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The purpose of this paper is to present numerical solutions to PDE representations for

derivatives pricing including bilateral credit valuation adjustments and funding costs

valuation adjustment as presented in Burgard and Kjaer (2011b). In particular, we

use Crank-Nicolson finite difference scheme to solve Black-Scholes risk-free PDE, for

European and American options, and show how this numerical solution approach is ex-

tendable to solve the risky PDE for the value of the same derivative using the same finite

difference scheme and algorithm. Also, we present numerical solutions to valuation ad-

justments derived from PDE representations for European options through Monte Carlo

simulation and numerical integration and we explore an empirical approach for American

options through Monte Carlo simulation, least-squares and numerical integration.
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Chapter 1

Introduction

A key form of regulation is determining the minimum amount of capital that a given

bank must hold. Capital acts as a buffer to absorb losses during turbulent periods and,

therefore, contributes significantly to defining creditworthiness. Ultimately, regulatory

capital requirements partially determine the leverage under which a bank can operate.

The danger of overly optimistic capital requirements has been often highlighted, with

losses not just exceeding, but dwarfing, the capital set aside against them. Banks strive

for profits and will therefore naturally wish to hold the minimum amount of capital

possible in order to maximize the amount of business they can do and risk they are able

to take (Gregory (2015)).

From 2009, new fast-tracked financial regulation started to be implemented and was

very much centered on counterparty risk and OTC derivatives. The US DoddFrank

Wall Street Reform and Consumer Protection Act 2009 (DoddFrank) and European

Market Infrastructure Regulation (EMIR) were aimed at increasing the stability of the

over-the-counter (OTC) derivative markets. The Basel III rules were introduced to

strengthen bank capital bases and introduce new requirements on liquidity and leverage.

In particular, the completely new credit valuation adjustment capital charge was aimed

directly at significantly increasing counterparty risk capital requirements. Additionally,

the G20 agreed a clearing mandate whereby all standardized OTC derivatives be cleared

via central counterparties with the view that this would, among other things, reduce

counterparty risk. Later, the G20 introduced rules that were to require more collateral

to be posted against those OTC derivatives that could not be cleared (bilateral collateral

rules) (Gregory (2015)).

The purpose of this paper is to present numerical solutions to PDE representations for

derivatives pricing including bilateral credit valuation adjustments (CVA) and funding

cost valuation adjustment (FVA) as presented in Burgard and Kjaer (2011b). PDE
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representations derived from replication arguments are in general more intuitive as they

allow the relationships between cash positions to be described explicitly. Also, PDE ap-

proaches can be linked to expectations through the Feynman-Kac theorem and hence can

be used to give a general formula for valuation adjustment terms. Even if the assump-

tions used include deterministic rates, for example, once the Feynman-Kac theorem has

been applied it is relatively straight forward to generalize the resulting formulae (Green

(2016)).

In particular, we use Crank-Nicolson finite-difference scheme to solve Black-Scholes risk-

free PDE, for European and American options, and show how this numerical solution

approach is extendable to solve the risky value PDE of the same derivative using the

same finite-difference scheme and algorithm. Also, we present numerical solutions to gen-

eral formulas for valuation adjustments derived from PDE representations for European

options through Monte Carlo simulation and numerical integration and we explore an

empirical approach for American options through Monte Carlo simulation, least-squares

and numerical integration. Explicit code for the solutions is provided in Appendix A.

The remainder of this paper is organized as follows. In Chapter 2 we describe the

concept of collateral agreements in the context of OTC derivatives. In Chapter 3 give

an overview of valuation adjustments (CVA and FVA). Chapter 4 summarizes the model

framework in Burgard and Kjaer (2011b). Chapter 5 describes the solutions we used for

PDE representations. Chapter 6 summarizes the results. Chapter 7 contains concluding

remarks and future extensions.



Chapter 2

Collateral Agreements: CSA in

ISDA Master Agreement

OTC derivatives between two parties, the seller and the counterparty, are often docu-

mented and ruled by a Master Agreement (MA) during the life of the contract. The

International Swaps and Derivatives Association (ISDA) MA is one of the most pop-

ular and widely used in the financial industry. Collateral agreements, like the credit

support annex (CSA) of the ISDA MA, help to mitigate default under some scenarios

by minimizing the exposure both counterparties face upon default by following certain

mechanisms and conditions for collateral to be posted. This intends to replicate margin

accounts in exchange traded derivatives. In order to understand the model framework

in Chapter 4 and why it is important to determine if a single asset or portfolio of as-

sets valuation should be adjusted by credit risk depending on the credit quality of both

counterparties and the eligible collateral within an agreement, we provide an overview of

the ISDA MA and some market standards regarding CSAs. As concluded by Piterbarg

(2010), collateral is used to offset liabilities in case of a default, it could be thought as

an essentially risk-free investment, so the rate on collateral is usually set to be a proxy

of a risk-free rate such as the fed funds rate for dollar transactions, Eonia for euro, etc.

Often, purchased assets are posted as collateral against the funds used to buy them,

such as in the repo market for shares used in delta hedging. When collateral cannot be

posted or there is counterparty risk that cannot be hedged, derivatives’ valuation should

reflect that risk. All the following information regarding ISDA MA and CSAs was found

in Fitch Ratings (2017).
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2.1 ISDA MA General Provisions

ISDA MA addresses matters such as representations and undertakings by the parties,

events of default and other termination events, and payment methods and payment mea-

sures arising upon early termination. The ISDA master agreement is typically governed

by either New York or English law. However, in some instances there are MAs drafted in

a local language and governed under local law. Although such local master agreements

can simply be a translation of an ISDA MA.

The 2002 ISDA MA is similar in form and substance to the 1992 version, with many of the

substantive differences between the agreements relating to termination. Although the

events that can bring about termination have not changed materially, the time in which

termination can be effected subsequent to certain events occurring has been shortened,

and the payment measure for calculating payments upon termination is different.

Where more than one derivative exists between the same counterparty and seller us-

ing a single ISDA master agreement with multiple confirmation documents, there are

documents for netting arrangements for termination payments and collateral posting.

Where payments under the different derivatives are paid at the same position in the

counterparty’s priority of payments and the derivatives are concluded under the same

ISDA master agreement, the documentation can provide for the netting of termination

payments.

The CSA provides clarity on the collateral enforcement rights when the counterparty is

the defaulting or sole affected party. Based upon the provisions of standard CSAs, the

collateral amount should be calculated by a valuation agent in a commercially reasonable

manner, acting in good faith and taking into account the prevailing market environment.

2.1.1 Derivative Documentation

The master agreement is accompanied by a schedule and a confirmation, which sup-

plement and override to the extent of any inconsistency the master agreement. If

there is an inconsistency between the schedule and the confirmation, the confirmation

takes precedence. The confirmation details matters such as the actual rates and indices

governing the relevant derivative, the dates when payments are due, and the notional

amount for calculating the payments. The schedule will apply, supplement or amend cer-

tain provisions in the master agreement and will often introduce additional termination

events (ATEs).
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In addition, the terms of collateralisation to mitigate counterparty exposure are typically

set out in a CSA, in a form published by ISDA for both English and New York law.

Experience with market participants suggests that agreeing and putting in place a CSA

is a time-consuming exercise.

Aside from the details on the collateralisation procedures, the CSA also addresses mat-

ters such as the duties of the counterparties, the frequency of the marking-to-market

of collateral and derivative valuation, and the posting of collateral, the types of eligi-

ble collateral, and the minimum transfer amount in relation to a delivery or return of

collateral.

2.1.2 Events of Default and Termination Events

The ISDA master agreement defines events of default (EoDs) and termination events that

can bring about the early termination of a derivative. An EoD gives the non-defaulting

party the right to terminate all derivative transactions under the master agreement and,

where elected, may provide for automatic termination following a bankruptcy event of

default. A termination event gives either one or both parties the right to terminate one

or more, but not necessarily all, derivatives between them under the master agreement.

The events of default set out in the ISDA master agreement can be summarised as

follows:

- Failure to pay or deliver: A party fails to make any payment or due delivery, with a

grace period of three business days (ISDA 1992) or one business day (ISDA 2002)

after notification.

- Breach of agreement: A party fails to comply with any other obligation in accordance

with the agreement, and this is not remedied within 30 days after notification.

-Credit support default: The party relies on a credit support provider and/or credit

support document and there is a default with regarding this provider and/or doc-

ument.

- Misrepresentation in a material respect.

- Default under a specified transaction.

- Cross-default, which is default on certain other debt over an agreed threshold amount.

- Bankruptcy or similar insolvency events.

- Merger without assumption: One party merges, and the merged entity does not

assume certain obligations.
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The termination events set out in the ISDA master agreement can be summarised as

follows:

- Illegality: A change in the law makes it illegal for a counterparty to abide by the

terms of the derivative agreement.

- Force majeure event (ISDA 2002 only): A party cannot comply due to an event of

force majeure or act of state (commonly cited examples include a natural disaster,

an act of terrorism or an act of war) and cannot cure the noncompliance within a

specified period.

- Tax event: A change in tax law makes, or will make, a party withhold or deduct tax.

- Tax event upon merger: A party will have to withhold or deduct tax due to the

merger of a party.

- A credit event upon merger: A party merges, and the merged entity is substantially

weaker than before.

2.1.3 Determination of the Termination Payment Amounts

Payments upon early termination are handled differently by the 1992 and 2002 ISDA

master agreements and can also receive different treatment if EoDs or termination events

occur.

The 1992 ISDA master agreement provides for two payment methods (first method and

second method) and two payment measures (market quotation and loss). If early termi-

nation results from an EoD, the first method provides that payments upon termination

will be due only to the non-defaulting party (i.e. the defaulting party is not due any

payment even if it was in the money upon termination). The second method provides

that payments upon termination are due to the party in the money upon termination,

regardless of whether the party is the defaulting or the non-defaulting party. The market

quotation payment measure is defined as an amount determined by reference to the mar-

ket for an instrument similar to the terminated derivative. The loss payment measure is

defined as the sum of total losses and costs suffered by, or gains of, the non-defaulting

party upon termination of the derivative, determined reasonably and in good faith by

the non-defaulting party.

Derivatives using the 1992 master agreement typically use the second method and market

quotation. Under this arrangement, the non-defaulting party presents the derivative

terms to a prescribed number of dealers that will be asked to quote a price to take
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over the derivative from the defaulting counterparty. If three or more quotations can

be obtained, the arithmetical mean of the three quotations will be taken, and the party

that is out of the money will have to pay that amount to the party that is in the money.

There will also be an account taken of any unpaid amounts that arise on or before the

date of termination.

If early termination results from a termination event rather than an EoD, the course

of action depends on whether one or both parties have been affected. If there is one

affected party, the payment method is identical to the second method, regardless of

whether the schedule calls for the first or second method. The payment measure applied

will be market quotation or loss, as set out in the schedule. The affected party is treated

as the defaulting party and the party that is not affected as the non-defaulting party for

both payment method and payment measure.

If both parties are affected and market quotation applies, each party obtains a settlement

amount through the market quotation methods previously described, and the payment

amount is equal to half of the difference of the two results. If both parties are affected

and loss applies, each party calculates its loss as a result of the derivatives termination,

and the payment amount is equal to half of the difference of the two results.

The 2002 ISDA master agreement handles early termination payments in a slightly

different manner. Payment methods and payment measures do not have to be set out in

the schedule, as the agreement calls for the same payment method and payment measure

in all events.

If early termination arises by virtue of an EoD, the non-defaulting party determines the

close-out amount. This is essentially the amount of losses or costs or gains of the non-

defaulting party in replacing, or in providing to the non-defaulting party the economic

equivalent of the material terms of the derivative. To calculate this, the non-defaulting

party can use information such as third-party quotations and relevant market data.

As with the second method previously described, payment could be due to either the

defaulting or the non-defaulting party as a result of this calculation. There might also be

an account taken of any unpaid amounts that arise on or before the date of termination.

If early termination results from a termination event, and if there is one affected party,

the calculation could be handled as with an EoD, whereby the affected party is treated

as the defaulting party and the party that is not the affected party as the non-defaulting

party. If both are affected, each party has to calculate an amount in accordance with

the paragraph above, and the payment amount is equal to half of the difference of the

two results.



Chapter 3

Credit Valuation Adjustment

(CVA) and Funding Valuation

Adjustment (FVA)

In this chapter we briefly describe the origin and motivation of derivatives valuation

adjustments (xVAs). For more information on this topic the reader may refer to Alavian

et al. (2008), Green (2016), Gregory (2015), Piterbarg (2010), Brigo et al. (2009), Brigo

and Capponi (2009).

CVA has become a key topic for banks in recent years due to the volatility of credit

spreads and the associated accounting (e.g. IFRS 13) and capital requirements (Basel

III). However, note that whilst CVA calculations are a major concern for banks, they

are also relevant for other financial institutions and corporations that have significant

amounts of OTC derivatives to hedge their economic risks. Indeed, CVA (and Debt Val-

uation Adjustment-DVA) should only be ignored for financial reporting if they are im-

material which is not the case for any significant OTC derivative user (Gregory (2015)).

Although not entirely driven by the recent financial crisis, IFRS 13 accounting guidelines

were introduced from 2013 to replace IAS 39 and FAS 157. IFRS 13 provided a single

framework for the guidance around fair value measurement for financial instruments

and started to create convergence in practices around CVA. In particular, IRFS 13

(like the aforementioned FAS 157) uses the concept of exit price, which implies the use

of market-implied information as much as possible. This is particularly important in

default probability estimation, where market credit spreads must be used instead of

historical default probabilities. Exit price also introduces the notion of own credit risk

and leads to DVA as the CVA charged by a replacement counterparty when exiting a

transaction (Gregory (2015)).

8
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Derivatives can be both assets and liabilities. When they are assets they create funding

costs, but as liabilities they provide funding benefits. Transactions with large CVA (or

xVAs) components are also likely to have significant funding components. In some sense,

FVA is not a particularly new concept. Prior to the global financial crisis, LIBOR was

used to discount cash flows: not because it was the risk-free rate (which in any case is

a theoretical construct), but because it was a good approximation of a banks unsecured

funding costs that were considered short-term. Post-crisis, banks have realized that they

cannot be as reliant on short-term funding or fund at LIBOR, and have therefore sought

to incorporate these higher costs through FVA (Gregory (2015)).

FVA, like CVA, is predominantly considered for uncollateralised transactions. However,

since no collateralisation is perfect, it will also be a component for collateralised ones

(although in some cases this may be neglected). FVA was not considered prior to 2007

because unsecured funding for institutions, such as banks, was trivial, and could be

achieved at approximately risk-free rate. (Bank credit spreads were typically only a few

basis points prior to 2007. but since then have been more in the region of hundreds of

basis points.) This means that transactions, especially those that are uncollateralised,

are now typically treated including the party’s own funding as a component of their

price. This is the role of FVA, although its use in accounting statements has been more

controversial. From a quantification point of view, FVA is similar in many ways to CVA,

and many of the components to calculate the two are the same (Gregory (2015)).

Despite the increased use of collateral, a significant portion of OTC derivatives remain

uncollateralised. This arises mainly due to the nature of the counterparties involved,

such as corporates and sovereigns, without the liquidity and/or operational capacity to

adhere to frequent collateral calls. In general, funding costs (and benefits) in derivatives

portfolios can be seen as arising from the following situations (Gregory (2015)):

- Undercollateralisation. Transactions that are undercollateralised give rise to funding

costs and benefits. This includes completely undercollateralised (no CSA) but also

cases of partial collateralisation (e.g. a two-way CSA with a material threshold).

One-way CSAs are also a special case, since one party is collateralised whilst the

other is not.

-Non rehypothecation and segregation. Even if a party can receive collateral, there is

a question of whether or not this collateral can be used. If the collateral cannot

be rehypothecated and/or must be segregated, this will deem it useless from a

funding point of view.

There are essentially two types of models for CVA: unilateral models that only consider

the credit risk of the counterparty and bilateral models that consider the credit risk
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of both counterparty and self. Equation (3.1) is the definition of CVA in both cases.

Funding costs add further complexity. In the case of bilateral models it is useful to write

U = CV A+DV A+ FV A (3.1)

where CVA is a cost and DVA is a benefit. Bilateral CVA models naturally provide two

terms, a term that reduces accounting value due to counterparty risk and a term that

increases accounting value due to risk of own default.

In the xVA literature (e.g. Gregory (2015) and Green (2016)) the value of a derivative

can be written as

- V̂ (credit risky) = V (default free) + U(valuation adjustment)

- V = Unadjusted value,i.e. Black-Scholes

- V̂ = Economic value including adjustments

- U = Valuation adjustments, as in equation (3.1)

This formula highlights that CVA is the adjustment to the underlying price of the

derivative. In reality the full value of the derivative should include the impact of credit

risk (Gregory (2015)).

Throughout this document we will talk indifferently about CVA as the sum of CVA and

DVA in the context of a derivative contract with bilateral counterparty risk as mentioned

above.



Chapter 4

Model Framework: PDE

Representations of Derivatives

with Bilateral Counterparty Risk

(CVA) and Funding Costs (FVA)

In this chapter we briefly present the work developed by Burgard and Kjaer (2011b),

which is the central axis of the present document. In the aforementioned paper the

authors combine the effects of the seller’s credit on its funding costs with the effects

on the bilateral counterparty risk into a unified framework. Using hedging arguments,

an extended Black-Scholes partial differential equation (PDE) is derived in the presence

of bilateral counterparty risk in a bilateral jump-to-default model, including funding

considerations in the financing of the hedge positions. Two rules are considered for

the determination of the derivative mark-to-market value at default, namely, the total

risky value and the counterparty-risk-free value. Content in this chapter follows closely

Burgard and Kjaer (2011b) and it is presented in the body of this document for academic

purposes and sake of completeness. A relevant paper to understand previous efforts to

the derivation of this framework can be found in Piterbarg (2010).

4.1 Definitions and Assumptions

A derivative contract price function V̂ is considered on asset S between seller B and a

counterparty C that may both default. The asset S is not affected by a default of either

B or C. Similarly, it is denoted as V the same derivative price function between two

11
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parties that cannot default. At default of either the counterparty or the seller, the value

of the derivative to the seller V̂ is determined with a mark-to-market rule M , which may

be equal to V̂ or V (throughout Burgard and Kjaer (2011b) positive derivative values

correspond to seller assets and counterparty liabilities).

An economy with the following four traded assets is considered:

PR: default risk-free zero-coupon bond.

PB: default risky, zero-recovery, zero-coupon bond of party B.

PC : default risky, zero-recovery, zero-coupon bond of party C.

S: spot asset with no default risk.

Both risky bonds PB and PC pay 1 at some future time T if the issuing party has not

defaulted, and 0 otherwise. It is mentioned in Burgard and Kjaer (2011b) that these

simplistic bonds are useful for modelling and can be used as building blocks for more

complex corporate bonds, including those with nonzero recovery. It is assumed that the

processes for assets PR, PB, PC and S, under the historical probability measure, are

specified by:

dPR
PR

= r(t)dt dPB
PB

= rB(t)dt− dJB

dPC
PC

= rC(t)dt− dJC dS
S = µ(t)dt+ σ(t)dW

(4.1)

where W (t) is a Wiener process, and µ(t) > 0, r(t) > 0, rB(t) > 0, rC(t) > 0, σ(t) > 0

are deterministic functions of t, and where JB and JC are two independent point pro-

cesses that jump from zero to one on default of B and C, respectively. This assumption

implies that a hedging strategy could be achieved using bonds PB and PC alone. The

hedging strategy will be described in the next section.

A PDE is derived for the general case of M(t, S) and two special cases where M(t, S) =

V̂ (t, S, 0, 0) and M(t, S) = V (t, S) are considered. Let RB ∈ [0, 1] and RC ∈ [0, 1]

denote the deterministic recovery rates on the derivative positions of parties B and C,

respectively. From the above we have the following boundary conditions:

V̂ (t, S, 1, 0) = M+(t, S) +RBM
−(t, S) (seller defaults first)

V̂ (t, S, 0, 1) = RCM
+(t, S) +M−(t, S) (counterparty defaults

first),

(4.2)
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Table 4.1: Rates, spreads and recoveries

Rate Definition Choices discussed

r Risk-free rate
rB Yield on recoveryless bond of

seller B
rC Yield on recoveryless bond of

counterparty C
λB λB ≡ rB − r
λC λC ≡ rC − r
rF Seller funding rate for bor-

rowed cash on seller’s deriva-
tives replication cash account

rF = r if derivative can be
used as collateral; rF = r +
(1 − RB)λB if derivative can-
not be used as collateral

sF sF ≡ rF − r
γS Continuous dividend yield
qS Cost of financing that de-

pends on r and the repo rate
of S

RB Recovery on derivative mark-
to-market value in case seller
B defaults

RC Recovery on derivative mark-
to-market value in case coun-
terparty C defaults

4.2 The Model

As in the classic Black-Scholes framework, the position on the derivative is hedged

through a self-financing portfolio that covers all the underlying risk factors of the model.

The portfolio Π that the seller sets up consists of δ(t) units of S, αB(t) units of PB,

αC(t) units of PC and β(t) units of cash, such that the portfolio value at t hedges out

the value of the derivative contract to the seller, i.e., V̂ (t) + Π(t) = 0. Thus:

− V̂ (t) = Π(t) = δ(t)S(t) + αB(t)PB + αC(t)PC + β(t) (4.3)

It is noted that when V̂ ≥ 0 the seller will incur in a loss at counterparty default. To

hedge this loss, PC needs to be shorted, so it is expected that αC ≤ 0. Assuming that

the seller can borrow the bond PC close to the risk-free rate r through a repurchase

agreement, the spread λC between the rate rC on the bond and the cost of financing the

hedge position in C can be approximated to λC = rC − r. Since we defined PC to be a

bond with zero recovery, this spread corresponds to the default intensity of C.
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On the other hand, if V̂ ≤ 0, the seller will gain at its own default, which can be hedged

by buying back PB bonds, so it is expected that αB ≥ 0. For this to work, it is needed

to ensure that enough cash is generated and that any remaining cash (after purchase of

PB) is invested in a way that does not generate additional credit risk for the seller, i.e.,

any remaining positive cash generate yield at the risk-free rate r.

Imposing that the portfolio Π(t) is self-financing implies that:

− dV̂ (t) = δ(t)dS(t) + αB(t)dPB + dαC(t)dPC + dβ̄(t) (4.4)

where the change in cash dβ̄ may be decomposed as dβ̄(t) = dβS(t) + dβF (t) + dβC(t)

with:

dβS(t): the share position provides a dividend income of δ(t)γS(t)S(t)dt and a financing

cost of −δ(t)qS(t)S(t)dt, so dβS = δ(t)(γS(t)− qS(t))S(t)dt. The value of qS(t) depends

on the risk-free rate and de repo rate of S(t).

dβF (t): From the above analysis, any surplus cash held by the seller after the own

bonds have been purchased must earn the risk-free rate r(t) in order not to introduce

any further credit risk to the seller. If borrowing money, the seller needs to pay the rate

rF (t). For this rate there are two cases: where the derivative itself can be posted as

collateral for the required funding and no haircut is assumed then rF (t) = r(t). If the

derivative cannot be used as collateral, funding rate is set to the yield of the unsecured

seller bond with recovery RB: i.e. rF (t) = r(t) + (1−RB)λB. In practise the latter case

is often the more realistic one. Keeping rF general:

dβF (t) = {r(t)(−V̂ − αBPB)+ + rF (t)(−V̂ − αBPB)−}dt (4.5)

= r(t)(−V̂ − αBPB)dt+ sF (t)(−V̂ − αBPB)−dt (4.6)

where the funding spread sF ≡ rF − r: i.e sF = 0, if the derivative can be used as

collateral, and sF = (1−RB)λB if it cannot.

dβC(t): By the arguments above, the seller will short the counterparty bond through a

repurchase agreement and incur financial costs of dβC(t) = −αC(t)r(t)PC(t)dt if zero

haircut is assumed.

For simplicity the t notation is dropped. From the above, it follows that the change in

the cash account (including contributions due to rebalancing at the end of the period

dt) is given by:

dβ̄ = δ(γS − qS)Sdt+ {r(−V̂ − αBPB) + sF (t)(V̂ − αBPB)−}dt− rαCPCdt (4.7)
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Now (4.4) becomes:

−dV̂ = δdS + αBdPB + αCdPC + dβ̄

= δdS + αBPB(rBdt− dJB) + αCPC(rCdt− dJC)

+{r(−V̂ − αBPB) + sF (−V̂ − αBPB)− − αCrPC − δ(qS − γS)S}dt

(4.8)

= δdS − αBPBdJB − αCPCdJC + {αBPB(rB − r) + αCPC(rC − r)− V̂ r

+sF (−V̂ − αBPB)− − δ(qS − γS)S}dt
(4.9)

By Itó’s Lemma for jump diffusion and the assumption that simultaneous jump to default

is a zero probability event, the derivative value moves by

dV̂ = ∂tV̂ dt+ ∂SV̂ dS +
1

2
σ2S2∂2SSV̂ dt+4V̂BdJB +4V̂CdJC , (4.10)

where,

4V̂B = V̂ (t, S, 1, 0)− V̂ (t, S, 0, 0),

4V̂C = V̂ (t, S, 0, 1)− V̂ (t, S, 0, 0),
(4.11)

which can be computed from the boundary condition (4.2).

Replacing dV̂ in (4.9) by (4.10) shows that all risks in the portfolio can be eliminated

by choosing δ, αB, αC as

δ = −∂SV̂ , (4.12)

αB =
4V̂B
PB

= − V̂ − (M+ +RBM
−)

PB
,

(4.13)

αC =
4V̂C
PC

= − V̂ − (RCM
+ +M+)

PC
.

(4.14)

Hence, the cash account evolution (4.6) can be written as

dβF = {rRBM− − rFM+}dt, (4.15)
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the amount of cash deposited by the seller at the risk-free rate equals −RBM− and the

amount borrowed at the funding rate rF equals −M+.

The following parabolic differential operator At is introduced

AtV ≡
1

2
σ2S2∂2SSV + (qS − γS)S∂SV, (4.16)

then it follows that V̂ is the solution to the PDE

∂tV̂ +AtV̂ − rV̂ = sF (V̂ +4V̂B)+ − λB4V̂B − λC4V̂C ,

V̂ (T, S) = H(S) 7−→ (derivative payoff function),
(4.17)

where λB ≡ rB − r and λC ≡ rC − r. Inserting (4.11) with boundary condition (4.2)

into (4.17) gives

∂tV̂ +AtV̂ − rV̂ = (λB + λC)V̂ + sFM
+ − λB(RBM

− +M+)− λC(RCM
+ +M−),

V̂ (T, S) = H(S),

(4.18)

where (V̂ +4V̂B)+ = (RBM
− +M+) = M+ was used.

In contrast, the risk-free value V satisfies the regular Black-Scholes PDE

∂tV +AtV − rV = 0,

V (T, S) = H(S),
(4.19)

as Burgard and Kjaer (2011b) interprets λB and λC as effective default rates (intensity

of default) the differences between (4.18) and (4.19) are as follows:

• The first term on the right side of (4.18) is the additional growth rate the seller B

requires on the risky asset V̂ to compensate for the risk that default of either the

seller or the counterparty will terminate the derivative contract.

• The second term is the additional funding cost for negative values of the cash account

of the hedging strategy.

• The third term is the adjustment in growth rate that the seller can accept because of

the cash flow occurring at own default.

• The fourth term is the adjustment in growth rate that the seller can accept because

of the cash flow occurring at counterparty default.
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Terms one, three and four are related to counterparty risk whereas the second term

represents the funding cost. From this interpretation it follows that the PDE for a so-

called extinguisher trade, whereby it is agreed that no party gets anything at default,

is obtained by removing terms three and four from PDE (4.18).

4.2.1 Main Results of Burgard and Kjaer (2011b)

Finally, we outline the main results in Burgard and Kjaer (2011b) and pay special

attention to results 2 and 3, which will be used in Chapter 5.

• Main result 1: non-linear PDE for V̂ when M = V̂

∂tV̂ +AtV̂ − rV̂ = (1−RB)λBV̂
− + (1−RC)λC V̂

+ + sF V̂
+,

V̂ (T, S) = H(S),
(4.20)

• Main result 2: linear PDE for V̂ when M = V

∂tV̂ +AtV̂ − (r + λB + λC)V̂ = −(RBλB + λC)V − − (λB +RCλC)V + + sFV
+,

V̂ (T, S) = H(S),

(4.21)

• Main result 3: integral equation for U when M = V

As pointed by Burgard and Kjaer (2011b), is common in the xVA literature to find

the value of a risky derivative V̂ decomposed in the risk-free value of the contract

and the xVA or adjustments as V̂ = V + U .

If this decomposition is inserted into (4.21) and using Black-Scholes regular PDE

representation in (4.19), the U can be represented by the following linear PDE:

∂tU +AtU − (r + λB + λC)U = (1−RB)λBV
− + (1−RC)λCV

+ + sFV
+,

U(T, S) = 0 7−→ (boundary condition implies no default risk at maturity),

(4.22)

and using the Feynman-Kac formula (see Feynman-Kac formula (2017) or Karatzas

and Shreve (1998) for derivation), that states the relation between parabolic PDEs

and stochastic processes, the solution U can be written as expected value (4.23)
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and one step ahead in (4.24) as presented in Burgard and Kjaer (2011b).

U(t, S) = Et
[
−
∫ T

t
e−

∫ u
t r(τ)+λB(τ)+λC(τ)dτ (1−RB)λB(u)V −(u, S(u))du

]
+Et

[
−
∫ T

t
e−

∫ u
t r(τ)+λB(τ)+λC(τ)dτ (1−RC)λC(u)V +(u, S(u))du

]
+Et

[
−
∫ T

t
e−

∫ u
t r(τ)+λB(τ)+λC(τ)dτsF (u)V +(u, S(u))du

]
(4.23)

U(t, S) = −(1−RB)

∫ T

t
λBDr+λB+λCEt[V

−(u, S(u))]du

−(1−RC)

∫ T

t
λCDr+λB+λCEt[V

+(u, S(u))]du

−
∫ T

t
sFDr+λB+λCEt[V

+(u, S(u))]du,

Dk(t, u) ≡ exp{−
∫ u

t
k(v)dv} 7−→ discount factor between times t and u

(4.24)

For some cases (e.g. plain vanilla options or interest rate derivatives) the value of

V can be represented by a closed-form formula, making it easier to compute the

integrals in (4.23). In other cases (e.g. exotic options) these integrals have to be

computed numerically as analytic solutions does not exist or have not been found.



Chapter 5

Numerical Solutions to PDEs for

Derivatives with CVA and FVA

In this chapter we present numerical solutions to main results 2 and 3 in section 4.2.1. For

linear PDE in result 2, Crank-Nicolson finite-difference scheme is described and pseudo-

code is provided, specifically for European and American options with deterministic

functions for interest rates. Result 3 is solved for European options through Monte

Carlo (MC) simulation of asset price and numerical integration. Also, we performed

an empirical exercise for the valuation of American options with MC simulation and

least-squares to estimate the conditional expected value from continuation. Explicit R

(2016) code for each solution is provided in Appendix A.

5.1 Crank-Nicolson Finite-Difference Scheme for PDEs

Crank-Nicolson (CN) scheme is a popular finite-difference scheme among practition-

ers and in quantitative finance literature. It is known to have better results regarding

stability and convergence than explicit finite-difference method, and to have higher con-

vergence rates to the solution of PDEs. It is an implicit finite-difference method that

takes the average of explicit finite-difference method (forward-difference approximation

to the time partial derivative) and implicit method (time-backward difference approxima-

tion)(Wilmott et al. (1995) and Wilmott (2006)). CN method error is O((4t)2, (4S)2)

and temporal or spatial mesh spaces have lower impact in the stability and convergence

of the solution, relative to other finite difference schemes (Wilmott (2006)).Analysis of

the efficiency, stability and convergence of CN finite-difference scheme are beyond the

scope of this paper. The reader may refer for more information on this subject to Duffy

(2006), Thomas (1998) and Thomas (1999). For a famous critique to CN method with

19
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valuable error fixing insights or alternative methods see Duffy (2006) and Duffy (2004).

Other suggested literature for finite-difference methods is LeVeque (2007) and Thomas

(1998).

In 5.1.1 we show CN scheme for the classic Black-Scholes PDE and in 5.1.2 how scheme

and algorithm in 5.1.1 is modified to solve result 2 in 4.1.2, a PDE for derivative price

with CVA and FVA.

5.1.1 CN scheme for Black-Scholes PDE for European and American

options

Regular risk-free Black-Scholes PDE for an European derivative, presented in chapter

4, can be written as

LV = 0 (L is a linear differential operator),

with boundary condition V (T, S) = H(S)
(5.1)

which is a parabolic linear PDE. We will keep this simplified representation of the PDE

in mind for later comparison with the risky value of the derivative in subsection 5.1.2.

We now introduce the CN scheme to solve equation (5.1).

The temporal domain [0, T ] is divided in a finite number of mesh points 0 = t0 <

t1 < t2 < ... < tm−1 < tm = T and, similarly, spatial domain [0,S] is represented by

Smin = S0 < S1 < S2 < ... < SN−1 < SN = Smax.

In our scheme we use uniform mesh spaces, as suggested by Duffy (2006), to preserve

second-order precision of the CN method

4t =
T

m
, tj = j4t, j = 0, ...,m

4S =
Smax − Smin

n
, Si = Smin + i4S, i = 0, ..., N

(5.2)

Approximations of V are taken at the half step t+ 4t2 . It follows that the representation

of the partial derivatives with respect time and space for the CN scheme are as follows

(see Wilmott (2006)):

∂tV =
Vi,j+1 − Vi,j
4t

+O((4t)2), (5.3)

the partial derivative of V with respect to the asset price

∂SV =
Vi+1,j − Vi−1,j + Vi+1,j+1 − Vi−1,j+1

44S
+O(4S2), (5.4)
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and the second-order partial derivative of V with respect to the asset price

∂2SSV =
Vi+1,j − 2Vi,j + Vi−1,j + Vi+1,j+1 − 2Vi,j+1 + Vi−1,j+1

24S2
+O(4S2), (5.5)

and if we set aside error terms O(.) and replace (5.3), (5.4) and (5.5) in (4.19), setting

Smin = 0, we obtain the finite-difference representation of Black-Scholes PDE in the

form

Vi,j+1 − Vi,j
4t

+σ2j i
2
j

Vi+1,j − 2Vi,j + Vi−1,j + Vi+1,j+1 − 2Vi,j+1 + Vi−1,j+1

4

+(qSj − γSj)i
Vi+1,j − Vi−1,j + Vi+1,j+1 − Vi−1,j+1

4

−rj
Vi,j+1 + V i, j

2
= 0.

(5.6)

As we have defined our spatial mesh points, we will work backwards in time and from

boundary conditions, we take advantage of the fact that we know the value of the

derivative at expiry T , so it is convenient to rearrange unknown values in time (j) to

the left and known values (j + 1) to the right side

σ2j i
2 − (qSj − γSj)i

4
Vi−1,j + (−

σ2j i
2

2
− rj

2
− 1

4t
)Vi,j +

σ2j i
2 + (qSj − γSj)i

4
Vi+1,j

= −
σ2j i

2 − (qSj − γSj)i
4

Vi−1,j+1 − (−
σ2j i

2

2
− rj

2
+

1

4t
)Vi,j+1 −

σ2j i
2 + (qSj − γSj)i

4
Vi+1,j+1,

(5.7)



22

and for simplicity we define a, b, c and d as

ai,j ≡
σ2j i

2 − (qSj − γSj)i
4

;

bi,j ≡ (−
σ2j i

2

2
− rj

2
− 1

4t
);

ci,j ≡
σ2j i

2 + (qSj − γSj)i
4

;

di,j ≡ ai,jVi−1,j+1 − (−
σ2j i

2

2
− rj

2
+

1

4t
)Vi,j+1 − ci,jVi+1,j+1.

(5.8)

The CN method gives us the following equation system for each j in matrix form



b0,j c0,j 0 0 . . . . 0

a1,j b1,j c1,j 0 . . . . .

0 a2,j b2,j c2,j 0 . . . .

. 0 a3,j b3,j c3,j 0 . . .

. . . . . . . . .

. . . 0 ai,j bi,j ci,j 0 .

. . . . . . . . .

0 . . . . . 0 an,j bn,j





V0,j

V1,j

V2,j

.

.

Vi,j

.

Vn−1,j

Vn,j



=



d0,j

d1,j

d2,j

.

.

di,j

.

dn−1,j

dn,j



(5.9)

In order to solve the system in the form PV = d we use successive over-relaxation

(SOR) algorithm for European options. In comparison, from a computational point of

view, SOR method offers a decent speed of convergence. Direct methods for tri-diagonal

matrix are more efficient than indirect methods. If this is not the case, matrix inversion

could be extremely time consuming and inefficient (Wilmott (2006)).

Mentioned indirect method (SOR) solve equations iteratively. The solution will never

be exact but the accuracy is a user-defined parameter of the algorithm. The iterative

solution process is known as the Jacobi iteration. From (5.9) we notice that the first

equation can be written as

a1,jV0,j + b1,jV1,j + c1,jV2,j = d1,j

,
(5.10)
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so generalising this expression and rearranging terms we get

Vi,j =
di,j − ai,jVi−1,j + ci,jVi+1,j

bi,j
, (5.11)

The idea of Jacobi iteration is to make an initial guess for V 0
i,j ≡ Vi,j+1 (we will specify

later boundary conditions in more detail but consider for now V 0
i,m−1 = Vi,m for j = m−

1), and iterations in k continue until the difference between V k
i,j and V k+1

i,j is sufficiently

small for all Vi,j at time step j (less or equal the error tolerance or desired accuracy)

V k+1
i,j =

di,j − ai,jV k
i−1,j + ci,jV

k
i+1,j

bi,j
(5.12)

Gauss-Seidel improvement to the Jacobi method suggest using the most updated value

as initial guess, which implies using V k+1
i−1,j immediately when available

V k+1
i,j =

di,j − ai,jV k+1
i−1,j + ci,jV

k
i+1,j

bi,j
, (5.13)

SOR is another improvement that lays in the observation that V k+1
i,j = V k

i,j + (V k+1
i,j −

V k
i,j), so the method over corrects faster the value of V k

i,j , which is true if V k
i,j converge

monotonically to Vi,j in k. The SOR algorithm proposes (see Thomas (1999)):

yk+1
i,j =

di,j − ai,jV k+1
i−1,j + ci,jV

k
i+1,j

bi,j
,

V k+1
i,j = V k

i,j + ω(V k
i,j − yk+1

i,j ),

(5.14)

where 1 < ω < 2 is called the over-relaxation parameter. This parameter, which should

lie between 1 and 2 (Thomas (1999)), speeds up the convergence to the true solution.

The algorithm implemented varies the value of ω depending on the number of iterations

taken to convergence.It takes an initial value of ω = 1 and record the number of iterations

in k required obtain the accuracy specified. In the next step j + 1, if fewer iterations

were needed, ω is increased by a small number (e.g. 0.05). While number of iterations

continue decreasing we keep increasing the ω. If the number of iterations increase, we

subtract a small number from ω. The intention is to choose ω to be the value that

minimizes the number of iterations. If SOR matrix is time homogeneous, then the over-

relaxation parameter will remain unmodified. On the other hand, if there is a very

strong time dependence in the matrix, the parameter will vary (see Wilmott (2006) and

Smith (1985)).



24

We use the following boundary conditions for European options:

Call options

- V0,j = 0, j = 0, ...,m

- VN,j = N4S exp (−
∫ T
j4t γS(v)dv)− E exp (−

∫ T
j4t r(v)dv), j = 0, ...,m− 1

- Vi,m = (i4S − E)+, i = 0, ..., N − 1

Put options

- V0,j = E exp (−
∫ T
j4t r(v)dv), j = 0, ...,m− 1

- VN,j = 0, j = 0, ...,m

- Vi,m = (E − i4S)+ i = 0, ..., N − 1

*E is the option’s strike price

In the valuation of American options we have the free boundary condition V (τ, S(τ)) ≥
H(S(τ)), t ≤ τ ≤ T (Duffy (2006)). In the CN finite-difference method context, this

implies that every value of the option at the k+1 iteration is linked to every other value

at every time step j and it is then necessary to modify the algorithm with an addi-

tional step, called projected SOR (PSOR) (see Cryer (1979)). This step can be used to

solve other free-boundary PDEs for derivatives with more complex payoff functions (e.g.

Bermudan options). The additional step for American options is simply substituting

second expression in (5.14) for second expression in (5.15).

yk+1
i,j =

di,j − ai,jV k+1
i−1,j + ci,jV

k
i+1,j

bi,j
,

V k+1
i,j = (V k

i,j + ω(yk+1
i,j − V

k
i,j) ∨H(i4S)),

(5.15)

We use the following boundary conditions for American options (Duffy (2006)):

Call options

- V0,j = 0, j = 0, ...,m

- VN,j = (N4S − E)+, j = 0, ...,m− 1

- Vi,m = (i4S − E)+, i = 0, ..., N
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Put options

- V0,j = E, j = 0, ...,m

- VN,j = 0, j = 0, ...,m

- Vi,m = (E − i4S)+ i = 0, ..., N − 1

5.1.2 CN scheme for PDE representation of derivative with CVA and

FVA

If we recall (4.22) in subsection 4.2.1

∂tV̂ +AtV̂ − (r + λB + λC)V̂ = −(RBλB + λC)V − − (λB +RCλC)V + + sFV
+,

V̂ (T, S) = H(S),

(5.16)

and linear PDE in (5.1), (5.15) can be seen as a linear PDE with the form LV̂ = F (V ),

with source term F , that does not depend on V̂ . If we approximate partial derivatives

as in 5.1.1, dropping the error terms, the finite-difference PDE representation is

V̂i,j+1 − V̂i,j
4t

+σ2j i
2
j

V̂i+1,j − 2V̂i,j + V̂i−1,j + V̂i+1,j+1 − 2V̂i,j+1 + V̂i−1,j+1

4

+(qSj − γSj)i
V̂i+1,j − V̂i−1,j + V̂i+1,j+1 − V̂i−1,j+1

4

−(rj + λBj + λCj)
V̂i,j + V̂ i, j + 1

2

= −(RBλBj + λCj)
V −i,j + V −i,j+1

2
− (λBj +RCλCj)

V +
i,j + V +

i,j+1

2
+ sFj

V +
i,j + V +

i,j+1

2
,

(5.17)
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If we say Fi,j ≡ −(RBλBj + λCj)
V −i,j+V

−
i,j+1

2 − (λBj + RCλCj)
V +
i,j+V

+
i,j+1

2 + sFj
V +
i,j+V

+
i,j+1

2

and define a, b̂, c and d̂ as

ai,j =
σ2j i

2 − (qSj − γSj)i
4

b̂i,j = (−
σ2j i

2

2
−
rj + λBj + λCj

2
− 1

4t
)

ci,j =
σ2j i

2 + (qSj − γSj)i
4

d̂i,j = ai,jVi−1,j+1 − (−
σ2j i

2

2
−
rj + λBj + λCj

2
+

1

4t
)Vi,j+1 − ci,jVi+1,j+1 + Fi,j ,

(5.18)

the CN scheme for V̂ can be written in matrix form for each j as



b̂0,j c0,j 0 0 . . . . 0

a1,j b̂1,j c1,j 0 . . . . .

0 a2,j b̂2,j c2,j 0 . . . .

. 0 a3,j b̂3,j c3,j 0 . . .

. . . . . . . . .

. . . 0 ai,j b̂i,j ci,j 0 .

. . . . . . . . .

0 . . . . . 0 an,j b̂n,j





V̂0,j

V̂1,j

V̂2,j

.

.

V̂i,j

.

V̂n−1,j

V̂n,j



=



d̂0,j

d̂1,j

d̂2,j

.

.

d̂i,j

.

d̂n−1,j

d̂n,j



(5.19)

and it can be seen we have a problem in the same matrix form of 5.1.1, P̂ V̂ = d̂,

which can be solved using the same approach from previous subsection in the context of

European and American options. Consider the following change in boundary conditions

for European options with CVA and FVA:

Call options with CVA and FVA

- V̂0,j = 0, j = 0, ...,m

-V̂N,j =
{
N4S exp (−

∫ T
j4t γS(v)dv)− E exp (−

∫ T
j4t r(v)dv)

}
(

1− (1−RC)
∫ T
j4t λC(u)Dr+λB+λC (j4t, u)du−

∫ T
j4t sF (u)Dr+λB+λC (j4t, u)du

)
,

j = 0, ...,m− 1

- V̂i,m = (i4S − E)+, i = 0, ..., N − 1
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Put options with CVA and FVA

- V̂0,j =
{
E exp (−

∫ T
j4t r(v)dv)

}
(

1− (1−RC)
∫ T
j4t λC(u)Dr+λB+λC (j4t, u)du−

∫ T
j4t sF (u)Dr+λB+λC (j4t, u)du

)
,

j = 0, ...,m− 1

- V̂N,j = 0, j = 0, ...,m

- V̂i,m = (E − i4S)+ i = 0, ..., N − 1

In the next subsection we provide a pseudo-code for the algorithm.

5.1.3 Pseudo-code for CN method

1. Compute boundary conditions according with region where the PDE is intended to

be solved. In our case terminal, upper and lower boundaries for the value of the

option in the mesh we have defined.

2. For j = m− 1, ..., 0

a. Make initial guess for option values in j from known values in j + 1

b. Compute upper boundaries for d if call option or lower boundaries if put

option.

c. For i = N − 1, ..., 1, compute values for remaining coefficients in matrix P.

All are indexed in i (space) but will be overwritten at each time step j as

coefficients are indexed in time in our solution. Matrix P depends on time as

we assume our interest rates and volatility could be deterministic functions

of time.

d. Set number of loops equals zero.

e. Loop until sum of squared errors is less an error tolerance.

I. Set sum of squared errors equals zero

II. For z = 1, ..., N

i. compute value of dz followed by yk+1
z,j and V k+1

z,j (remember (5.14) and

(5.15)).

ii. Add squared error in z − th iteration (V k+1
z,j − V k

z,j)
2 to the sum of

squared errors.

III. Add one iteration to the count of loops.

f. If the count of in the j iteration is less than the count in the j + 1 iteration

modify the parameter ω by a small number (see 5.1.1).
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g. Store the count of loops in the j iteration.

3. Return a matrix with the solution for the option price in defined time-space

mesh.

5.2 European Option CVA and FVA with MC Simulation

and Numerical Integration

For the CVA and FVA pricing of European options we propose to use the Euler-

Marullama method, which is one of most popular methods for single-asset price sim-

ulation (Wilmott (2006), Venegas (2008), Shreve (2004)).

From the risk neutral random walk for S

dS(t) = (qS(t)− γS(t))S(t)dt+ σ(t)S(t)dŴ (t),

0 ≤ t ≤ T
(5.20)

the following exact solution can be obtained

S(T ) = S(t) exp {
∫ T

t
(qS(u)− γS(u)− 1

2
σ2(u))du+

∫ T

t
σ(u) ˆdW (u)}, (5.21)

where Ŵ is a Wiener process under risk neutral probability measure. The asset price is

approximated through Euler-Marullama method and Monte Carlo simulation (Wilmott

(2006)), including Itô’s stochastic integral regarding volatility as a deterministic function

and a Wiener process (Venegas (2008)) in the following discrete representation:

S(T ) = S(t) exp {
∫ T

t
(qS(u)− γS(u)− 1

2
σ2(u))du} exp {

m∑
j=1

σ((j − 1)4t)4Ŵj}

d
=S(t) exp {

∫ T

t
(qS(u)− γS(u)− 1

2
σ2(u))du} exp {

m∑
j=1

σ((j − 1)4t)
√
4tθj},

θj ∼ N(0, 1)

(5.22)

The simulation of S(t) will converge to the exact solution as m −→∞⇒4t −→ 0. In our

numerical approach deterministic integral part of (5.22) is also computed by numerical

integration so (5.22) can be written as
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S(T ) ≈ S(t) exp {
m∑
j=1

(qS((j − 1)4t)− γS((j − 1)4t)− 1

2
σ2((j − 1)4t))4t}

exp {
m∑
j=1

σ((j − 1)4t)
√
4tθj},

θj ∼ N(0, 1)

(5.23)

The value of an European derivative can be represented as an expected value under the

risk-neutral probability measure as:

V (t, S(t)) = Et[H(S(T ))] = Dk(t, T )E[H(S(T ))], (5.24)

and the value of an European derivative can be estimated following these steps (Wilmott

et al. (1995) and Wilmott (2006)):

1. Simulate n risk-neutral random walks from solution (5.23) in m time steps with

distance 4t until time T (expiry);

2. For each one of the i realizations of S(T ) calculate derivative payoff H(S(T )i), i =

1, ..., n;

3. Calculate the average payoff;

4. and from the following observation

∫ T

t
D(t, u)r+λB+λCEt[V

+(u, S(u))]du

=

∫ T

t
D(t, u)rD(t, u)λB+λCEt[V

+(u, S(u))]du

=

∫ T

t
D(t, u)rD(t, u)λB+λCD(u, T )rEt[V +(T, S(T ))]du

=

∫ T

t
D(t, u)λB+λCD(t, T )rEt[V +(T, S(T ))]du

= V +(t, S(t))

∫ T

t
D(t, u)λB+λCdu,

(5.25)
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The values of V +(t, S(t)) and V −(t, S(t)) are the present valuesD(t, T )rE[V +(T, S(T ))]

and D(t, T )rE[V −(T, S(T ))].

5. Then, after 1, 2 and 3 and observation in 4, U in (4.23) is computed by recurring to

numerical integration methods for deterministic functions. In particular, we use

R (2016) package developed by Piessens et al. (1983), which consists in adaptive

quadrature of functions of one variable over a finite or infinite interval. (See

Appendix A)

5.3 CVA and FVA for American Options with MC Simu-

lation, Least-Squares and Numerical Integration

In this section we propose a simple empirical approach for computation of CVA and

FVA in Burgard and Kjaer (2011b) integral equation (4.23) in the context of American

options. We took as starting point the method developed by Longstaff and Schwartz

(2001) for American option valuation, which is widely used among practitioners given

its simple and intuitive implementation. The method consists in asset price simulation

from time t to T and, as commonly known, the option holder evaluates at each point

in time the benefit of exercising the option versus the expected value of continuation,

exercising whether former is higher. The novelty of the method is that the conditional

expected value of continuation is calculated using the cross-sectional information from

the simulation and least-squares (Least-Squares Monte Carlo - LSM).

The authors use a set of basis functions in the simulated asset prices. The fitted val-

ues are taken as the conditional value of continuation, later being compared with the

immediate value of exercising. Moreno and Navas (2003) show the robustness of the

method, analyze different sets of basis functions and its implications in the valuation of

American derivatives. In the following sub-section we present a brief summary of the

original algorithm and the simple modification we propose to calculate the CVA and

FVA given the convenient representation and computation of the expected conditional

value throughout each iteration.

5.3.1 LSM Algorithm

We briefly introduce the algorithm, without extensive and rigorous description of defi-

nitions, proofs and consistency of the method. All of these elements can be found in the

original paper of Longstaff and Schwartz (2001).
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It is assumed a probability space (Ω, F, P ) and a finite temporal space [0, T ]. The main

interest is to determine the cash flows from American derivatives that take place in the

defined temporal space. In particular, the value of American options is equivalent to the

maximized value of discounted cash flows generated by the exercise of the option, where

the maximum is taken over all stopping times with respect to the filtration F = FT .

The path of cash flows generated by the option is denoted by C(ω, s; t, T ), conditional

on the absence of early exercise before time t and on the assumption that the option

holder is following the optimal stopping strategy for all s, t < s ≤ T .

LSM algorithm provide a path-wise approximation to the optimal stopping rule, max-

imizing option value. Although American options are continuously exercisable, it is

assumed it can be exercised only in K times 0 < t1 < t2 < ... < tK < T to deter-

mine an optimal exercise policy. Cash flow from exercise at time tk is known by the

investor, while value from continuation is not. The value of the option, assuming it can-

not be exercised after time tk for any k, is the expectation of remaining discounted cash

flows C(ω, s; tk, T ) under the risk free probability measure. The value of continuation is

expressed as

G(ω; tk) = EQ
[

K∑
j=k+1

Dr(tk, tj)C(ω, s; tk, T )|Ftk

]
(5.26)

The LSM algorithm uses least-squares to approximate the value of function G(ω, .) at

tK−1, tK−2, ..., t1. The algorithm works backward in time and if it is optimal to exercise

the option at time tk+1, all previous values along path ω are set to zero. Because

the functional form of G(ω, .) is unknown, it is set to be a linear combination of basis

functions of a countable set of FtK−1-measurable basis functions on a function space

(Longstaff and Schwartz (2001) and Moreno and Navas (2003)).

Once the subset of basis functions have been specified, the value of GB(ω, tK−1) by

regressing the discounted values of C(ω, s; tK−1, T ) onto the basis functions for the paths

where option is in the money at time tK−1. Only in-the-money paths are used. Fitted

values are denoted by ĜB(ω, tK−1).Then the stopping rule is given by

1{ĜB(ω,tK−1)<H(S(ω,tK−1))} (5.27)

This exercise is repeated backwards in time for each path ω. At the end, the final result

is a matrix where all elements are either 1 or zero. As the stopping rule modifies all

previous values of the matrix in the same path, the sum of all rows has to be equals to

1. Now each 1 in the matrix should be substituted by the exercise value of the option
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at that point and discounted from the time of the optimal exercise to time t. The value

of the option is given by the average of all present values at time t.

Pseudo-code

1. Define a matrix ANxM and store in it N paths for S, simulated with MC using

(5.23), from t to T in K steps and a stopping strategy zero matrix Â. Divide A

by the strike price and use strike price as 1 when evaluating payoff function for

normalization (Longstaff and Schwartz (2001));

2. Evaluate the payoff function in each position of A;

3. Discount each column k = K,K− 1,K− 2, ..., 1 one step in time: D(tk−1, tk)rA[., k]

and store discounted values in B;

4. In k̂ = k − 1, regress onto basis functions discounted in-the money values in step 3.

in time tk̂+1 against stock prices in each of the selected in-the-money paths but in

time tk̂ . A linear combination of fitted values is ĜB(ω, tk̂);

5. At time k̂ evaluate stopping rule (5.27) for ĜB(ω, tk̂) and value of exercise at tk̂.

6. Set to zero all previous values in A (as we are working backwards, that means future

values), for each in-the-money path at k, where the stopping rule resulted in 1 and

store stopping rule result in Â;

7. repeat 4-6 from k = K − 1, ..., 1;

8. Compute V = AÂ
′

and discount all values D(t, tk)rA[., k], for k = K,K − 1, ..., 1;

9. Take the average of discounted, greater than zero, values in 8.

5.3.2 Empirical approach for CVA and FVA for American options with

LSM and Numerical Integration

In our empirical implementation we use just one basis function for simplicity. The code

provided in Appendix A can be easily modified to include a set of basis functions.

The modification in our empirical approach is to take each column of V in 8. to calculate

the average value of positive realizations as ε̂t = Et[V +(t, S(t))] and the average value

of negative realizations as η̂t = Et[V −(t, S(t))]).
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Approximation for U in (4.23) is computed as follows:

Û(t, S(t)) = −(1−RB)

K∑
j=1

[
λB(tj) exp {

j∑
p=0

(r(tp) + λB(tp) + λC(tp))4t}η̂tj4t

]

−(1−RC)
K∑
j=1

[
λC(tj) exp {

j∑
p=0

(r(tp) + λB(tp) + λC(tp))4t}ε̂tj4t

]

−
K∑
j=1

[
sF (tj) exp {

j∑
p=0

(r(tp) + λB(tp) + λC(tp))4t}ε̂tj4t

]
(5.28)

The results of this approach are shown in Chapter 6. Explicit code for this implemen-

tation can be found in Appendix A. As mentioned, this is an empirical approach or

proposal.



Chapter 6

Results

In this chapter we show the results obtained from the implementation of solutions pre-

sented in Chapter 5.

Table 6.1: CN Solution to PDEs - Parameters

Parameter Value

E for Call 100
E for Put 100
r 0.05
rB 0.08
rC 0.10
λB λB ≡ rB − r
λC λC ≡ rC − r
sF sF ≡ rF − r
RB 0.4
RC 0.4
σ 0.25
γS 0.07
qS 0.06
Smax 300
T 5
m 500
N 500

34
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6.1 CN Solution to Black-Scholes PDE: European Options

vs American Options

Figure 6.1: CN: American Put -vs- European Put

Table 6.2: CN: American Put -vs- European Put

St American Put European Put

1 104.40 31.47 27.51
2 103.80 31.76 27.75
3 103.20 32.05 27.99
4 102.60 32.35 28.23
5 102.00 32.64 28.47
6 101.40 32.94 28.71
7 100.80 33.24 28.96
8 100.20 33.54 29.20
9 99.60 33.84 29.44

10 99.00 34.15 29.69
11 98.40 34.45 29.94
12 97.80 34.75 30.18
13 97.20 35.06 30.43
14 96.60 35.37 30.68
15 96.00 35.68 30.93
16 95.40 35.99 31.18
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Figure 6.2: CN: American Call -vs- European Call

Table 6.3: CN: American Call -vs- European Call

St American Call European Call

1 104.40 38.81 36.26
2 103.80 38.55 36.03
3 103.20 38.29 35.80
4 102.60 38.04 35.57
5 102.00 37.78 35.33
6 101.40 37.52 35.10
7 100.80 37.27 34.87
8 100.20 37.01 34.64
9 99.60 36.76 34.41

10 99.00 36.50 34.18
11 98.40 36.25 33.95
12 97.80 36.00 33.72
13 97.20 35.75 33.50
14 96.60 35.50 33.27
15 96.00 35.25 33.04
16 95.40 35.00 32.81

As shown in the charts above, our solutions to the risk-free Black-Scholes PDE reflect

the principle that American option value should be always higher or equals European

option value.
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6.2 European Options: CN Solution to Black-Scholes PDE

- vs - CN Solution Risky PDE

Figure 6.3: CN: European Put -vs- European Put with CVA and FVA

Table 6.4: CN: European Put -vs- European Put with CVA and FVA

St V V̂ U

1 104.40 27.51 22.10 5.41
2 103.80 27.75 22.29 5.46
3 103.20 27.99 22.48 5.51
4 102.60 28.23 22.67 5.56
5 102.00 28.47 22.86 5.61
6 101.40 28.71 23.06 5.65
7 100.80 28.96 23.25 5.70
8 100.20 29.20 23.45 5.75
9 99.60 29.44 23.65 5.80

10 99.00 29.69 23.84 5.85
11 98.40 29.94 24.04 5.90
12 97.80 30.18 24.24 5.95
13 97.20 30.43 24.44 6.00
14 96.60 30.68 24.63 6.05
15 96.00 30.93 24.83 6.09
16 95.40 31.18 25.04 6.14
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Figure 6.4: CN: European Call -vs- European Call with CVA and FVA

Table 6.5: CN: European Call -vs- European Call with CVA and FVA

St V V̂ U

1 104.40 36.26 29.11 7.15
2 103.80 36.03 28.93 7.10
3 103.20 35.80 28.74 7.06
4 102.60 35.57 28.55 7.01
5 102.00 35.33 28.37 6.97
6 101.40 35.10 28.18 6.92
7 100.80 34.87 28.00 6.87
8 100.20 34.64 27.81 6.83
9 99.60 34.41 27.63 6.78

10 99.00 34.18 27.44 6.74
11 98.40 33.95 27.26 6.69
12 97.80 33.72 27.07 6.65
13 97.20 33.50 26.89 6.60
14 96.60 33.27 26.71 6.56
15 96.00 33.04 26.53 6.51
16 95.40 32.81 26.35 6.47

European options are more exposed to counterparty risk as the only way out before

maturity is due to an EoD or other termination event established by the parties in the

MA. One could say with almost absolute certainty that in both of the latter cases the

economic position of the surviving counterparty, in case it has a positive derivative value,

in a default scenario is not as profitable as in a counterparty risk-free scenario.
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6.3 American Options: CN Solution to Black-Scholes PDE

- vs - CN Solution PDE with CVA and FVA

Figure 6.5: CN: American Put -vs- American Put with CVA and FVA

Table 6.6: CN: American Put -vs- American Put with CVA and FVA

St V V̂ U

1 104.40 31.47 28.46 3.01
2 103.80 31.76 28.74 3.02
3 103.20 32.05 29.02 3.03
4 102.60 32.35 29.30 3.05
5 102.00 32.64 29.58 3.06
6 101.40 32.94 29.87 3.07
7 100.80 33.24 30.16 3.08
8 100.20 33.54 30.44 3.10
9 99.60 33.84 30.73 3.11

10 99.00 34.15 31.03 3.12
11 98.40 34.45 31.32 3.13
12 97.80 34.75 31.61 3.14
13 97.20 35.06 31.91 3.15
14 96.60 35.37 32.21 3.16
15 96.00 35.68 32.50 3.17
16 95.40 35.99 32.81 3.18
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Figure 6.6: CN: American Call -vs- American Call with CVA and FVA

Table 6.7: CN: American Call -vs- American Call with CVA and FVA

St V V̂ U

1 104.40 38.81 34.51 4.31
2 103.80 38.55 34.26 4.29
3 103.20 38.29 34.02 4.27
4 102.60 38.04 33.78 4.26
5 102.00 37.78 33.54 4.24
6 101.40 37.52 33.30 4.22
7 100.80 37.27 33.06 4.21
8 100.20 37.01 32.82 4.19
9 99.60 36.76 32.59 4.17

10 99.00 36.50 32.35 4.15
11 98.40 36.25 32.12 4.13
12 97.80 36.00 31.88 4.12
13 97.20 35.75 31.65 4.10
14 96.60 35.50 31.42 4.08
15 96.00 35.25 31.19 4.06
16 95.40 35.00 30.96 4.04

In the case of an American call option it can be seen that when the underlying asset

price is close to the strike price it might not be optimal to early exercise the option but

there is some counterparty risk and funding cost of due to the hedging strategy. When

underlying asset price is high relative to the strike price, the adjustments are close to zero

as one would exercise the option immediately. According with option valuation theory,

it is never optimal to early exercise an American option on non-dividend paying stock

(stock prices are supposed to drop down after dividend payments) if the option holder

plans to maintain the stock in the future. In this case we have the effect of continuous
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dividends, CVA and FVA affecting the stopping rule criteria (adjusted continuation

value against early exercise).

It can be seen that the CVA and FVA of American option is always less that the ad-

justments for European options. These makes sense since adjustments could be causing

the early exercise, consistently with the possibility of early exercise due to counterparty

risk reasons (counterparty’s credit quality deterioration).
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6.4 European Options, CVA and FVA with MC and Nu-

merical Integration

Figure 6.7: MC and NI: European Put -vs- European Put with CVA and FVA

Table 6.8: MC and NI: European Put -vs- European Put with CVA and FVA

St V V̂ U

1 90.00 21.56 17.30 4.27
2 91.00 21.65 17.37 4.28
3 92.00 20.73 16.63 4.10
4 93.00 20.80 16.68 4.11
5 94.00 20.36 16.33 4.03
6 95.00 20.14 16.16 3.98
7 96.00 19.92 15.98 3.94
8 97.00 19.20 15.40 3.80
9 98.00 19.33 15.50 3.82

10 99.00 19.17 15.37 3.79
11 100.00 18.88 15.14 3.73
12 101.00 18.27 14.66 3.61
13 102.00 18.28 14.67 3.62
14 103.00 18.32 14.69 3.62
15 104.00 17.51 14.04 3.46
16 105.00 17.55 14.08 3.47
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Figure 6.8: MC and NI: European Call -vs- European Call with CVA and FVA

Table 6.9: MC and NI: European Call -vs- European Call with CVA and FVA

St V V̂ U

1 101.00 15.37 12.33 3.04
2 102.00 15.63 12.54 3.09
3 103.00 16.46 13.20 3.26
4 104.00 17.33 13.90 3.43
5 105.00 17.70 14.20 3.50
6 106.00 17.88 14.35 3.54
7 107.00 18.07 14.49 3.57
8 108.00 19.38 15.54 3.83
9 109.00 19.74 15.83 3.90

10 110.00 19.78 15.87 3.91
11 111.00 20.93 16.79 4.14
12 112.00 21.11 16.93 4.18
13 113.00 22.23 17.84 4.40
14 114.00 22.49 18.04 4.45
15 115.00 23.04 18.48 4.56
16 116.00 24.59 19.72 4.86

Adjustments to European option value computation through Monte Carlo and numerical

integration show results with similar dynamic to those of the CN scheme solution. The

difference in the presented option values is due to model calibration techniques, which

are beyond the scope of this paper.
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6.5 American Options, CVA and FVA with MC, Least-

Squares and Numerical Integration

Figure 6.9: LSM and NI: American Put -vs- American Put with CVA and FVA

Table 6.10: LSM and NI: American Put -vs- American Put with CVA and FVA

St V V̂ U

1 90.00 24.49 24.45 0.05
2 91.00 24.34 24.29 0.05
3 92.00 24.38 24.33 0.05
4 93.00 24.02 23.97 0.05
5 94.00 23.17 23.13 0.04
6 95.00 22.43 22.39 0.04
7 96.00 23.08 23.03 0.04
8 97.00 21.28 21.24 0.04
9 98.00 22.34 22.29 0.04

10 99.00 20.89 20.85 0.04
11 100.00 21.85 21.81 0.04
12 101.00 22.45 22.41 0.04
13 102.00 20.28 20.25 0.04
14 103.00 21.40 21.36 0.04
15 104.00 20.67 20.63 0.04
16 105.00 21.56 21.53 0.03
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Figure 6.10: LSM and NI: American Call -vs- American Call with CVA and FVA

Table 6.11: LSM and NI: American Call -vs- American Call with CVA and FVA

St V V̂ U

1 100.00 18.96 18.92 0.03
2 101.00 18.49 18.45 0.04
3 102.00 18.98 18.95 0.04
4 103.00 20.55 20.51 0.04
5 104.00 21.55 21.51 0.04
6 105.00 21.51 21.46 0.04
7 106.00 22.15 22.10 0.04
8 107.00 22.87 22.82 0.04
9 108.00 23.18 23.13 0.05

10 109.00 22.62 22.57 0.05
11 110.00 24.35 24.30 0.05
12 111.00 27.18 27.13 0.05
13 112.00 26.17 26.11 0.05
14 113.00 27.95 27.90 0.05
15 114.00 26.65 26.59 0.05
16 115.00 29.09 29.03 0.06

Results for American option values through LSM are always very low or non-significant

which could be explained by a computation error or the reason that in this modelling

approach the American option value could be close to the strike price, always exercising

the option making the adjustment value almost zero, or dispersed in time where option

adjustments are also non-significant. We think the problem is related to the definition

of the stopping rule that takes into account the risk-free conditional expected value of

the option instead the adjusted conditional expected value.



Chapter 7

Conclusions

In this document we presented numerical solutions to PDE representations for the value

function of risk-free options and options with CVA and FVA through Crank-Nicolson

finite-differences scheme, direct computation of CVA and FVA for European options

through Monte Carlo simulation and numerical integration, and we proposed an empir-

ical method for direct CVA and FVA computation through least-squares Monte Carlo

and numerical integration for American options. These methods are well-known among

practitioners and academics for derivatives pricing, mostly in the context of risk-free

derivative valuation.

We found that finite-difference methods like CN could be more challenging to imple-

ment but the solutions they provide are computationally efficient and smoother when

compared with Monte Carlo simulation results.

The results we found are consistent with option pricing theory for European and Amer-

ican options if we compare the functional forms in Chapter 6 with forms in most of the

derivatives bibliography at the end of this document. Despite of this, accurate option

values are beyond the scope of this paper and we do not dealt with calibration tech-

niques (e.g. defining the upper bound or maximum underlying asset price, which have

a significant impact in option value).

Although we think empirical approach proposed for American options CVA and FVA

through LSM and numerical integration might be consistent from a superficial mathe-

matical perspective, more rigorous mathematical proofs and experiments are required

in order to reach strong conclusions.
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7.1 Future Extensions

- Explore in more depth calibration techniques for each of the methods presented here

and compare derivatives’ valuations and adjustments.

- Present solutions to PDEs for different derivatives e.g. forward contracts, interest rate

swaps and exotic options.

- We also identified that boundary conditions for PDEs in the context of CVA and FVA

valuation is a very relevant aspect that could have significant impact in final solutions

and derivative values. Explore methods for determine boundary conditions or upper

bounds for finite-difference adjusted valuation might result in better approximations.

- Regarding the empirical approach using LSM and numerical integration, we identified

that an improvement or solution to the proposed method might be to include an ad-

justed continuation value in the application of the stopping rule , which would also be

consistent with our implementation for the CN risky PDE solution.

- Explore suggestions by Duffy (2004) regarding CN scheme or other finite-difference

methods, testing stability and convergence.

- Extend the approach to a multi-asset portfolio with correlated assets.

- Extend the solutions and implementations for PDEs where interest rates and volatility

are stochastic. In the case of volatility a stochastic function of time and asset price.

7.1.1 Calibration for CVA and FVA in Emerging Markets

We think other interesting future development would be to calibrate the model in an

emerging market context. OTC derivatives or portfolio of derivatives between two par-

ties, where one or both parties may be based in an emerging market. To reach this

calibration method we think it would be helpful to explore some cases before.

We have identified four cases for calibration of the presented CVA and FVA framework.

For sure many more can be found. First case: a large financial institution A, the seller,

and a company B, the buyer, where both parties have issued bonds in the same capital

market or jurisdiction (also same currency), and bonds from A and B are sufficiently

liquid to obtain a market yield. Second case: a large financial institution A, the seller,

and a company C, the buyer, where only party A has issued bonds that are sufficiently

liquid in the capital market. Party C may or may not have issued bonds. Cases 3 and

4 are the same in case 1 and 2 with the variation that counterparties B and C are now

in an emerging market and obtain funding in a different currency and are exposed to a

different country risk.
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- First Case: Parties A and B have issued bonds that are liquid in the same

market and denomination

In this case calibration of interest rates might be done straight forward from market

yields.

- Second Case: Party A have issued bonds that are liquid

In this case calibration of interest rates might be done straight forward from market

yields for party A and we would suggest that for party C one could define a peer

group based on financial and credit metrics published by rating agencies where

peers have bonds in the same market and currency, and are liquid enough to build

a benchmark market yield.

- Third and Fourth cases: Parties B and C are in an emerging market with

a different currency

These cases sound like they could cover a large set of medium-large corporate

entities of financial institutions in emerging markets that probably have credit

ratings, they have issued bonds in their local market where they could be liquid.

This case sounds more challenging as it would require to develop a consistent

method to incorporate FX risk and country risk in the calibration.



Appendix A

Explicit code in R (2016) for

Solutions in Chapter 5

##----------- Parameters/rates as defined in Burgard & Kjaer 2011-----------##

#install.packages (" xtable ")

library(xtable)

r=function(t)0.05 #Risk -free rate

r_b=function(t)0.08 #Yield on recoveryless bond of seller B

r_c=function(t)0.1 #Yield on recoveryless bond of counterparty C

lambda_b=function(t)r_b(t)-r(t) # Intensity of default seller B

lambda_c=function(t)r_c(t)-r(t) # Intensity of default counterparty C

R_b=0.4 #Recovery rate on derivative value in case seller B defaults

R_c=0.4 #$Recovery rate on derivative value in case counterparty C defaults

#****r_F is the seller funding rate for borrowed cash on s e l l e r s derivatives replication

#cash account****

r_F=function(t)r(t) #if derivative can be used as collateral

r_F=function(t)r(t)+(1-R_b)*lambda_b(t) #if derivative cannot be used as collateral

s_F=function(t)r_F(t)-r(t)

##------------ Parameters for proposed solutions to PDEs ---------------------##

#*In case coefficients are non -constant modify each parameter and specify appropriate

# deterministic functions for each one

#*modify functions as well to make them time or space dependent

r_hat=function(t)r(t)+ lambda_b(t)+ lambda_c(t)

g_s=function(t)0.07 #dividend yield

q_s=function(t)0.06 #financing cost

sigma=function(t)0.25 # volatility

T=5 #time to maturity in years

m=500 #number of time steps

dt=T/(m) #time incr6ements

Smax =400 #max asset price

N=500 #number of space steps

delta_s=Smax/(N) #space increments
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##--------Crank -Nicolson Method - Risk Free - (American & European )--------##

crank_nicolson_bspde=function(smax=Smax ,TtM=T,n_t=m,n_s=N,eps=1e-8,opt_c=c("A","E"),

opt_t=c("C","P"),K=0){

deltas=smax/n_s

deltat=TtM/n_t

omega =1.0

domega =0.05

oldloops =10000

s_v=c((n_s:1)*deltas ,0)#zero is added as minimum price

n_s=n_s+1

t_v=c(0 ,(1:n_t)*deltat)

n_t=n_t+1

a=rep(0,n_s)

b=rep(0,n_s)

c=rep(0,n_s)

d=rep(0,n_s)

val=matrix(0,nrow=n_s,ncol=n_t)

#Boundary conditions

if(opt_t=="C"){ ##Call

val[,n_t]=(s_v-K)*((s_v-K)>0)

if(opt_c=="E") for(p in 1:(n_t-1)){

val[1,p]=( smax*exp(-integrate(Vectorize(g_s),t_v[p],

t_v[n_t])$value)-K*exp(-integrate(Vectorize(r),t_v[p],t_v[n_t])$value))

}

if(opt_c=="A")for(p in 1:(n_t-1)) val[1,p]=smax -K

a[1] =0

b[1]=1

b[n_s]=1

c[n_s]=0

val[n_s,]=0

}

else{ ##Put

val[,n_t]=(K-s_v)*((K-s_v)>0)

if(opt_c=="E")for(l in 1:(n_t-1)){

val[n_s,l]=(K*exp(-integrate(Vectorize(r),t_v[l], t_v[n_t])$value))

}

if(opt_c=="A") val[n_s,]=K

a[1] =0

b[1]=1

b[n_s]=1

c[n_s]=0

val [1 ,]=0

}

#Initial guess for V

for(j in (n_t -1):1){

val[c(2:(n_s-1)),j]=val[c(2:(n_s-1)),j+1]

#Boundary conditions for d

if(opt_t=="C"){ ##Call
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d[1]= val[1,j]

}

else{ ##Put

d[n_s]=val[n_s,j]

}

for(i in (n_s -1):2){

a[i]=(1/4*((sigma(t_v[j])^2)*i^2-(q_s(t_v[j])-g_s(t_v[j]))*i))

b[i]=-1/2*(sigma(t_v[j])^2)*i^2-r(t_v[j])/2-1/deltat

c[i]=(1/4*((sigma(t_v[j])^2)*i^2+(q_s(t_v[j])-g_s(t_v[j]))*i))

}

#### SOR - Gauss -Seidel

loops=0

repeat{

error=0

for(z in 2:(n_s -1)){

d[z]=( -(1/4*((sigma(t_v[j])^2)*z^2-(q_s(t_v[j])-g_s(t_v[j]))*z))*val[z-1,j+1]

-(-1/2*(sigma(t_v[j])^2)*z^2-r(t_v[j])/2+1/deltat)*val[z,j+1]

-(1/4*(( sigma(t_v[j])^2)*z^2+(q_s(t_v[j])-g_s(t_v[j]))*z))*val[z+1,j+1])

y=(1/b[z])*(d[z]-a[z]*val[z-1,j]-c[z]*val[z+1,j])

if(opt_c=="A" & opt_t=="C"){#American Call

y=max(val[z,j]+ omega*(y-val[z,j]),(s_v[z]-K)*((s_v[z]-K)>0))

}else if(opt_c=="A" & opt_t=="P" ){#American Put

y=max(val[z,j]+ omega*(y-val[z,j]),(K-s_v[z])*((K-s_v[z])>0))

}else if(opt_c=="E"){#European option

y=val[z,j]+ omega*(y-val[z,j])

}

error=error +(val[z,j]-y)^2

val[z,j]=y

}

loops=loops +1

if(error <=eps)break

}

if(loops >oldloops)domega=-domega

omega=omega+domega

oldloops=loops

}

return(cbind(s_v,val))

}
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mydf=data.frame(crank_nicolson_bspde(opt_c = "E", opt_t = "C",K=110,n_t = 500,n_s = 500))

matplot(mydf[,1],mydf[,-1],type = "l")

#American call

amc=crank_nicolson_bspde(opt_c = "A", opt_t = "C",K=100)

#American put

amp=crank_nicolson_bspde(opt_c = "A", opt_t = "P",K=100)

#European call

euc=crank_nicolson_bspde(opt_c = "E", opt_t = "C",K=100)

#European put

eup=crank_nicolson_bspde(opt_c = "E", opt_t = "P",K=100)

#Risk -free American call vs European call

matplot(euc[which(euc[,2]>0.05),1], cbind(amc[which(euc[,2]>0.05),2],

euc[which(euc [,2] >0.05),2]) , type="l", pch=c(1,2), col = c("green", "blue"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("bottomright", legend=c("American Call", "European Call"),col=c("green", "blue"),

lty=1:2, cex=0.8, box.lty=2)

#Risk -free American put vs European put

matplot(eup[which(eup[,2]>0.05),1], cbind(amp[which(eup[,2]>0.05),2],

eup[which(eup [,2] >0.05),2]) , type="l",pch=c(1,2), col = c("green", "blue"),

xlab = expression(paste("Asset price ",S[t])), ylab = expression(V[t]))

legend("bottomleft", legend=c("American Put", "European Put"),col=c("green", "blue"),

lty=1:2, cex=0.8, box.lty=2)

# Table American call vs European call

amc_euc=data.frame(cbind(euc[which(95<euc[,1] & euc[,1]<105),1],amc[which(95<euc[,1] &

euc[,1]<105),2],euc[which (95<euc[,1] & euc [ ,1] <105) ,2]))

colnames(amc_euc)<-c("St","American Call", "European Call")

xtable(amc_euc)

# Table American put vs European Put

amp_eup=data.frame(cbind(eup[which(95<eup[,1] & eup[,1]<105),1],amp[which(95<eup[,1] &

eup[,1]<105),2],eup[which (95<eup[,1] & eup [ ,1] <105) ,2]))

colnames(amp_eup)<-c("St","American Put", "European Put")

xtable(amp_eup)

# ------------------------------Crank - Nicolson PDE Solution with CVA --------------###

crank_nicolson_bspde_CVA=function(val_reg=valr ,smax=Smax ,TtM=T,n_t=m,n_s=N,eps=1e-8,

opt_c=c("A","E"),opt_t=c("C","P"),K=0){

deltas=smax/n_s

deltat=TtM/n_t
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omega =1.0

domega =0.05

oldloops =10000

s_v=c((n_s:1)*deltas ,0)

n_s=n_s+1

t_v=c(0 ,(1:n_t)*deltat)

n_t=n_t+1

a=rep(0,n_s)

b=rep(0,n_s)

c=rep(0,n_s)

d=rep(0,n_s)

val=matrix(0,nrow=n_s,ncol=n_t)

#Boundary conditions

if(opt_t=="C"){ ##Call

val[,n_t]=(s_v-K)*((s_v-K)>0)

if(opt_c=="E") for(p in 1:(n_t-1)){

v1=(smax*exp(-integrate(Vectorize(g_s),t_v[p],t_v[n_t])$value)

-K*exp(-integrate(Vectorize(r),t_v[p],t_v[n_t])$value))

cva=(-(1-R_b)*integrate(Vectorize(function(t)lambda_b(t)*

exp(-(integrate(Vectorize(lambda_b),t_v[p],t)$value+integrate(Vectorize(lambda_c)

,t_v[p],t)$value))*min(v1 ,0)),t_v[p],t_v[n_t])$value -(1-R_c)

*integrate(Vectorize(function(t)lambda_c(t)*exp(-(integrate(Vectorize(lambda_b),

t_v[p],t)$value+integrate(Vectorize(lambda_c),t_v[p],t)$value ))*max(v1 ,0)),t_v[p],

t_v[n_t])$value -integrate(Vectorize(function(t)s_F(t)*exp(-(integrate(Vectorize

(lambda_b),t_v[p],t)$value+integrate(Vectorize(lambda_c),t_v[p],t)$value))

*max(v1 ,0)),t_v[p],t_v[n_t])$value)

val[1,p]=v1+cva

}

if(opt_c=="A")for(p in 1:(n_t-1)) val[1,p]=smax -K

a[1] =0

b[1]=1

b[n_s]=1

c[n_s]=0

d[n_s]=0

val[n_s,]=0

}

else{ ##Put

val[,n_t]=(K-s_v)*((K-s_v)>0)

if(opt_c=="E")for(l in 1:(n_t -1)){

v2=(K*exp(-integrate(Vectorize(r),t_v[l],t_v[n_t])$value))

cva=(-(1-R_b)*integrate(Vectorize(function(t)lambda_b(t)*exp(-(integrate(Vectorize

(lambda_b),t_v[l],t)$value+integrate(Vectorize(lambda_c),t_v[l],t)$value))*min(v2 ,0))

,t_v[l],t_v[n_t])$value -(1-R_c)*integrate(Vectorize(function(t)lambda_c(t)

*exp(-(integrate(Vectorize(lambda_b),t_v[l],t)$value+integrate(Vectorize(lambda_c)

,t_v[l],t)$value))*max(v2 ,0)),t_v[l],t_v[n_t])$value -integrate(Vectorize(function(t)

s_F(t)*exp(-(integrate(Vectorize(lambda_b),t_v[l],t)$value+
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integrate(Vectorize(lambda_c),t_v[l],t)$value ))*max(v2 ,0)),t_v[l],t_v[n_t])$value)

val[n_s,l]= v2+cva

}

if(opt_c=="A") val[n_s,]=K

a[1] =0

b[1]=1

b[n_s]=1

c[n_s]=0

d[1]=0

val [1 ,]=0

}

#Initial guess for V

for(j in (n_t -1):1){

val[c(2:(n_s-1)),j]=val[c(2:(n_s-1)),j+1]

#Boundary conditions for d

if(opt_t=="C"){ ##Call

d[1]=( val[1,j]-(R_b*lambda_b(t_v[j])+ lambda_c(t_v[j]))*min((val_reg[1,j]+val_reg[1,j+1])/2,0)

-(R_c*lambda_c(t_v[j])+ lambda_b(t_v[j]))*max((val_reg[1,j]+val_reg[1,j+1])/2,0)+s_F(t_v[j])

*max((val_reg[1,j]+val_reg[1,j+1])/2,0))

}

else{ ##Put

d[n_s]=(val[n_s,j]-(R_b*lambda_b(t_v[j])+ lambda_c(t_v[j]))*min((val_reg[1,j]+val_reg[1,j+1])/2,0)

-(R_c*lambda_c(t_v[j]) +lambda_b(t_v[j]))*max((val_reg[1,j]+val_reg[1,j+1])/2,0)+s_F(t_v[j])

*max((val_reg[1,j]+val_reg[1,j+1])/2,0))

}

for(i in (n_s -1):2){

a[i]=(1/4*((sigma(t_v[j])^2)*i^2-(q_s(t_v[j])-g_s(t_v[j]))*i))

#r+lambda_b+lambda_c

b[i]=-1/2*(sigma(t_v[j])^2)*i^2-r_hat(t_v[j])/2-1/deltat

c[i]=(1/4*((sigma(t_v[j])^2)*i^2+(q_s(t_v[j])-g_s(t_v[j]))*i))

}

#### SOR - Gauss -Seidel

loops=0

repeat{

error=0

for(z in 2:(n_s -1)){

d[z]=(-(1/4*((sigma(t_v[j])^2)*z^2-(q_s(t_v[j])-g_s(t_v[j]))*z))

*val[z-1,j+1]-(-1/2*(sigma(t_v[j])^2)*z^2-r_hat(t_v[j])/2+1/deltat)

*val[z,j+1]-(1/4*(( sigma(t_v[j])^2)*z^2+(q_s(t_v[j])-g_s(t_v[j]))*z))

*val[z+1,j+1]-(R_b*lambda_b(t_v[j])+ lambda_c(t_v[j]))*min((val_reg[z,j]+val_reg[z,j+1])/2,0)

-(R_c*lambda_c(t_v[j])+ lambda_b(t_v[j]))*max((val_reg[z,j]+val_reg[z,j+1])/2,0) +s_F(t_v[j])

*max((val_reg[z,j]+val_reg[z,j+1])/2,0))

y=(1/b[z])*(d[z]-a[z]*val[z-1,j]-c[z]*val[z+1,j])

if(opt_c=="A" & opt_t=="C"){#American Call
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y=max(val[z,j]+ omega*(y-val[z,j]),(s_v[z]-K)*(s_v[z]>K))

}else if(opt_c=="A" & opt_t=="P" ){#American Put

y=max(val[z,j]+ omega*(y-val[z,j]),(K-s_v[z])*(K>s_v[z]))

}else if(opt_c=="E"){#European option

y=val[z,j]+ omega*(y-val[z,j])

}

error=error +(val[z,j]-y)^2

val[z,j]=y

}

loops=loops +1

if(error <eps)break

}

if(loops >oldloops)domega=-domega

omega=omega+domega

oldloops=loops

}

return(cbind(s_v,val))

}

##American call with CVA & FVA

valr=amc

amc_cva=crank_nicolson_bspde_CVA(val_reg=valr ,opt_c = "A", opt_t = "C",K=100)

matplot(amc[which(amc[,2]>0.05),1], cbind(amc[which(amc[,2]>0.05),2],

amc_cva[which(amc[,2]>0.05),2],amc[which(amc [ ,2] >0.05) ,2]

-amc_cva[which(amc [,2] >0.05),2]) , type="l", pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topleft", legend=c(expression(paste("American Call -",V)),

expression(paste("American Call -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty =2)

# Table American call vs American call CVA & FVA

amc_amccva=data.frame(cbind(amc[which(95<amc[,1] & amc[ ,1]<105),1]

,amc[which(95<amc[,1] & amc[,1]<105),2],amc_cva[which(95<amc[,1] & amc[,1]<105),2],

amc[which(95<amc[,1] & amc[,1]<105),2]-amc_cva[which(95<amc[,1] & amc [ ,1] <105) ,2]))

colnames(amc_amccva)<-c("St","American Call -V", "American Call -(V)","U")

xtable(amc_amccva)

##American put with CVA & FVA

valr=amp
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amp_cva=crank_nicolson_bspde_CVA(val_reg=valr ,opt_c = "A", opt_t = "P",K=100)

matplot(amp[which(amp[,2]>0.05),1], cbind(amp[which(amp[,2]>0.05),2],

amp_cva[which(amp[,2]>0.05),2],amp[which(amp [ ,2] >0.05) ,2]

-amp_cva[which(amp [,2] >0.05),2]) , type="l", pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topright", legend=c(expression(paste("American Put -",V)),

expression(paste("American Put -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty=2)

# Table American put vs American put CVA & FVA

amp_ampcva=data.frame(cbind(amp[which(95<amp[,1] & amp[ ,1]<105),1]

,amp[which(95<amp[,1] & amp[,1]<105),2],amp_cva[which(95<amp[,1] & amp[,1]<105),2],

amp[which(95<amp[,1] & amp[,1]<105),2]-amp_cva[which(95<amp[,1] & amp [ ,1] <105) ,2]))

colnames(amp_ampcva)<-c("St","American Put -V", "American Put -(V)","U")

xtable(amp_ampcva)

##European call with CVA & FVA

valr=euc

euc_cva=crank_nicolson_bspde_CVA(val_reg=valr ,opt_c = "E", opt_t = "C",K=100)

matplot(euc[which(euc[,2]>0.05),1], cbind(euc[which(euc[,2]>0.05),2],

euc_cva[which(euc[,2]>0.05),2],euc[which(euc [ ,2] >0.05) ,2]

-euc_cva[which(euc [,2] >0.05),2]) , type="l", pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topleft", legend=c(expression(paste("European Call -",V)),

expression(paste("European Call -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty=2)

# Table European call vs European call CVA & FVA

euc_euccva=data.frame(cbind(euc[which(95<euc[,1] & euc[ ,1]<105),1]

,euc[which(95<euc[,1] & euc[,1]<105),2],euc_cva[which(95<euc[,1] & euc[,1]<105),2],

euc[which(95<euc[,1] & euc[,1]<105),2]-euc_cva[which(95<euc[,1] & euc [ ,1] <105) ,2]))

colnames(euc_euccva)<-c("St","V", "(V)","U")

xtable(euc_euccva)

##European put with CVA & FVA

valr=eup

eup_cva=crank_nicolson_bspde_CVA(val_reg=valr ,opt_c = "E", opt_t = "P",K=100)

matplot(eup[which(eup[,2]>0.05),1], cbind(eup[which(eup[,2]>0.05),2],

eup_cva[which(eup[,2]>0.05),2],eup[which(eup [ ,2] >0.05) ,2]

-eup_cva[which(eup [,2] >0.05),2]) , type="l", pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topright", legend=c(expression(paste("European Put -",V)),

expression(paste("European Put -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty=2)

# Table European put vs European put CVA & FVA
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eup_eupcva=data.frame(cbind(eup[which(95<eup[,1] & eup[ ,1]<105),1]

,eup[which(95<eup[,1] & eup[,1]<105),2],eup_cva[which(95<eup[,1] & eup[,1]<105),2],

eup[which(95<eup[,1] & eup[ ,1]<105),2]

-eup_cva[which(95<eup[,1] & eup [ ,1] <105) ,2]))

colnames(eup_eupcva)<-c("St","V", "{V}","U")

xtable(eup_eupcva)

##---------------------------------Monte Carlo Simulation -----------------------------###

S0=100

npaths =1000

m=1000

path_mat=matrix(S0,nrow=m+1,ncol=npaths)

path_mat[c(2:(m+1)) ,]=(t(sapply ((1:m)*dt ,r)*S0*dt+t(matrix(rnorm(npaths*m),

nrow=m,ncol=npaths ))%*%diag(sapply ((1:m)*dt,sigma)*S0*sqrt(dt))))

path_mat=apply(path_mat ,2,cumsum)

matplot ((0:m)*dt ,path_mat ,type="l")

#-- European Option CVA with MC Simulation and Numerical Integration - Main Result 3-------

europeanOpts_CVA_MC=function(opt=c("P","C"),St=100, npaths =1000 ,m=1000,E=100, Tmin=0,Tmax =5){

dt=(Tmax -Tmin)/m

# Simulation of n asset prices ST=Ste{det+sto}

path_mat=matrix(St,nrow=m+1,ncol=npaths)

path_mat[c(2:(m+1)) ,]=(t(sapply ((1:m)*dt ,function(t)q_s(t)-g_s(t))*St*dt+

t(matrix(rnorm(npaths*m),nrow=m,ncol=npaths ))%*%diag(sapply ((1:m)*dt ,sigma)*St*sqrt(dt))))

path_mat=apply(path_mat ,2,cumsum)

S_T=path_mat[m+1,]

S_T[which(S_T <0)]=0 #Truncate stock prices at 0

#Compute option expected value in Tmax E[V(T,S(T))]

payoff =(S_T-E)*((S_T-E)>0)*(opt=="C")+(E-S_T)*(0<(E-S_T))*(opt=="P")

exp_val=mean(payoff)

#value of E[V(t,S(T))| Ft]=Dr(t,T)E[V(t,S(T))]

V0=exp(-integrate(Vectorize(r),Tmin ,Tmax)$value)*exp_val

V_neg_exp_pv=exp(-integrate(Vectorize(r),Tmin ,Tmax)$value)*mean(sapply(payoff ,min ,0))

V_pos_exp_pv=exp(-integrate(Vectorize(r),Tmin ,Tmax)$value)*mean(sapply(payoff ,max ,0))

CVA=(-(1-R_b)*V_neg_exp_pv*integrate(Vectorize(function(t)lambda_b(t)

*exp(-(integrate(Vectorize(lambda_b),

Tmin ,t)$value+integrate(Vectorize(lambda_c),Tmin ,t)$value))),Tmin ,Tmax)$value -(1-R_c)

*V_pos_exp_pv

*integrate(Vectorize(function(t)lambda_c(t)*exp(-(integrate(Vectorize(lambda_b),Tmin ,t)

$value+integrate

(Vectorize(lambda_c),Tmin ,t)$value))),Tmin ,Tmax)$value -V_pos_exp_pv

*integrate(Vectorize(function(t)s_F(t)

*exp(-(integrate(Vectorize(lambda_b),Tmin ,t)$value+integrate(Vectorize(lambda_c),

Tmin ,t)$value))),

Tmin ,Tmax)$value)
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return(c(V0,CVA))

}

europeanOpts_CVA_MC(opt = "C",St=100,E=100)

##European call with CVA & FVA

eup[which(95<eup[,1] & eup[ ,1]<105),1]

vect_eurc_cva=sapply(c(100:200) , europeanOpts_CVA_MC,opt = "C",npaths =10000 ,m=1000 ,

E=100, Tmin=0,Tmax =5)

vect_eurc_cva[2,]=-vect_eurc_cva[2,]

matplot(c(100:200) , cbind(t(vect_eurc_cva)[,1],t(vect_eurc_cva)[,1]-t(vect_eurc_cva)[,2],

t(vect_eurc_cva)[,2]), type="l",pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topleft", legend=c(expression(paste("European Call -",V)),

expression(paste("European Call -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty=2)

# Table European call vs European call CVA & FVA

mc_euccva=data.frame(cbind(c(101:116) ,t(vect_eurc_cva)[c(1:16) ,1] ,

t(vect_eurc_cva)[c(1:16) ,1] -t(vect_eurc_cva)[c(1:16) ,2] ,t(vect_eurc_cva)[c(1:16) ,2]))

colnames(mc_euccva)<-c("St","V", "(V)","U")

xtable(mc_euccva)

##European put with CVA & FVA

vect_eurp_cva=sapply(c(0:120) , europeanOpts_CVA_MC ,opt = "P", npaths =10000 ,

m=1000 ,E=100, Tmin=0,Tmax =5)

vect_eurp_cva[2,]=-vect_eurp_cva[2,]

matplot(c(0:120) , cbind(t(vect_eurp_cva)[,1],t(vect_eurp_cva)[,1]-t(vect_eurp_cva)[,2],

t(vect_eurp_cva)[,2]), type="l",pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topright", legend=c(expression(paste("European Put -",V)),

expression(paste("European Put -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty =2)

# Table European put vs European put CVA & FVA

mc_eupcva=data.frame(cbind(c(90:105) ,t(vect_eurp_cva)[c(90:105) ,1] ,

t(vect_eurp_cva)[c(90:105) ,1] -t(vect_eurp_cva)[c(90:105) ,2] ,

t(vect_eurp_cva)[c(90:105) ,2]))

colnames(mc_eupcva)<-c("St","V", "(V)","U")

xtable(mc_eupcva)

# --------American Option CVA with MC Simulation , Least -Squares and Numerical

# Integration - Main Result 3-----------------------------------------------------

americanOpts_CVA_LSM=function(opt=c("P","C"),St=100, npaths =1000,m=100,E=100, Tmin=0,

Tmax=5,rb=R_b,rc=R_c){
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dt=(Tmax -Tmin)/m

path_mat=matrix(St,nrow=m+1,ncol=npaths)

path_mat[c(2:(m+1)) ,]=(t(( sapply ((1:m)*dt,function(t)q_s(t)-g_s(t)))*St*dt+t(matrix

(rnorm(npaths*m),nrow=m,ncol=npaths ))%*%diag(sapply ((1:m)*dt ,sigma)*St*sqrt(dt))))

path_mat=apply(path_mat ,2,cumsum)

for(i in 1: npaths)if(min(path_mat[,i])<0) path_mat[c(which(path_mat[,i] <0)[1]:m),i]=0

#if a path touches

#0, all values after are set to zero

val_mat=(E-path_mat)*(opt=="P")+( path_mat -E)*(opt=="C")

val_mat=(val_mat*(val_mat >0))/E

path_mat=path_mat/E

st_mat=matrix(1,nrow=m+1,ncol=npaths)

st_mat[m+1,which(val_mat[m+1 ,]==0)]=0

for(i in m:1){

disc_rf=( mapply(function(a,b){exp(-integrate(Vectorize(r),a,b)$value)},

a=rep(i*dt,m-i+1),b=c(i:m)*dt))

if(i==m){

pos=which(val_mat[(i+1):(m+1),]>0)

model=(lm(y~x1+x2,data = data.frame(cbind(y=val_mat[(i+1):(m+1),pos]*disc_rf,

x1=path_mat[i,pos],x2=path_mat[i,pos ]^2)) ,na.action=na.omit))

}else{

pos=which(apply(val_mat[(i+1):(m+1),],2,max ,0)>0)

model=(lm(y~x1+x2,data = data.frame(cbind(y=apply(t(val_mat[(i+1):(m+1),pos])

%*%diag(disc_rf),1,max),x1=path_mat[i,pos],x2=path_mat[i,pos]^2)),na.action=na.omit))

}

st_mat[i,pos]=( predict(model)<val_mat[i,pos])*1

st_mat[c((i+1):(m+1)), which(st_mat[i,] >0)]=0

val_mat=st_mat*val_mat

}

disc_rf=mapply(function(a,b){exp(-integrate(Vectorize(r),a,b)$value)}

,a=rep(Tmin ,m+1),b=c(0:m)*dt)

## Longstaff & Schwartz value

opt_val=mean(apply(t(val_mat*E)%*%diag(disc_rf),1,max))

### Alternative Longstaff & Schwartz value

opt_val2= sum(apply(t(val_mat*E),2,mean)*disc_rf)

# expected value of positive derivative values (Expected positive exposure)

opt_exp_val_pos=apply(t(val_mat*E)*(t(val_mat*E)>0),2,mean)

#expected value of negative derivative values (Expected negative exposure)

opt_exp_val_neg=apply(t(val_mat*E)*(t(val_mat*E)<0),2,mean)

CVA=0

for(j in 1:m){

CVA=(CVA -(1-rb)*integrate(Vectorize(function(t)lambda_b(t)
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*exp(-integrate(Vectorize(r_hat)

,Tmin ,t)$value)*opt_exp_val_neg[j]),(j-1)*dt ,j*dt)$value

-(1-rc)*integrate(Vectorize(function(t)lambda_c(t)*exp(-integrate(Vectorize(r_hat),

Tmin ,t)$value)*opt_exp_val_pos[j]),(j-1)*dt,j*dt)$value

-integrate(Vectorize(function(t)s_F(t)*exp(-integrate(Vectorize(r_hat),Tmin ,t)$value)

*opt_exp_val_pos[j]),(j-1)*dt,j*dt)$value)

}

return(c(opt_val ,opt_val+CVA ,CVA))

}

americanOpts_CVA_LSM(opt="P",m=100, npaths = 10000 , E=100, St=100, Tmin=0,Tmax =5)

##American call with CVA & FVA

vect_amc_cva=sapply(c(100:300) , americanOpts_CVA_LSM , opt = "C",

npaths =1000 ,m=100,E=100, Tmin=0,Tmax =5)

matplot(c(100:300) , cbind(t(vect_amc_cva)[,1],t(vect_amc_cva)[,2],

t(vect_amc_cva)[,3]), type="l",pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topleft", legend=c(expression(paste("American Call -",V)),

expression(paste("American Call -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty =2)

# Table American call vs American call CVA & FVA

lsm_amccva=data.frame(cbind(c(100:115) ,t(vect_amc_cva)[c(1:16) ,1] ,

t(vect_amc_cva)[c(1:16),2], -1*t(vect_amc_cva)[c(1:16) ,3]))

colnames(lsm_amccva)<-c("St","V", "(V)","U")

xtable(lsm_amccva)

##American put American CVA & FVA

vect_amp_cva=sapply(c(0:200) , americanOpts_CVA_LSM ,opt = "P", npaths =1000 ,m=100

,E=100, Tmin=0,Tmax =5)

matplot(c(0:200) , cbind(t(vect_amp_cva)[,1],t(vect_amp_cva)[,2],

t(vect_amp_cva)[,3]), type="l",pch=c(1,2,3), col = c("green", "blue", "red"),

xlab =expression(paste("Asset price ",S[t])) , ylab = expression(V[t]))

legend("topright", legend=c(expression(paste("American Put -",V)),

expression(paste("American Put -",hat(V))),"CVA+FVA"),col=c("green", "blue", "red"),

lty=1:3, cex=0.8, box.lty =2)

# Table European put vs European put CVA & FVA

lsm_ampcva=data.frame(cbind(c(90:105) ,t(vect_amp_cva)[c(90:105) ,1] ,

t(vect_amp_cva)[c(90:105) ,2] , -1*t(vect_amp_cva)[c(90:105) ,3]))

colnames(lsm_ampcva)<-c("St","V", "(V)","U")

xtable(lsm_ampcva)



Bibliography

Alavian, S., Ding, j., Whitehead, P., and Laudicina, L. (2008). Credit Valuation Ad-

justment (CVA). https://papers.ssrn.com/sol3/papers.cfm?abstractid = 1310226.

Brigo, D. and Capponi, A. (2009). Bilateral counterparty risk valuation

with stochastic dynamical models and application to Credit Default Swaps.

https://arxiv.org/pdf/0812.3705.pdf.

Brigo, D., Pallavicini, A., and Papatheodorou, V. (2009). Bilateral counterparty

risk valuation for interest rate products: impact of volatilities and correlations.

https://arxiv.org/pdf/0812.3705.pdf.

Burgard, C. and Kjaer, M. (2011a). In The Balance.

https://papers.ssrn.com/sol3/papers.cfm?abstractid = 1785262.

Burgard, C. and Kjaer, M. (2011b). Partial differential equation representations of deriva-

tives with bilateral counterparty risk and funding costs. The Journal of Credit Risk,

7(3):75–93.

Burgard, C. and Kjaer, M. (2012). CVA and FVA with funding aware close outs.

https://papers.ssrn.com/sol3/papers.cfm?abstractid = 2157631.

Burgard, C. and Kjaer, M. (2017). Derivatives Funding, Netting and Accounting.

https://papers.ssrn.com/sol3/papers.cfm?abstractid = 2534011.

Crank, J. (1984). Free and Moving Boundary Problems. Clarendon Press, Oxford.

Cryer, C. (1979). Successive overrelaxation methods for solving linear complementarity

problems arising from free boundary value problems. Presented at a seminar held in

Pavia (Italy), SeptemberOctober 1979, Roma 1980.

Duffy, D. (2004). A Critique of the Crank-Nicolson Scheme: Strengths and Weaknesses

for Financial Instrument Pricing. WILMOTT magazine.

Duffy, D. (2006). Finite Difference Methods for Financial Engineering: A Partial Differen-

tial Equation Approach. John Wiley Sons Ltd, The Atrium, Southern Gate, Chichester,

West Sussex PO19 8SQ, England.

61



62

Facchini, M. (2013). Pricing derivatives under CVA, DVA and funding costs. Master’s

thesis, University of Amsterdam - Faculty of Science - Sthochastics and Financial Math-

ematics.

Feynman-Kac formula (2017). Feynman-Kac formula — Hochschule RheinMain Wies-

baden, University of Applied Sciences, Lectures, Chapter 17. [Online; accessed 14-

January-2017].

Fitch Ratings (2017). Structured Finance and Covered Bonds Counterparty Criteria:

Derivative Addendum. https://www.fitchratings.com/site/re/898538.

Green, A. (2016). XVA: Credit, Funding and Capital Valuation Adjustments. John Wiley

Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

Gregory, J. (2009). Being Two-faced over Counterparty Credit Risk. Risk.

Gregory, J. (2015). The XVA Challenge: Counterparty Credit Risk, Funding, Collateral

and Capital. John Wiley Sons, Ltd, The Atrium, Southern Gate, Chichester, West

Sussex PO19 8SQ, United Kingdom.

Johnson, P. (2013). Finite Difference - Crank-Nicolson.

http://www.maths.manchester.ac.uk/ pjohnson/resources/math60082/lecture-finite-

difference-crank.pdf.

Karatzas, I. and Shreve, S. (1998). Brownian Motion and Stochastic Calculus. Springer

Science+Business Media,LLC, 233 Spring ST New York, NY 10013, USA.

LeVeque, R. (2007). Finite difference methods for ordinary and partial differential equa-

tions: steady state and time-dependent problems. Society for Industrial and Applied

Mathematics, 3600 University City Science Center, Philadelphia, PA,19104, USA.

Longstaff, F. and Schwartz, E. (2001). Valuing American Options by Simulation: A Simple

Least-Squares Approach. The Review of Financial Studies, 14(1):113–147.

Moreno, M. and Navas, J. (2003). On the Robustness of Least-Squares for Pricing American

Derivatives. Review of Derivatives Research, 6(2).

Piessens, R., deDonckerKapenga, E., Uberhuber, C., and Kahane, D. (1983). Quadpack:

a Subroutine Package for Automatic Integration. R package version 3.2.5 — For new

features, see the ’Changelog’ file (in the package source).

Piterbarg, V. (2010). Funding beyond discounting: Collateral agreements and derivatives

pricing. Risk, 2:97–102.

R (2016). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. R version 3.2.5 (2016-04-14).



63

Salsa, S. (2008). Partial Differential Equations in Action: From Modelling to Theory.

Springer Science+Business Media,LLC, Springer-Verlag Italia, Milano, Italy.

Shreve, S. (2004). Stochastic Calculus for Finance: Continuous Time Models, Vol II.

Springer Science+Business Media,LLC, 233 Spring ST New York, NY 10013, USA.

Smith, G. (1985). Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford University Press, UK.

Thomas, J. (1998). Numerical Partial Differential Equations, Volume I. Finite Difference

Methods. Springer, 233 Spring ST New York, NY 10013, USA.

Thomas, J. (1999). Numerical Partial Differential Equations,Volume II. Conversation

Laws and Elliptic Equations. Springer, 233 Spring ST New York, NY 10013, USA.

Venegas, F. (2008). Riesgos Financieros y Economicos: Productos derivados y decisiones

economicas bajo incertidumbre. Cencage Learning Editores S.A. de C.V., Corporativo

Santa Fe, Av Santa Fe 505, P12 Col. Cruz Manca, Santa Fe, C.P.05349, Mexico, D.F.

Wilmott, P. (2006). Paul Wilmott on Quantitative Finance. John Wiley Sons Ltd, The

Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

Wilmott, P., Howinson, S., and Dewynne, J. (1995). The Mathematics of Financial Deriva-

tives. Press Syndicate of the University of Cambridge, The Pitt Building, Trumpington

Street, Cambridge CB2 1RP, UK.


	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Collateral Agreements: CSA in ISDA Master Agreement
	2.1 ISDA MA General Provisions
	2.1.1 Derivative Documentation
	2.1.2 Events of Default and Termination Events
	2.1.3 Determination of the Termination Payment Amounts


	3 Credit Valuation Adjustment (CVA) and Funding Valuation Adjustment (FVA)
	4 Model Framework: PDE Representations of Derivatives with Bilateral Counterparty Risk (CVA) and Funding Costs (FVA)
	4.1 Definitions and Assumptions
	4.2 The Model
	4.2.1 Main Results of ByK


	5 Numerical Solutions to PDEs for Derivatives with CVA and FVA
	5.1 Crank-Nicolson Finite-Difference Scheme for PDEs
	5.1.1 CN scheme for Black-Scholes PDE for European and American options
	5.1.2 CN scheme for PDE representation of derivative with CVA and FVA 
	5.1.3 Pseudo-code for CN method

	5.2 European Option CVA and FVA with MC Simulation and Numerical Integration
	5.3 CVA and FVA for American Options with MC Simulation, Least-Squares and Numerical Integration
	5.3.1 LSM Algorithm
	5.3.2 Empirical approach for CVA and FVA for American options with LSM and Numerical Integration


	6 Results
	6.1 CN Solution to Black-Scholes PDE: European Options vs American Options
	6.2 European Options: CN Solution to Black-Scholes PDE - vs - CN Solution Risky PDE
	6.3 American Options: CN Solution to Black-Scholes PDE - vs - CN Solution PDE with CVA and FVA 
	6.4 European Options, CVA and FVA with MC and Numerical Integration
	6.5 American Options, CVA and FVA with MC, Least-Squares and Numerical Integration

	7 Conclusions
	7.1 Future Extensions
	7.1.1 Calibration for CVA and FVA in Emerging Markets


	A Explicit code in R for Solutions in Chapter 5 
	Bibliography

