider several possible interpretations of the DNEWS variable. In
total, three different specifications are considered. First, we will only consider DNEWS as an
indicator of whether the central bank (BanRep1) makes an announcement on day t or not,
i.e, DNEWS takes a value of 1 on days in which BanRep makes an announcement regarding
interest rates and 0 otherwise. This first approach does not take into account the direction
of the movement of the interest rate. It may be argued that markets react in regards to
the content of the announcements as opposed to the announcement itself, thus, the second
specification of DNEWS corresponds to taking a value of one when the interest rate is lowered
and zero otherwise. Finally, since during the time spanned in our database there are no rate
hikes, the third and final approach sees DNEWS take a value of one when BanRep announces
no change in the interest rate and zero otherwise.

Table 3.4 presents the average marginal effects for each iteration of the news variable
considered, as well as the average marginal effect each weekday has on jump activity. We
can see that no effects due to BanRep announcements were found at any sampling frequency
nor at any specification of the DNEWS variable. This null effect may be a reflection that the
few market participants operating in the local market have already adjusted their positions
according to their expectations regarding the magnitude and direction of movements in the
interest rate.

On the other hand, several day-of-the-week effects are found for 5, 10, and 15 minute
samplings. At the 5 minute level, positive Tuesday and Thursday effects are found at 5% and

1Banco de la República de Colombia.
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DTUE DWED DTHU DFRI DNEWS Specification

5 minute sampling
0.3040** 0.1458 0.2359* 0.1392 0.2051 (1)
(0.1384) (0.1375) (0.1382) (0.1418) (0.2145)
0.3062** 0.1461 0.2380* 0.1518 0.2270 (2)
(0.1384) (0.1376) (0.1381) (0.1400) (0.2783)
0.3014** 0.1427 0.2375* 0.1568 0.1489 (3)
(0.1384) (0.1375) (0.1381) (0.1404) (0.3122)

10 minute sampling
0.1370 0.1974 0.2601* 0.2512* -0.1632 (1)
(0.1387) (0.1376) (0.1381) (0.1416) (0.2146)
0.1392 0.2016 0.2568* 0.2214 0.1171 (2)
(0.1387) (0.1376) (0.1380) (0.1399) (0.2747)
0.1420 0.1998 0.2628* 0.2631* -0.5097 (3)
(0.1387) (0.1376) (0.1381) (0.1402) (0.3241)

15 minute sampling
0.1415 0.1236 0.2531* 0.1217 -0.2211 (1)
(0.1379) (0.1371) (0.1373) (0.1414) (0.2167)
0.1422 0.1263 0.2497* 0.0945 -0.0337 (2)
(0.1379) (0.1372) (0.1372) (0.1397) (0.2769)
0.1466 0.1268 0.2541* 0.1209 -0.4374 (3)
(0.1380) (0.1371) (0.1373) (0.1400) (0.3257)

30 minute sampling
-0.0252 0.0820 0.0983 0.0138 0.0179 (1)
(0.1432) (0.1414) (0.1419) (0.1462) (0.2201)
-0.0211 0.0859 0.0972 -0.0026 0.2718 (2)
(0.1433) (0.1414) (0.1419) (0.1445) (0.2782)
-0.0224 0.0817 0.1021 0.0379 -0.3319 (3)
(0.1432) (0.1413) (0.1419) (0.1447) (0.3390)

Table 3.4: Marginal effects for the logistic model defined in equation (3.2). The last column
indicates the three different cases considered for the DNEWS variable.

10% significance respectively, for all specifications of DNEWS considered. At this frequency,
jumps are about 30% more likely to occur on Tuesdays and about 23% more likely to occur
on Thursdays in comparison to Mondays, on average. In general, as sampling frequency
decreases, daily effects and their significance also decreases. For the 10 minute sampling there
is a positive Thursday effect at 10% significance for the three cases considered. Additionally,
a positive Friday effect is found for specifications 1 and 3 of the news variable. On average,
jumps are about 26% more likely to occur both on Thursdays and on Fridays. Sampling at 15
minute intervals, only a positive Thursday effect is consistently found. Finally, no significant
day of the week effects were found for the 30 minute sampling frequency.

These results clearly show that, despite a lack of effects caused by any kind of central bank
announcements, day-of-the-week effects are present at all but one sampling frequencies. In
particular, there seems to be a persistent Thursday effect, though the cause for it is beyond
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the scope of this work. Even though the fixed effects panel logistic regression methodology
omits an estimation of each bond’s constant term β0, an individual logistic regression was
performed for each title and each sampling frequency with random innovations. Results show
a strong negative effect at 1% significance for all four sampling frequencies, though numerical
results are omitted from this discussion for the sake of brevity.

3.5 Complementary results

This section includes the remaining results omitted in this chapter’s previous discussions.
Proportion of exceedance results are shown in figures 3.4, 3.5, and 3.6 for 5, 10, and 15
minute sampling frequencies. These results help highlight the interpretations given above, as
well as illustrating the difficulty that liquidity imposes on our analysis.
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Figure 3.4: Jump statistic results in proportion to the critical value, 5 minute sampling
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Figure 3.5: Jump statistic results in proportion to the critical value, 10 minute sampling
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Figure 3.6: Jump statistic results in proportion to the critical value, 15 minute sampling
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Chapter 4

Conclusions

In this work we have found that price discontinuities are a common occurrence for Colombian
sovereign bonds. Results presented in sections 3.1 and 3.2 show the extent of this activity,
though no relation was found between maturity and univariate jump presence. Furthermore,
no issuance was found to consistently be the one which jumps the most for the sampling
frequencies studied, though T24 was the least active title for all sampling frequencies except
5 minutes.

By looking at the daily coexceedances of this test, we can extend the notion of jumps to
include simultaneous discontinuities across assets. Analyzing results, almost half of all jump
activity consists of the cojumping of two bonds. In particular, the assets which cojumped
the most were the ones with shortest maturities. This seems to suggest that the behaviour
of the local market falls more in line with the market segmentation theory, as opposed to the
liquidity risk premium hypothesis.

The widespread presence of jumps in bond prices allows for an interesting study of their
weekly distribution. For both univariate and multivariate jumps, the least common jump
day is Monday. For 10 and 30 minute sampling frequencies, the preferred cojumping day is
Wednesday, while at 5 and 15 minute samplings the preferred cojumping day is Thursday.
On the other hand, no particular day stood out as more prevalent for univariate bond jump
activity.

Defining a panel logistic model allows for a formal study of daily jump seasonalities. As we
expected, there are multiple positive and significant day-of-the-week effects which diminish in
number and significance with sampling frequency. In particular, a persistent Thursday effect
was found for every sampling frequency except 30 minutes. Additionally, this methodology
lets us include announcements made by the Banco de la República regarding interest rates.
Regression results show no evidence of any impact on jump activity when considering three
different types of announcements made by the sovereign bank.

4.1 Future work

This work has found several interesting relationships regarding cojump behaviour and daily
seasonalities which could be greatly enriched with data from the Sistema Electrónico de
Negociación (SEN) operated by BanRep. For example, results of cojump pairs indicate that
shorter maturity pairs are more active than longer maturity ones. Though this seems to be
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consistent with the theory of market segmentation, it may also be simply due to illiquidity in
longer bonds. The complementary data from SEN could allow for a more robust conclusion
regarding this phenomenon.

Additionally, our database spans a window of time in which Standard & Poor’s lowered
Colombia’s credit rating from BBB to BBB-1. This is a clear case of a major systemic shock
on local financial markets. It would be interesting to study the impact of this event in the
context of jump activity in sovereign debt, as well as a general refinement to our approach in
analyzing the impact news announcements have on an assets price.

1S&P lowered Colombia’s rating on December 11 2017, making the country’s credit rating the lowest
investment grade for fixed income securities.
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