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ABSTRACT

Stroke is the second leading cause of death and third of disability, and 75% of individuals who
sustain a stroke each year experience limitations in mobility-related to walking. Strategies
involving robotic devices, such as exoskeletons and orthoses, have been considered to improve
stroke rehabilitation. Some of them have included the implementation of Electromyography
(EMG) signals either for muscle activation analysis or movement intention detection. The
latter has been involved in the activation process of robotic devices to handle the device’s
assistance by the subject’s intention to perform a specific movement. This would allow the
subject to get involved in his/her therapy. Hence, this project introduces an EMG interface
for the control of the ankle exoskeleton T-FLEX.

Some studies where EMG signals have been included in control and therapy processes
were reviewed, and algorithms with different threshold methods calculation were analyzed.
Considering the information from those studies, a threshold-based algorithm for movement
intention detection was developed. The algorithm consisted in two main stages, the threshold
calculation and the movement intention detection. The first stage consisted on the threshold
establishment through statistical features extraction (MEAN, standard deviation (STD), vari-
ance (VAR), MEAN + 3*STD and Root Mean Square value (RMS)) from the EMG signal.
The second consisted of comparing the signal with the reference value (threshold).

To test the algorithm, two sessions were planned. In the first session, ten healthy subjects
participated and their EMG signal was acquired from the Tibialis Anterior muscle through a
Myoware muscle sensor. Additionally, an Inertial Measurement Unit (IMU) sensor was placed
on each participant’s foot tip to acquire the angular velocity when the ankle’s dorsiflexion was
performed. The output signals from both sensors were recorded and the processing with the
algorithm was done offline. The second session was carried out with the ankle exoskeleton T-
FLEX and a Serious Game, implementing the algorithm in real-time with a statistical feature
selected from the first session as the threshold. The detection from the EMG algorithm was
evaluated. The algorithm that T-FLEX already had for the movement intention detection
with the IMU sensor also was evaluated.

The results from the first session showed that the MEAN feature worked for the threshold
establishment with the IMU sensor, and for the EMG sensor was the (VAR), presenting and
error of less than 10% in the amount of False Positive (FP) and False Negative (FN) values.
With this, the second session was carried out, showing that there was more precision handling
the game using the IMU sensor than the EMG sensor. With the EMG sensor the maximum
precision achieved was 89,7% and with the IMU sensor was 94.1%.
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Chapter 1

INTRODUCTION

This chapter presents the general motivation and the theoretical framework of the work pre-
sented in this thesis. This work’s motivation includes world statistics of stroke, advantages of
using robotics in therapy, some robotic devices that have been considered, signals for control
strategies and the need for feedback. The project is articulated with the T-FLEX exoskeleton
that frames the study for ankle rehabilitation. From this, the study’s objectives are presented
in addition to the contributions and the document organization.

1.1 Motivation

Stroke is the second leading cause of death and the third leading cause of disability. It hap-
pens due to a blockage or rupture of an artery to the brain, provoking the lack of oxygen
in some brain cells causing a disturbance in brain function [1]. This affects approximately
16.9 million people worldwide and can be classified into two types: hemorrhagic and ischemic
stroke. The latter covers around 80% of the cases [2]. The complications of a post-stroke
vary depending on the lesion location as well as its critical state. The consequences of stroke
usually are impairments of strength, sensory processing, coordination and balance, affecting
walking ability. Immediately post-stroke, only 37% of stroke survivors can walk. Among the
patients with initial paralysis post-stroke, only 10% recover independence and for those who
are not paralyzed, 75% can use their affected limb and walk [3].

Some studies showed that stroke is more likely to appear in males and increases exponen-
tially with age. In Latin America, this disease has an incidence of about 1/1000 persons [4].
In Colombia, this disease was the first cause of death responsible for 23.47% of deaths be-
tween 2005 and 2014 [5]. The risk factors that have been identified are arterial hypertension,
sedentary lifestyle, arterial fibrillation, congestive heart failure, diabetes, and ischemic heart
disease [4], [6].

It is possible to deduce that stroke can lead to low levels of physical fitness such as se-
vere disability, partial paralysis, and even death. This implies the existence of a significant
long-term participation restriction. Post-stroke patients usually suffer from gait dysfunction,
which involves the hyperextension of the knee during the support phase and the reduction of
ankle dorsiflexion during heel contact [7]. The ankle flexor and extensor muscles are crucial
to provide vertical support and forward progression of the body. Therefore, the lack of ankle
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functionality represents a significant limitation for walking and many other human activities
[8].

A comprehensive rehabilitation approach requires therapy from the earliest time of the
disease to achieve a meaningful recovery of lost functions and help people return to their lives
and fulfill roles and engage in meaningful life activities [9]. Understanding neuroplasticity,
many rehabilitation opportunities can be available at different post-stroke periods and even
other neurological diseases. Repetitive training is the base of neuroplasticity, which can be
defined as the brain’s ability to change, remodel, and reorganize to adapt to new situations.
While one activity, such as a sequence of movements, is practiced repeatedly, neuronal circuits
are being formed, leading to a better ability to perform the practiced task with less waste
of energy. That is why neuroplasticity is considered to lead to many occurrences, even the
recovery following brain injury [10]. Therefore, task-oriented, high-repetition movements can
improve muscular strength, motor control, and movement coordination in the patients [11].

Thus, repetitive exercise training is an essential factor in enhancing motor recovery after
stroke. For low-speed walking, the behavior of a healthy ankle can be satisfactorily achieved
through passive orthoses. However, for standard and fast walking speeds, the ankle provides
additional energy for propulsion at the plantar flexion phase. The lack of energy source in
passive orthoses can lead to gait deficiencies and higher metabolic energy consumption [8].
Moreover, it is crucial to consider that if gait rehabilitation is performed, for instance, with
insufficient or incorrect repetition of the push-off motion, patients may learn compensatory
instead of normal gait [12].

Several lower-limb exoskeletons are commercially available to assist walking, such as the
Lokomat (Movard, Spain) and the G-EO (Reha Technology, Swiss) systems (Figure 1.1) [13].
They induce upright walking movements at variable speeds and improve the patient’s walking
ability. However, it is challenging for some patients to maintain an upright position for train-
ing in the early period after injury, due to orthostatic hypotension and significant weakness
of their core and lower extremity muscles [14]. Thereby, active and semiactive ankle devices
have been developed to help impaired individuals walk [8].

The Ankle-foot orthosis is considered in stroke rehabilitation because it can stabilize the
ankle joint and compensate for insufficient ankle dorsiflexion and mediolateral instability of
the subtalar joint, increasing balance ability [17],[18]. Active orthoses might involve user mo-
tion intention recognition to activate the device, engaging the user in its control [19]. Their
objective is to safely facilitate the restoration of mobility, providing task-oriented and repet-
itive gait training [20]. The generation of control signals to activate these devices can be
addressed using different sources of information. The main categories are biomechanical sig-
nals, electromyography (EMG) signals, peripheral nervous system signals, and central nervous
system signals, predominating mechanical and EMG interfaces [8].

Formerly, the rehabilitation had been done passively. That is, the professional therapist
mobilizes the patient, or a device is programmed by a computer externally to the patient, so
that the movements would be done, but the patient will not be encouraged to do them by
him/herself [21]. Some strategies were established to approach human-device close-loop inter-
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Figure 1.1: a) Lokomat system. A stationary system which influences on the patient’s walking
trajectory, rather than producing movements volitionally [15]. b) G-EO system. Robotic
therapy aid for plegic or paretic limb movements that may help the functionality recovery
recovery simulate gait and other more complex gait standards of gait such as the steps on
stair [16], [13].

action, such as Electromyography (EMG) [22]. The latter has been involved in the control of
robotic devices since the assessment of the movements of the patients would be more precise
with the EMG signals due to the possibility of detecting whether the person is activating
a muscle to do a specific movement, besides the advantage of the time delay between the
activation and the actual movement, which is around 25ms - 130ms [23], [19]. The inclusion
of the EMG signals analysis in the activation of the device would allow knowing if the patient
intends to move, and the device would help him/her get the task done. Hence, the develop-
ment of an acquisition system of EMG signals would create an active rehabilitation system
that can be used to obtain better results in patient rehabilitation [23].

On the one hand, robot-aided therapy can provide early, intensive, task-specific, and in-
teractive treatment of the impaired limb and monitor the patient’s motor progress objectively
[24]. On the other hand, therapy with a games-based interface has been considered due to
the engagement and motivation that generates in the patients, offering motor re-learning
and motivating active movement training with sufficient repetitions to improve mobility, bal-
ance and locomotion [24]. Therefore, the inclusion of an interface in the robot-aided therapy
can deliver engaging high-intensity intervention and guidance to the patients via real-time
audiovisual feedback, which can contribute to the participant’s attention, competence and
self-improvement [24],[25],[26].

Considering the previous information, this study aims to present an EMG signal-based
interface for detecting movement intention by acquiring signals from a specific muscle relevant
to the human’s gait to activate the ankle exoskeleton T-FLEX. The current T-FLEX’s method
of movement intention detection would be compared with the EMG-based method in the
handling of the serious game ”Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX"
and the results will be discussed to see the performance of each method and the behavior that
can have in the therapy of post-stroke patients.
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1.2 Related project

T-FLEX (Figure 1.2) is a wearable and portable Active Ankle-Foot Orthosis (AAFO) for
rehabilitation and assistance of people with ankle dysfunctions, which is part of the AGoRA
platform (Grant 801-2017, Minciencias Colombia) [27]. It incorporates concepts of bioinspi-
ration in the actuation and control systems and can be manually adjustable for both limbs
[28]. This device has two servo motors, MX106 (Dynamixel, Korea), located on the ante-
rior and posterior parts of the shank. The orthosis integrates an inertial sensor BNO055
(Bosch,Germany) on the foot tip and has two modes of operation, the gait mode and the
therapy mode [29]. The gait mode consists of a statistical algorithm to estimate the user gait
phase and assist the dorsi-plantarflexion on the ankle according to the gait phase detected in
real-time [28]. The therapy mode consists of repetitive flexion and extension movements on
the ankle, enabling the user to train the flexo-extension motions [28], [29].

Figure 1.2: a) Ankle exoskeleton T-FLEX in the stationary therapy setup [29]. b) Ankle
exoskeleton T-FLEX in the gait therapy setup [29]

In a previous study with T-FLEX in the therapy mode, in which T-FLEX is calibrated
taking into account participant’s maximum dorsi-plantarflexion movements and execute the
values acquired to assist the dorsi-plantarflexion [29], a decrease in spasticity was presented
as well as increased muscle activity [29], [30]. However, as early as the muscle overcame the
adaptation period, the same training did not produce enough effort to generate high electri-
cal activity [29]. Hence, a variable rehabilitation program with T-FLEX orthosis, where the
requirement and the effort increase over time, could provide better results. Likewise, some
studies proposed that Electromyography as a control signal would perform better results in
spasticity [29]. Considering the information mentioned above, including the electrical activ-
ity of the muscles could lead to better assistance in training and improve the actuation of
T-FLEX in the rehabilitation of the patients.
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1.3 Objectives

1.3.1 General objective

Development of an electromyography (EMG)-based movement detection system for the T-
FLEX control and Serious Game.

1.3.2 Specific objectives

1. Integration of an EMG sensor for the ankle exoskeleton T-FLEX’s command in station-
ary therapy based on a Serious Game.

2. Evaluate non-pathologic user’s detection of movement intention with inertial measure-
ment unit (IMU) and EMG sensors in the ankle’s dorsiflexion therapy independently.

3. Evaluate in non-pathologic users the adaption and performance of each detection method
in one therapy session with the serious game.

1.4 Contributions

The development of this undergraduate project made the following contributions regarding
the integration of an EMG-based interface in the robotic rehabilitation field:

• The main criteria and considerations for EMG signal processing and threshold estab-
lishment.

• A movement intention detection algorithm for the activation of T-FLEX exoskeleton
through an EMG sensor, adding the motivational stage implementing a Serious Game
to increase the concentration and motor recovery.

• Experimental protocol to validate the performance of the sensors with the device and
the participant’s experience, adaptability, and satisfaction level with the interface.

1.5 Document organization

This document contains seven chapters divided into Introduction, Literature Review, Method-
ology, Results, Discussion, Conclusions, and Recommendations and Future Works.

The first chapter presents the motivation of this study and the related project. The second
chapter presents the Literature Review. Initially, it is presented the theoretical framework
by which this study is focused on. This chapter considers concepts such as ankle anatomy
description, motor relearning, conventional ankle rehabilitation, detection of movement inten-
tion, serious games in rehabilitation, and EMG. Finally, it presents a literature review studies
related to ankle rehabilitation using robotic devices and serious games controlled by EMG to
motivate physical therapy.

The third chapter presents the methodology used in this project. First, the EMG signal’s
acquisition and the statistical features selected to the threshold establishment according to
the methods reviewed in the literature. Then is carried out the setup diagram, describing the
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process and tools used. After this, the hardware and software considered for this project are
shown, including the integration method with the T-FLEX exoskeleton and the Serious Game.

The fourth chapter shows the results of the data obtained after following the methodology.
There are the results from both sessions and the statistical analysis. Following, chapter fifth
presents the discussion of the results obtained.

The sixth chapter includes the conclusions and the fulfillment of the objectives initially
set. Moreover, the last chapter of this document has the recommendations and future works.
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Chapter 2

LITERATURE REVIEW

This chapter presents the literature review considered for the development of this work, fol-
lowing these next topics: ankle anatomy, motor relearning and neuroplasticity, inertial mea-
surement unit (IMU) sensors in the movement intention detection, Electromyography (EMG)
sensors in the movement intention detection, rehabilitation with robotic devices and serious
games, and some threshold-based algorithms considered for EMG signals in some studies.

2.1 Anatomic description of the ankle

The ankle joint complex comprises the lower leg and the foot, which allows the lower limb
to interact with the ground. All of its movements are related to the maintenance of gait
and other activities of daily living [31], [32]. Gait refers to the movement and balance of the
human body when walking upright, which is the primary movement mode of the lower limbs
and is carried out by the joint action of muscles, joints, and bones [33]. The gait in a walking
cycle can be divided into support/stance and swing phases [33]. The stance phase represents
60% of the gait cycle and can be subdivided into double-limb stance and single-limb stance
subphases. In double-limb stance, both feet make contact with the ground, but in single-limb
stance, only one foot contacts the ground [34].

The angular ankle positions, ankle moment of force peak (AMP), and ankle power peak
(APP) have been considered important kinematic and kinetic parameters for measuring foot
function during the gait stance phase [35]. The majority of motion within the foot and ankle
is produced by the twelve extrinsic muscles, which originate within the leg and insert within
the foot (Figure 2.1). These muscles are contained within four groups. The anterior group,
the lateral group, the posterior group, and the deep posterior group [31].

The anterior group consists of four muscles: the Tibialis Anterior, the Extensor Digito-
rum Longus, the Extensor Hallucis Longus, and the Peroneus Tertius. The Tibialis Anterior
and the Extensor Hallucis Longus produce dorsiflexion and inversion of the foot. The second
group comprises two muscles: the Peroneus Longus and the Peroneus Brevis, which produce
plantar flexion and eversion of the foot. The third group consists of three muscles: the Gas-
trocnemius, the Soleus, and the Plantaris, which contribute to the plantarflexion of the foot.
And the last group is composed of three muscles: the Tibialis Posterior, the flexor Digitorum
Longus, and the Flexor Hallucis Longus, which produces plantarflexion and inversion of the
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foot [31].

Figure 2.1: Muscles involved in ankle movements [36]. The muscles that appear in purple
contribute to the dorsiflexion movement. The muscles that appear in green contribute to the
plantarflexion movement.

Some studies reported that as the ankle strength reduces, the elderly experience loss of
balance, and increasing Tibialis Anterior muscle strength can lead to the recovery from in-
juries of the lower extremities and reduce the risk of falling [37]. To walk, sufficient strength
needs to be regained in the muscles that extend the lower limb so that a net extensor moment
at the hip, knee, and ankle joints supports the body in stance [38].

Muscular strength has also been strongly related to walking speed, mainly the ankle dor-
siflexors, which can provide more stability [38]. Since the features of stroke gait are identified
by stiff-legged gait (reduced range of knee motion) and drop foot (lack of ankle dorsiflexion
during the swing) leading to the raised hip during the swing, in rehabilitation programs it
is advisable to treat the flexor muscles with peroneal nerve stimulators, functional electrical
stimulation (FES) or solid ankle-foot orthosis (AFO), to achieve foot clearance during the
swing and controlled dorsiflexion at initial contact, as well as extensors during loading re-
sponse [39], [40], [41].

Thus, the ankle is the site of significant biomechanical contributions to normal gait and the
sensorimotor control of balance [42]. Therefore, it is targeted for any alteration, for instance,
a neurological disease that can characterize it as paretic ankle [42].
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2.2 Motor relearning for movement recovery

Motor relearning is defined as the recovery of previously learned motor skills lost following
localized damage in the central nervous system [43]. Learning to improve muscle behavior
occurs in an ever-changing environment. It Involves the interplay of intrinsic and extrinsic
factors associated with performing a movement and a functional task, in the same way, using
the same body parts as that used pre-injury [44]. Active participation and self-reliance help in
motor learning of movement patterns [45]. To facilitate motor recovery following brain injury,
therapeutic training has been taken into account, showing results especially during the acute
and sub-acute stages of heightened neuroplasticity [24].

Evidence of reorganization has emerged from studies on focal brain damage. The system-
level reorganization has been shown to reflect molecular, synaptic, and cellular events and
constitutes post-injury brain plasticity [46]. Studies on brain plasticity have shown that the
ability to adapt to environmental changes or learn motor skills preserves by repetitively ex-
ecuting actual movements [46]. Hence, neuroplasticity can be defined as the brain’s ability
to change, remodel and reorganize for a better ability to adapt to new situations. Thus,
task-oriented and high-repetition movements can improve muscular strength, motor control,
and movement coordination in the patients [10], [11]. Neuroplasticity also makes it possible
to alleviate muscle atrophy and promote nerve recovery through exercise therapy in stroke
rehabilitation [47].

2.3 Conventional ankle rehabilitation

Limited ankle range of motion (ROM) is a typical impairment in patients with stroke, whose
ankle dorsiflexion passive ROM (DF-PROM) is, on average, only half respect healthy subjects
[48]. Conventional gait rehabilitation often involved intensive, repetitive, and task-specific
gait practices. Various interventions, including ankle stretching, ankle joint mobilization,
and ankle mobilization with movement (MWM), have been used to improve DF-PROM, gait
function, and balance ability in individual patients with stroke [49], [48]. The rehabilitation
is intended to increase motion and strength, and aiming to evoke brain plasticity to regain
the lost functions of the brain through physical therapy proves to be the effective primary
treatment for stroke patients [50].

The therapist manually holds the affected ankle to carry out exercises, such as inter-
nal/external rotation, dorsiflexion/plantarflexion, and inversion/eversion motion during ankle
rehabilitation [51]. However, conventional manually assisted gait training is labor-intensive
and physically demanding for therapists. The availability, consistency, duration, and fre-
quency of training sessions are often limited, leaving many stroke patients with permanent
disabilities untreated. To overcome the significant limitations of traditional manual therapy
rehabilitation, robots have been introduced into the earlier recovery phases after stroke [50],
as well as devices that can assess accurately the patient progress in his/her rehabilitation and
not be limited to the experience of the therapist [17].
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2.4 Ankle rehabilitation with robotic devices

Some mobility problems following a stroke can be improved by an externally applied ankle–foot
orthosis (AFO) to modify the structural and functional characteristics of the neuromuscular
and skeletal systems through principles of motor learning, including high volumes of repeti-
tion, which can provide indirect knee/hip control during the stance phase of gait by controlling
the alignment and motion of the ankle–foot [52], [47].

Some studies suggest that early, intensive, multisensory and task-related training could
help facilitate neuroplasticity and improve motor control ability. Ankle rehabilitation devices
are broadly divided into two major categories: rehabilitation platforms for various ankle re-
habilitation exercises without walking (Figure 2.2) and wearable rehabilitation robot (also
known as an AFO), which can be prefabricated or custom-made and further subdivided into
passive (PAFO) for correcting deformities, and active (AAFO) for a wide range of rehabilita-
tion exercises including walking [47].

Figure 2.2: Rehabilitation platform. A 3-DOF robotic platform was proposed to assist the
ankle in achieving inversion/eversion, dorsiflexion/plantarflexion, and internal/external rota-
tion. [51].

Unlike rehabilitation platforms for exercising an ankle in a fixed place, AFO-based ex-
ercises help improve gait functions [47]. When the patient can hardly move, passive range-
of-motion (ROM) exercises can be accompanied by position control that drives the injured
foot/ankle along a trajectory with motion parameters specified by a physiotherapist. When
the patient is capable of initiating the motion but unable to deliver sufficient torques to com-
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plete the exercise trajectory, additional torque needed is monitored by a force/torque (F/T)
sensor that detects and provides information to a controller to supply mechanical assistance
to complete a patient’s intended motion, which reduces a total reliance on robotic assistance
to complete prescribed movements and including some strategies, such as feedback via a video
game-based format and goal setting (Figure 2.3), increases contributions in walking and bal-
ance control [52],[47].

Figure 2.3: a) video game-based feedback. The participant is seated and plays the videogame
by moving the ankle in dorsiflexion (DF) and plantarfelxion (PF) ranges to control a cursor
that moves across the screen through gates at different vertical levels. b) Ankle–foot orthosis
(AFO) was used [52].

The active ankle-foot orthosis (AAFO) T-FLEX’s design (See Figure 1.2) mainly intends
to provide stability to the user, correct the pathological ankle posture, assist the dorsi-
plantarflexion movements, and allow the ankle motions in other planes. The stability and
posture are kept within the minimum requirements of both robotic devices and passive orthotic
structures prescribed to the ankle treatment. The principal interest lies in dorsi-plantarflexion
assistance to improve the gait pattern. This way, other joint compensatory movements (in the
hip and knee joints) can be reduced. Moreover, permanent damage’s risk and metabolic costs
to the locomotor system would be avoided through changes in the user’s kinematics. Addi-
tionally, considering the robotic advantages, interactive sessions can be carried out, recording
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and displaying session data, and interconnecting with other robotic systems [26].

2.5 Detection of movement intention

Human movement intention, that is, the intention that a person must execute a specific move-
ment with any part of his/her body, is highly significant for an effective assistive system. It
is in the case of the ankle for successful gait rehabilitation [53]. It is critical to detect the
movement intention as early as possible to provide the system with enough time to adapt
to the requirement of the individual [53]. The movement intention has been employed as an
indicator to quantitatively measure the willingness and movement of patients participating
in training. It demonstrates a statistical difference between rest and movement and between
different types of movement [54]. Detecting movement intention could provide effective reha-
bilitation of motor-impaired persons, also providing them with necessary motor capabilities
[53].

Movement intention can represent an interaction between the user and the device through
a control interface used to operate active movement-assistive devices [55]. To detect the move-
ment intention, some studies have used a wide variety of sensors; for instance, in the case of
grasp intention detection from a hand, force sensors have been used [56]. Some examples of
signals that are implicit signals related to the motion intention are the neural signals from
the central nervous system, neural activation of the muscles, muscle contraction forces, and
small movements and forces of the human. Motion intention can also be derived from explicit
commands of the user, for example, by pressing command switches through speech, and head,
tongue, or eye movements [55].

2.5.1 Inertial sensors in movement detection

An interface used is based on the human body movement, which occurs due to the interaction
between the forces generated by the muscles and the configuration of the skeletal system.
Measurements of relative joint rotations and motion of body segments concerning a fixed
reference have been used to detect motion intention [55]. several sensors have been used to
detect gait initiation like gyroscopes and accelerometers [57]. Thus, a low-cost nine-axis IMU
sensor (3-axis accelerometers, 3-axis gyroscopes, and 3-axis magnetometer sensors [58]) has
been used because it can determine, for instance, a subject’s toe movement collecting acceler-
ation, angular velocity, and geomagnetic output values, so that the gait would be monitored
[59]. Such wearable sensors have already been used in general gait analysis and activity recog-
nition. They can detect falls or events during cyclic gait [60].

The inertial sensors express their data (angular speed, acceleration, and magnetic field
[58]) in the sensor coordinate system ( ~Ss), and a rotational matrix (~R) is used to get the data
in the body coordinate system ( ~Sb), where ~Sb = ~R* ~Ss, which would represent the axes of
the limb that is being evaluated. The use of inertial sensors for motion detection is relatively
easy and requires low computational levels and low sampling frequencies (around 100 Hz[61])
[62]. The data has to be filtered and then analyzed. The goal is to use such technology to
control devices for lower limb motion assistance or replacements such as robotized orthoses
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and prostheses [60], [57].

However, inertial sensors have been used to capture overall movements and might not
differentiate tiny motion that can be related to a movement different from the one being eval-
uated as some other strategies like the implementation of EMG sensors can. The latter has
been used to identify the difference in the muscular activity of the intended movements [63].

2.5.2 Electromyography sensors in movement detection

Electromyography (EMG)-based control interfaces are widely used because of their easy access
and generation and their direct correlation to the movement intention [55]. This is because
EMG signals represent a straightforward way to decode the human motor intent. With control
strategies, it is possible to encode them into high-level input signals for controlling rehabilita-
tion devices, such as wearable powered ankle-foot orthosis, and assist in flexion and extension
[64], [65].

EMG consists of measuring and recording the electrical potential generated by the activa-
tion of muscle fibers when performing voluntary or involuntary movements [66]. With EMG
sensors is possible to detect the movement onset before starting the actual movement [67],[62].
Although these sensors require a higher sampling frequency (around 1000 Hz - 2000 Hz [68])
than inertial sensors, they can be beneficial for gait initiation detection with a consistent and
earlier detection [62]. An EMG-based interface requires significant signal processing before it
can be used as a control signal due to its broad bandwidth and low-voltage amplitude [55];
therefore, it is essential to apply the appropriate filters to analyze the data.

The movement intention can be detected through two steps: features extraction and clas-
sification. The features of the signal can be found by analyzing the time domain or frequency
domain. In the time domain, the mean absolute value (MAV), wavelength (WL), the am-
plitude, variance (VAR), standard deviation (STD), root mean square value (RMS), among
others, are some features that have been taken into account [69]. The procedure of feature
extraction and classification brings some disadvantages, such as low speed in the processing
stage. Hence, dividing the signal in windows has been presented as a solution. The action
classification is performed by judging the steady-state data in each window rather than pro-
cessing the whole data. Thus, action recognition is achieved by analyzing the steady-state
data of small windows (from 30 [70] to 100 samples [68]) in EMG signals, reducing the response
time and providing the possibility that the biosignals could be well combined for control in
real-time [71].

EMG signals have been used in the assessment during gait in robotic exoskeletons to iden-
tify any alteration in any gait cycle event, such as heel-strike and toe-off. These signals are
from the unaffected limb and the affected limb to verify the device’s assistance and ensure an
appropriate rehabilitation [72], [73].

As was previously mentioned, detecting and assisting from patient’s movement intention
seeing the voluntary activity, the execution of a task, and feedback of a movement to retrain
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the ability to move quickly in response to a real-world perturbation is ideal for leading neu-
roplasticity. This method implies repetitive exercises. With the EMG signals, there is the
possibility to monitor the movement intention of the patient and ensure neuroplasticity in the
desired movement execution [74], [75].

It is possible to see that the EMG signal has had an essential role in rehabilitation. It
is helpful in the assessment of movements and their detection and classification [76]. Hence,
it is critical to know how the detection is done. There is a wide variety of algorithms that
have been used, from low to high complexity. However, complex algorithms require more
computational cost, so low complexity algorithms such as threshold-based algorithms have
mainly been implemented [77].

Overall, threshold algorithms are based on statistical methods used to analyze the data
and carry out the features extraction to identify irregularities and changes [78]. There are
several ways to establish a threshold, for instance, using the sum of statistical features. Its
comparison with the current data would represent a fact in the results of the study. The
threshold can be established as the sum of the mean of the samples from the EMG signal
presented in an established window and three times their STD so that the intention would be
identified when the actual signal exceeds the threshold [79].

The combination of EMG with rehabilitation devices aims to assist the movement of the
subject, for instance, the one from the leg, in a coordinate way through an intended move-
ment detector based on pattern recognition, such as Artificial Neural Networks (ANN), for
processing EMG signals that allow sending control/activation signals to the device [70].

An ANN consists of three fundamental layers, input layer, hidden layer and output layer.
The artificial neurons are connected, and this connection represents a weight. The input
transfers from the input layer to the output layer through the hidden layer, and the error
transfers from the output layer to the input layer through the hidden layer. When the net-
work is active, the node (which receives and sends data to several nodes in the layers that
are beneath it and above it) receives a different data item (different number) over each of its
connections and multiplies it by a weight yielding a single number [80]. During the transfer,
the value of the neurons in each layer only directly affects that in the next layer [71]. After
being transmitted to the output layer, the result is compared with the expectation. The
weights and thresholds of each layer are constantly modified because the training does not
stop until the error is reduced below the preset. The number of nodes in the output layer is
related to the actions that are being evaluated. The classifier learns eigenvalues of different
actions, in this case from the EMG signal, and carries out the classification.

For training, the movement intention annotations are given as ANN Target. The ANN
will perform a sample-to-sample training according to the inputs and the target [70]. After
the training is completed, the samples are tested to predict whether these samples can meet
the expectation [71]. To get the detection, the EMG signals corresponding to the desired
muscles are considered and randomly divided, for instance, into the following sets: 70% for
training, 15% for validation, and 15% for evaluation. The ratio of events detected for each
muscle demonstrated that it is possible to detect the movement intention, with an algorithm
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with a high level of complexity [70].

Other studies have established different statistical features like RMS value, MAV, STD,
WL, simple square integral (SSI), and integrated EMG as the threshold. These features were
analyzed independently in the algorithm to use seven different algorithms with the same logic.
The operations from the features can be applied in the first 500 samples without movement,
and then the threshold establishment is carried out. The signal processing can be offline, and
then the feature can be proved with real-time data [81].

Adaptative thresholds have been used either, in which some statistical features, such
as mean, window length, STD, and a percentage of sensibility, are taken into account to
establish the threshold. The latter can be expressed in the equation (2.1), where T(t) is the
threshold, x̄ is the mean value, µ̄ is the STD, N is the window length for the mean and STD,
and p the sensitivity factor of the threshold. The results are analyzed taking into account the
preprocessing stage (Figure 2.4), which consists of applying the VAR, STD, and Teager Kaiser
Energy operator (TKEO) to the signal. The formula for the TKEO is given in equation (2.2),
where x(t) is the current EMG sample [82].

T (t) = x̄N + pµ(t)N (2.1)

ψ = x(t)2 − (x(t− 1)x(t+ 1)) (2.2)

Figure 2.4: This figure shows the different EMG signal pre-processing methods applied to the
signal before the threshold-based movement detection [82].

Some studies have considered using a double-threshold technique, where statistical fea-
tures, such as mean and STD, are considered to establish the threshold. The first threshold
corresponds to the mean of the first twelve peaks of the signal’s envelope and, the second cor-
responds to the STD of those peaks; the onset would be determined once the signal exceeds
both thresholds. To ensure the detection, the RMS value of the following samples after the
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detection (the amount established by the user) is analyzed and its quasi-linear relation with
the magnitude [83].

Complexity in the threshold methods has been seen either, as in the constant false alarm
rate (CFAR) threshold. It is necessary to establish several training samples R, several guard
samples G, and a sensitivity parameter So. The adaptive threshold for an event is calculated
by computing the average for the reference samples and multiplying it with a sensitivity pa-
rameter. The samples adjacent to the test sample are excluded as guard samples and the ones
next to these are the reference samples (See Figure 2.5). In other words, based on the number
of R and G, the algorithm creates a low-pass filtered reference signal (moving average of the
rectified signal) for the onset detection, which, when multiplied with So, the adaptive CFAR
threshold is determined [84].

Figure 2.5: Graphic diagram of the base of CFAR threshold.

2.6 Serious games

In long-term rehabilitation processes, it is expected that the users lose motivation because of
the repetitive exercises that need to be performed in each session. This can lead to a loss
of effectiveness in the therapy [25]. Some studies have shown that serious games help in the
patient’s motivation in the rehabilitation process due to the cognitive and motor activities
required for the games, which motivate the user’s attention [25].

2.6.1 Rehabilitation with Serious Games

Recent studies have attempted to associate the rehabilitation equipment used to improve or
treat physical abilities with serious games, applying game elements such as motivation and
challenge. These programs are considered to increase the patient’s motivation to rehabilitate
and effectively recover the physical abilities by reducing the rejection or disinterest of treat-
ment that patients may have (Figure 2.6) [85]. Patients who have impaired balance ability
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Figure 2.6: Serious game system, representing how the data is being analyzed and the feedback
acquired [25].

need diverse training, such as visual feedback, and efficient interventions utilize visual feed-
back in conjunction with exercise for the ankle joint, likely because visual feedback enables
physical self-control through continuous visual information that activated the brain’s motor
areas, resulting in the improvement of balance ability [86].

2.6.2 Serious games and Electromyography

Regaining muscle strength and coordination is a cognitively exhausting and repetitive pro-
cess, during which the proper execution of movements is reestablished using surface EMG
feedback. Transferring traditional EMG rehabilitation protocols to a virtual setting, and in-
corporating video games into the training process can increase the patient’s engagement and
perseverance. These rehabilitation games are prevalent in older adults, patients affected by
stroke and Parkinson’s disease [87].

Video games provide greater accessibility and allow patients to set up the games at home
quickly. Games can be chosen to motivate the players and maintain engagement over a more
extended period. An example of a commercially available video game for upper limb reha-
bilitation that has been interfaced using EMG signals is Guitar Hero (See figure 2.7) [87],
which is based on rhythm and speed and requires a fast reaction from the player and direct
transmission of the processed EMG signals to the gaming system. Similarly, a rehabilitation
concept for stroke patients using a modified version of the WiiMote control is used for rehab
purposes of the upper limb, in which EMG signals are matched to the keys of the WiiMote
[87] for games similar to the classic Pong arcade, in which the user’s muscle activity is mapped
into a paddle motion that hits a ball into their opponent’s court [87].

Some studies have implemented racing games, such as Super Tux Kart, dexterity games,
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Figure 2.7: Experimental setup with Guitar hero and EMG signal acquisition from the top
of the wrist’s prominent flexor and extensor muscles on the participant’s non-dominant side
[87].

such as Pospos [87], and rhythm games like Step Mania 5 [87] (Figure 2.8). Required EMG
activations were quick contractions, sustained contractions over a specific period, and co-
contractions. Participants not only conducted repetitive flexor and extensor muscle activation,
but also sustained contractions over varying periods, performed precisely timed contractions,
and executed simultaneous contractions of flexor and extensor wrist muscles [87]. These ac-
tions can be seen in the control of games like Myo-Pong (Figure 2.9) [88], a table tennis game
that demonstrates the gaming capabilities of a myoelectric real-time system. These games are
a valuable graphical tool for motor rehabilitation and are controlled similarly to how patients
handle an actual robotic device [87], [88].
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Figure 2.8: Some Games that have been handled with EMG signals [87].

Figure 2.9: Table-tennis game (Myo-Pong) resembles a popular game of the seventies applied
to myoelectric control. It is integrated into the custom UVa Neuromuscular Training System
(UVa-NTS) real-time platform, developed at the University of Valladolid [88].
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Every serious game includes elements of visual feedback recommended to boost the re-
habilitation. The therapeutic objective is to improve the precision and smoothness in the
patient’s upper limb movement and recover fine motor control. The current generation of
myogames typically has similarities with the activities in daily life. The configuration of the
game attributes is essential to fit the games according to the needs of each patient concerning
the functional capabilities [89], [90].

For lower limb rehabilitation, the combination of robotic devices and video games has been
implemented to improve rehabilitative gait therapy in adults and children. These games have
been developed focusing on therapeutic goals and combine all necessary elements for success-
ful motor learning, namely repetition, augmented feedback, and motivation. In the case of
the children undergoing rehabilitation often act motivation-driven rather than rationally, so
it is necessary to have an appropriate graphical design and exciting theme [91].

A serious game that has been used for gait rehabilitation is Gabarello, which consists of
collecting flowers on the surface of a planet with a little astronaut. Participants control the
avatar by modulating the activity of their legs during the swing phase. The level design of
the game thereby encourages deliberate increases and decreases in the exertion of the patient.
Thus, the game addresses a crucial therapeutic goal [91]. This game has been used with
Lokomat. The results indicate that the Gabarello can purposefully enhance and reduce the
activation pattern of the patients, which is essential for a modulation of the gait pattern in
response to environmental changes [91].

Other techniques based on serious games for lower limb rehabilitation are the visual-evoked
routines that relate the position of a cursor on the screen with the angular position of the
ankle. During the game, a sequence of targets appears alternately on two vertical levels of the
screen. The subjects are asked to reach the targets and hold in them with the lowest error
possible wearing an anklebot. To impose an additional challenge to the patient, a constant
torque is added in the opposite direction of the targets. However, EMG signals do not get
involved in the game control, just in the analyzing stage for muscles activity involved in
the ankle’s movement, such as tibialis anterior, peroneus longus, soleus, medial and lateral
gastrocnemius, showing which one stands out the most in some specific movements [92].

2.7 Related works

The literature review related to algorithms included 27 records from the electronic databases
searchers (IEEE Xplore, Scopus, PubMed, ResearchGate, and CRAI from Universidad del
Rosario) using combinations of the following terms: Movement intention detection, Elec-
tromyography, Algorithm, signal, and threshold (Figure 2.10).
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Figure 2.10: Literature review diagram for the selection of the articles considered.

In the eligibility criteria, articles in English and Spanish related to EMG in robotic re-
habilitation and recovery for stroke survivors were included. On the other hand, within the
exclusion terms, the quality of the information provided and the signals involved in the study,
insufficient information about signal processing or the outcomes of the study were considered.
Following this, five articles based on different methods for threshold calculation were selected.
The results of the algorithm’s detection and some other specifications from the five articles
selected can be seen in Table 2.1.

Work Muscle Sample Features Threshold Results
frequency extracted type

J. Mickelborough Tibialis anterior 500 Hz Mean, STD Sum of Efficiency
et al. 2004 [79] and medial features of onset

gastrocnemius detection
91% - 95%

C. Lersviriyanantakul Flexor carpi 1000 Hz STD, RMS, Feature Maximum
et al. 2016 [81] radialis and MAV, WL, error in the

extensor carpi SSI, IEMG detection of
radialislongus 15% using

SSI as the
threshold
(offline)

M. Tabie Brachioradialis, 5000 Hz Mean, STD, Adaptative VAR as the
et al. 2013 [82] biceps brachii, WL, VAR threshold preprocessing

triceps brachii, operator and
and deltoideus accuracy of
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78% and 85%
for detection of
slow and fast
movements
respectively

A. Avila Deltoid 1000 Hz Mean, STD, Double 80% - 100%
et al. 2014 [83] RMS threshold success

in detection
A. Kontunen orbicularis oculi 1024 Hz, Mean CFAR Detection

et al. 2018 [84] 2048 Hz, threshold success
10000 Hz 93% - 97%

Table 2.1: Results from previous works that have included EMG signal processing and move-
ment intention detection algorithms.

One of the studies, presented in Table 2.1, aimed to describe the phasic activity of the
primary muscles required to complete the task of gait initiation in normal older people to
provide a baseline against which to compare the abnormal patterns of gait initiation muscle
activity in elderly patients with gait initiation and balance disorders [79]. The muscle pat-
terns were acquired through EMG signals, and it was shown that the tibialis anterior muscle
was consistently active at or within 10% of gait initiation onset. However, a failure of medial
gastrocnemius to be consistently inhibited at gait initiation onset is more common in older
people. Moreover, it was possible to see that the tendency for muscle activity to be more
variable in the preparatory phase than the stepping phase suggests that the initial phase may
be a particular source of difficulty in patients with high-level gait disorders [79].

As can be seen, the study presented was focused on describing gait initiation through the
analysis of the EMG signal from some muscles involved in the gait performance. Nevertheless,
some other studies are focused mainly on the signal processing and detection of movement
intention, such as EMG onset Detection Comparison of different methods for a movement pre-
diction task based on EMG. This study aims to compare other processing methods to choose
a method that can perform the detection and the earliness, in this case, of EMG activity (See
Figure 2.11). The results (Table 2.1) showed that the selected method was able to detect
either fast or slow movements and some facts, such as computational cost, were taken into
account [82].
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Figure 2.11: Physical movement onset detection. The dashed vertical line indicates the po-
sition of the marker from the flat board and the solid one the detected physical movement
onset [82].

Other work-related with the EMG signal processing can be seen as the second study
in Table 2.1), where six statistic equations were taken into account for the smoothing and
threshold calculation to detect the onset times of the surface Electromyography (sEMG) sig-
nals recorded and perform them in real-time through the NY myRIO platform. The results
showed that using the Simple Square Integral SSI-SSI as the smoothing-threshold equation
can appropriately detect the onset time in real-time (See Figure 2.12) [81].

Figure 2.12: The onset time detection result. Single movement in the real-time detection
simulation. The numbers #1, #2, #3, and #4 represent the raw sEMG signal, the threshold
value, the smoothed graph, and the sEMG detection starting at the onset time detection [81].

In the study named EMG Onset Detection and upper limb movements identification algo-
rithm was possible to see that the EMG signals have been used not only for the movement
detection but also to differentiate (identify) among five different movements of the upper limb;
abduction (AB), adduction (AD), flexion of the upper limb (FUL), extension of the upper
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limb (EUL) and AB followed by the arm to the front (ABF). It was focused on a single muscle
performing different movements, and initial implementation of an algorithm for the movement
intention detection was carried out. The features taken into account for the movement inten-
tion detection were the mean, and for the pattern recognition, the RMS was considered. The
detection and pattern recognition can be seen in Figure 2.13.

Figure 2.13: Onset detection and EMG signals of the movements performed by one person
[83]. a) Signal of Middle Part Deltoid (MD) CH1 for extension of the upper limb (EUL).
b) Signal of Anterior Part Deltoid (AD) CH2 for EUL. c) Signal of MD CH1 for abduction
followed by the arm to the front (ABF). d) Signal of AD CH2 for abduction followed by the
ABF.

In the previous study from Table 2.1, it can be seen that besides the onset detection of
a movement, its termination can also be detected (See Figure 2.14). The adaptive CFAR
threshold was established for the signal processing setting the parameters as R = Fs/4 and G
= Fs/10, where Fs is the sampling frequency. Second threshold parameters for the M-out-of-N
detectors (additional M-out-of-N sliding window applied to the binary signal to make the final
onset detection) were Mo = 4 and No = 5 for onset detection, and Mt = 32 and Nt = 40
for termination detection. EMG data was gathered from 15 healthy participants. The exper-
iment started with a one-minute-long resting task, after which the participants were asked to
perform three facial movements: smiling, lip-puckering and frowning. Each movement lasted
6 seconds, and ten repetitions were instructed to be performed in random order. This study
aimed to introduce an algorithm for onset and termination detection, which would be tested
in physical applications [84].
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Figure 2.14: An EMG signal measured from the corrugator supercilii muscle with the termi-
nation threshold value, and detected onset and terminations points [84].

EMG signals are used in some areas besides detecting a muscle’s activation, such as di-
agnostics, since evaluating the muscles activated in some task would allow knowing if there
is a neural injury or a pathological movement [93]. The EMG signal acquisition has been
involved in several rehabilitation processes. Among these, it is possible to find cases such as
self-myostimulation, which has been tested in the rehabilitation of the upper limb, exerting
electrical stimulation with current in the paretic limb by detecting movement intention from
a healthy upper limb EMG signal. This is a process that the patient controls since he/she
decides, with the healthy limb contraction, the stimulation in the other and its relaxation
to increase muscle strength, decrease spasticity, maintain muscle trophism and improve the
peripheral circulation [94].

Besides the rehabilitation with electrical stimulation, some other strategies have been im-
plemented, such as controlling robotic devices based on the human’s motion intent. However,
after stroke, in some cases, people may have an abnormal coactivation [95], affecting detecting
a specific movement. That is why analyzing movements, for instance, those made by the hand,
like opening and closing in a patient post-stroke through EMG, would let know how much
coactivation affects the detection of a specific movement. This process has been considered
in various scenarios, like having the arm resting or raising the shoulder in its 25% maximum
abduction capacity [95]. The EMG signal has been considered to classify and recognize dif-
ferent movements despite an inappropriate muscle co-activation. Thereby, the detection and
classification of activities exerted by a patient post-stroke can be feasible [76].

In the case of robotic devices, such as robotic arm composed of exoskeleton concept, data
acquisition and processing in the term of EMG and IMU sensor to the physiological concept
and online data monitoring data had been developed which allow operating with both the
virtual and real environment. The EMG and IMU sensors are placed in the healthy arm, and
the signal from the healthy arm would be used to move the exoskeleton, which is attached to
rehabilitating arm. The IMU is used to calculate the angle of the movement and the EMG sen-
sor to acquire muscular activity. In this way, the exoskeleton system can adapt to the user [22].

It can be seen that robotic devices are being controlled through EMG signals and can
improve the rehabilitation process. It is essential to establish a straightforward method for
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movement intention detection, so that the device that is being controlled can behave appro-
priately considering the patient’s needs.
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Chapter 3

METHODOLOGY

In this chapter, the construction procedure of the algorithm for movement intention detection
would be explained. Moreover, the comparison procedure of the Electromyography (EMG)
algorithm and the current movement intention detection algorithm, which T-FLEX operates,
will be carried out. The strategies for obtaining, processing, and analyzing the information
of the sensors are presented.

3.1 Sensors

Table 3.1: Technical information of the sensors implemented in this project.

EMG IMU

Reference Myoware Muscle Sensor Inertial Measurement Units
(AT-04-001) (BNO055)

Supply +2.7 V to +5.7 V +2.4 V to 3.6 V

Output EMG envelope, raw EMG Accelerometer, gyroscope
and magnetometer signal.

Output range

Accelerometer: ±2g/± 4g/± 8g/± 16g
0 V - Vs Gyroscope switchable from ±125◦/s

to ±2000◦/s
Magnetometer: ±1300µT (x-,y-axis)

and ±2700µ T (z-axis)

Filters
High-pass filter Low-pass filter

0.4 Hz Accelerometer: 1 kHz-<8 Hz
Gyroscope: 523 Hz-12 Hz

Other parameters
Common Mode Rejection Sensibility

Ratio (CMRR)-110 Accelerometer: 1 LSB/mg
Gyroscope: 16 LSB/◦/s

Applications

Videogames, robotics, Navigation, robotics, fitness and well-being,
Medical Devices, augmented reality, context awareness,

Wearable/Mobile Electronics, tablets and ultra-books
Prosthetics/Orthotics
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The sensors used in this project can be seen in Table 3.1. In the table is shown the reference,
the supply voltage requirements, the output that each sensor has, the output range in terms of
voltage for the EMG sensor, and the output range in terms of acceleration for the accelerom-
eter, angular velocity for the gyroscope, and magnetic field for the magnetometer; the filters
for each sensor, the applications, and some other parameters that have been considered. The
documents related to the information presented in Table 3.1 can be seen in references [96],
[97], and [98].

3.2 EMG-based algorithm

This section contains a description of the EMG signal acquisition procedure, the processing to
calculate the threshold, and finally, the explanation of how the movement intention detection
was done.

3.2.1 Signal acquisition

A MyoWare Muscle Sensor AT-04-001 (Pololu, United States) was placed with Ag/AgCl
electrodes in the tibialis anterior. The EMG signal was acquired at a sampling frequency of
1000 Hz and digitalized by Arduino Uno (10 bit resolution) (Figure 3.1); the sensor provided
the signal filtered and rectified so that the output was the envelope.

Figure 3.1: a) Myoware muscle sensor. b) Arduino Uno.

3.2.2 Data processing

Based on previous work (See reference [81]), the first 500 samples of the EMG signal (the
participant did not perform any movement) were considered to get the threshold. The latter
was established considering the features of variance (VAR), standard deviation (STD), Root
Mean Square RMS, MEAN plus three times STD, and the MEAN of the signal, considering
that in most of the previous works, these features remained selected in the feature’s extraction
stage. Each of these features were a different threshold. Hence, there were five methods in
consideration for the detection of movement intention.

Considering the window lengths that have been taken into account in a previous study (See
reference [66]), the signal was analyzed considering a window’s length of 30 samples. These
samples were operated and compared with the established threshold with the respective fea-
ture being evaluated. Whether the threshold was obtained with the VAR, then the signal
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samples were operated to get the equivalent feature and then compared with the reference
value.

The variance method is then expressed in equation (3.1).

T = 1
N

N∑
i=1

(xi − X̄)2 (3.1)

The formula for the standard deviation can be seen in equation (3.2).

T =

√√√√ 1
N

N∑
i=1

(xi − X̄)2 (3.2)

In the case of the mean, is expressed by equation (3.3).

T = 1
N

N∑
i=1

xi (3.3)

For the method based on the mean and three times the standard deviation, the formula
is expressed by equation (3.4).

T = 1
N

N∑
i=1

xi + 3 ∗

√√√√ 1
N

N∑
i=1

(xi − X̄)2 (3.4)

The expression for RMS can be seen in the equation (3.5)

T =

√√√√ 1
N

N∑
i=1

(xi)2 (3.5)

Where T is the threshold (the reference value), N is the number of samples, xi the value
that is being analyzed and X̄ the mean of the samples. The same expressions are used with
the smaller amount of samples established for the signal analysis.

Detection procedure
The detection was based on verifying when the VAR, STD, MEAN, MEAN + 3STD or RMS
of the window of 30 samples exceeds the threshold, which depends on the chosen feature in
the trial (VAR, STD, MEAN, MEAN + 3STD or RMS).

3.3 T-FLEX’s IMU-based algorithm review

When T-FLEX is in therapy mode, the inertial sensor placed in the foot tip and integrated
into T-FLEX can estimate the user movement intention on the paretic foot, replacing the
automatic movement in its control. A 4th-order Butterworth low-pass filter with a cutoff
of 6 Hz removed the noise from the measured angular velocity along the sagittal plane [99].
The data was acquired at a sampling frequency of 100 Hz and subsequently, the filtered data
was compared in real-time with the threshold value calculated in the calibration stage. The
latter involved the same statistical features considered for the EMG algorithm as operators
to establish the threshold. When the angular velocity exceeds the threshold, T-FLEX assists
the dorsi-plantarflexion.
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3.4 Serious Game - Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX

The virtual environment and functionalities were performed with Unity software in version
2.3.1 and Windows 10. This game engine was selected because of its 3D and 2D environments
and the intuitive game programming process. The sprites, sounds, and graphic resources were
taken from a free retro-type game called “Jumping Guy”. A pre-game calibration task was
included to evaluate the ankle’s range of motion. In this case, the person was asked to perform
five dorsiflexion movements with the ankle and consider each one’s maximum ability. This
information allowed the set of thresholds that the user must exceed to perform movements
with the character.

The evaluation of the user’s progress during the game was based on the number of jumps
and misses avoiding the enemies, the percentage of precision during the entire session, and
the type of response in front of each enemy. An ideal skip was counted as one in which the
avatar passes without approaching the enemy. From this, the anticipated or a delayed time
response were those in which the enemy was gently closer in his back or front, respectively.
“Early” was classified as a jump 0.15 s before the ideal jump, and “Late” was a jump 0.34 s
after the ideal [26], [100].

3.5 Integration with T-FLEX

The integration processes of the critical components between the exoskeleton and the plat-
form are developed. These components correspond to T-FLEX Ankle Exoskeleton, graphic
Interface, IMU, and EMG sensors. Based on this and the strategies for detecting motion
intention, the user would actively participate in the game. The main idea is to reflect the
ankle movements parallel with the avatar movement when the dorsiflexion movement exceeds
the threshold. For that purpose, the setup with T-FLEX can be seen in Figure 3.2.

Figure 3.2: Set-up of all the critical components that makes up the present work.

As seen in Figure 3.2, the participant must be seated in a chair with ninety-degree knee
flexion. The lower member where the device was located must be raised avoiding contact with
the ground. Moreover, the orthosis must be used in its therapy mode.
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3.6 Evaluation procedure

To evaluate the EMG algorithm and the IMU algorithm some sessions were arranged with
two types of tests. The first one was a sound-pulses-based test. The second one involved
implementing T-FLEX and the Serious Game Jumping Guy: Ankle Rehabilitation Therapy
with T-FLEX (Figure 3.3).

Figure 3.3: Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX.

3.6.1 Hardware

The Myoware muscle sensor AT-04-001 (Polulu, United States) was placed on the partici-
pant’s Tibialis Anterior muscle (from the dominant limb) with Ag/AgCl electrodes and its
signal was acquired at a sampling frequency of 1 kHz. The sensor was connected to the analog
serial port A3 from Arduino UNO, and the Arduino was connected to a Raspberry Pi 4 board
through its USB port.

The IMU sensor BNO055 (Bosch, Germany) was placed on the participant’s foot tip, its
signal being acquired at a sampling frequency of 100 Hz. The sensor was connected to the
Raspberry Pi 4 I2C port. Additionally, for the first session, some headphones were also con-
nected to the audio port from the Raspberry Pi 4. Thus, the latter ran the acquisition and
the sound commands production algorithms to begin the session. The sensors’ information
was recorded (See Figure 3.4).

For the second session, T-FLEX was placed on the user’s dominant limb (where all the
sensors were placed). Another computer was facing the participant, where the Serious Game
Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX was running.

The Raspberry Pi 4 board was used for the processing. Thus, it acquires the sensors
information, runs the movement intention detector algorithm, runs the control algorithms,
and sends the control commands to the T-FLEX’s actuators. The sensors’ information and
some levels of the session were recorded.
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Figure 3.4: Hardware diagram for the first session of this project. The orange arrows represent
the physical connection of the system and the black arrows represent the information.

3.6.2 Software

Since this project aims to use T-FLEX, the software implemented is based on the Robot
Operative System (ROS) architecture. The latter is a Linux-based meta-operative system used
in the robotics field. This system provides modularity to incorporate sensors and actuators
already supported, operability to communicate with multiple processes, robustness against
unexpected events, and quickly developed modules replicability [26].

3.6.2.1 First session

The signals acquisition and the sound commands production algorithms were deployed. The
signals acquired from the EMG and IMU sensors were recorded in a .bag file to later reproduce
them and implement the motion intent detection algorithm to carry out the offline process-
ing. The outcome of the movement intention detection algorithm was the time where each
contraction was done. The times were recorded in a .bag file that was processed in Matlab to
visualize the signals and the detection. Moreover, the information allowed to verify and see
graphically whether False Positive (FP) or False Negative (FN) values were performed.

3.6.2.2 Second session

Considering T-FLEX, the controllers, algorithms, sensor acquisitions, and the Serious Game
(from a different screen) were deployed and implemented. T-FLEX has a public repository
with the device’s functionalities and controllers available at https://github.com/GummiExo/
t_flex. This repository details the procedures to configure the actuators and the device’s com-
puter, install required libraries for proper operation and connect the device for using it. The
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libraries for actuators’ communication and control are based on the Dynamixel Workbench
package supported by Robotis (Seoul, Korea).

3.6.3 Experimental procedure

All the subjects agreed to participate in this project, followed the steps from the biosafety
protocol, and signed the informed consent presented in the protocol for this project (See
Annexes), which the ethics committee previously accepted. All of them were aware of the
risks either from the project or related to the current situation of the pandemic.

3.6.3.1 First session

First, the subject was asked to sit in a chair, leaving the knee flexed 90 degrees making sure
that the foot does not touch the floor (See Figure 3.5). The EMG sensor was placed in the tib-
ialis anterior and the IMU sensor in the tiptoe. After arranging the sensors, the test started.
Ten healthy subjects, from 20 to 30 years old, were asked to execute dorsiflexion when the
sound pulses were performed, increasing their frequency from every 3 to 2 and 1.5 seconds in
approximately ten minutes. The data was recorded and used to test each statistical feature
that was being evaluated. This session lasted about 20 minutes, considering the arrangement
stage and the test stage.

Figure 3.5: Participant in the established setup for the first session.

The data was processed offline, and a specific statistical feature, in which each algorithm
performed the best detection, was selected. Both sensors were active simultaneously.
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3.6.3.2 Second session

In this session, the statistical features selected in the first session were considered and the
movement intention detection algorithms through the EMG sensor and the IMU sensor were
tested independently using T-FLEX and the serious game as the visual feedback (See Figure
3.6). The subject followed the same instructions related to the body posture from the first
session. The EMG sensor was placed in the Tibialis Anterior muscle and the IMU sensor
in the tiptoe (in this case, despite the presence of both sensors, if the movement intention
detection algorithm for the EMG sensor was being tested, the IMU algorithm was not run-
ning. This was fulfilled in the same way for the IMU sensor.). The serious game ran and the
test began. This test lasted about 20 minutes with the EMG sensor and then the test was
repeated using the IMU sensor as the movement intention detector after 5 minutes of rest,
leading the duration of the session to be approximately one hour. The data was processed,
and a comparison of the EMG and IMU results was carried out.

Figure 3.6: Participant in the established setup for the second session with T-FLEX and the
serious game.

3.7 Data analysis and Validation

The main parameters evaluated were the detection time (DT) and the False Positive (FP)
and False Negative (FN) values. In the first session, the time in which the sound pulse was
generated was taken into account to see how close or how far the EMG and IMU algorithms
detected the movement intention. This evaluation was carried out with all the statistical fea-
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tures (MEAN, STD, VAR, MEAN + 3STD, and RMS). The statistical feature that allowed
each sensor to perform a low amount of FP and FN values was selected.

The statistical tests Shapiro-Wilk, Friedman and Wilcoxon were carried out to analyze
the data. The first test was done to verify whether the data had normal distribution. With
the results was possible to see that the data had not normal distribution, so the Friedman
was implemented to see the significant differences in the parameters (FP, FN, and DT) that
could exist among all the statistical features considered for the threshold establishment.

The statistical features were organized from the lowest values performed in FP and FN to
the highest. This way, the features would be in the order that could perform a more accurate
detection. They were analyzed by pairs implementing the Wilcoxon test to the parameters
that had significant differences considering the results from the Friedman test, and this way,
verify the significant differences that may have the selection of a specific feature for the thresh-
old establishment. Finally, with the selected feature for each sensor, the Wilcoxon test was
carried out to see whether significant differences in the movement intention detection with
each sensor exist.

For the second session, considering the specific features selected for each sensor, the pa-
rameters of Precision, Hits, Mistakes, Ideal Jumps (IJ), Early Jumps (EJ), and Late Jumps
(LJ) were evaluated. The IJ represented the jumps of the avatar that completely avoided the
enemy; EJ represented the jumps performed 0.15 s before the ideal jump, and LP represents a
jump 0.34 s after the ideal. The results from the EMG detection method were compared with
the results from the IMU method. Some levels and the scenery of the session were recorded
to analyze how the movements were done.

3.8 Satisfaction evaluation

At the end of the second session, the participant filled out two surveys (See Annexes), express-
ing how does he/she felt in the test considering the ankle exoskeleton T-FLEX, the detection
carried out with both sensors, and the Serious Game as the visual feedback.
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Chapter 4

RESULTS

This section presents the results of the experimental sessions, where there are some figures that
show the acquired signals and the detection of the algorithms of both sensors, some Tables
showing the performance of each sensor, and the results of the questionnaires. The latter
involves a qualitative evaluation of the virtual environment and the detection of movement
intention system carried out with T-FLEX.

4.1 First session

The signals recorded in the .bag file from each subject were displayed in ROS with PlotJuggler
(See Figure 4.1), so that it was possible to see the data that was being acquired from the
Electromyography (EMG) sensor and the Inertial Measurement Unit (IMU) sensor.

Figure 4.1: Signals acquired from the Myoware muscle sensor and the inertial sensor. At the
top of the graph, it is possible to see the signal of the Tibialis Anterior muscle, and in the
bottom, it is possible to see the angular velocity from the Gyroscope in the y axis.

Matlab was used to extract the data from the bag files. The data corresponded to the time
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when the sound pulses were performed, the time when the algorithm detected the movement
intention from the sensors, the time in which each sample of the IMU and EMG data was
acquired, the IMU data in rad/s, and EMG data in voltage (V).

This information was saved in a csv file. The information was used to see in a graph when
the detection occurred, the time when the sound pulses performed and the signal from the
participant that was being evaluated. Moreover, other calculations were carried out, such as
the difference of time between the pulse and the detection to know the time that the algorithm
took to detect the movement intention, and the number of False Positive (FP) (times that
the algorithm detected a movement intention when the movement was not performed) and
False Negative (FN) (times that the algorithm did not detect a movement intention when the
movement was performed) values obtained from the sensors. An example of the detection
carried out by the algorithm can be seen in Figure 4.2.

Figure 4.2: Signals acquired from the IMU and EMG sensors. An orange "x" represents the
sound pulse, and the algorithm’s detection is represented by a yellow "o". The brown boxes
show an example of how the FP values were performed, and the red box shows an example
of the FN values.

The information extracted from the csv files from each person, considering the IMU sensor
performance, can be seen in Table 4.1. It is possible to see that the detection time varies the
most from each participant with the features of STD, VAR, MEAN + 3STD and RMS, while
with the MEAN, the detection time remained close to one another. Moreover, the MEAN
feature had fewer FN values, comparing it with the other features.
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Table 4.1: Results of the algorithm for detection of movement intention with the IMU sensor,
where STD is Standard deviation, VAR is the Variance, RMS is the Root Mean Square
value, FP corresponds to False Positives, FN to False Negatives, and DT to Detection Time
(difference of time between pulse and detection in seconds).

STD VAR MEAN + 3STD RMS MEAN
FP FN DT FP FN DT FP FN DT FP FN DT FP FN DT

P1 0 189 2,067 0 182 2,059 0 117 1,853 50 0 0,885 7 0 0,630
P2 0 218 2,601 53 0 0,962 0 189 2,281 0 177 2,216 6 0 1,247
P3 0 57 1,552 0 191 2,088 0 195 2,366 50 0 0,886 14 0 1,403
P4 0 92 1,694 0 0 1,266 50 0 0,885 50 0 0,885 6 0 1,640
P5 49 0 0,887 49 0 1,230 50 0 0,886 0 165 2,327 67 0 1,401
P6 0 11 0,784 0 226 2,610 0 31 1,216 50 0 0,886 0 1 1,119
P7 374 0 0,709 0 235 0,250 0 10 1,539 50 0 1,229 1 0 1,128
P8 0 94 2,061 0 225 2,606 0 29 1,164 0 234 2,699 7 0 1,129
P9 0 87 2,058 0 215 2,414 0 13 0,804 0 222 2,486 1 0 1,136
P10 0 160 2,007 232 0 2,549 0 9 1,593 0 235 1,005 14 0 1,405

The information extracted from the csv files from each person, considering the EMG sensor
performance, can be seen in Table 4.2. It is possible to see that the detection time varies the
most from each participant with the features of MEAN, MEAN + 3STD, and RMS, while
with the STD and VAR, the detection time remained close to one another. However, the VAR
feature had fewer FP and FN values, comparing it with the other features.
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Table 4.2: Results of the algorithm for detection of movement intention with the EMG sensor,
where STD is Standard deviation, VAR is the Variance, RMS is the Root Mean Square
value, FP corresponds to False Positives, FN to False Negatives, and DT to Detection Time
(difference of time between pulse and detection in seconds).

STD VAR MEAN + 3STD RMS MEAN
FP FN DT FP FN DT FP FN DT FP FN DT FP FN DT

P1 0 8 1,441 2 0 1,369 4 0 1,359 116 0 0,893 0 46 1,033
P2 19 0 0,475 22 0 0,461 40 0 0,527 0 102 1,616 33 0 0,507
P3 32 0 0,605 0 8 1,258 64 0 0,543 11 0 1,450 72 0 0,569
P4 0 7 1,193 0 2 1,423 116 0 0,888 116 0 0,893 0 3 1,384
P5 0 1 1,361 2 0 1,347 2 0 1,346 0 46 1,064 0 51 1,467
P6 0 56 1,090 0 11 0,910 0 34 0.920 31 0 1,313 0 56 1,426
P7 65 0 0,796 4 0 1,509 26 0 0,627 10 0 1,286 68 0 0,594
P8 0 46 1,080 0 23 1,573 0 32 0,963 0 44 1,011 0 37 1,364
P9 0 43 1,613 2 0 1,515 50 0 1,827 71 0 1,224 76 0 0,663
P10 0 7 1,838 31 0 0,488 24 0 0,677 10 0 1,593 70 0 0,619

The data was statistically analyzed (See Table 4.3). The Shapiro-Wilk test was used to
see the normality of the data. The p-value less than 0,05 indicate that the data distribution
is not normal. Hence, considering that the data are paired, the Friedman test was used (See
Table 4.4), and it gave a p-value greater than 0.05, except for the FN parameter for both
sensors. The latter indicates that there are significant differences in the FN values performed
in the detection among the statistical features for each sensor.

Table 4.3: Statistical analysis with the Shapiro-Wilk test to determine whether the data has
a normal distribution. The data highlighted in blue represents the most suitable values of FP
and FN, considering each sensor’s statistical features. In bold, it can be seen the values of
FP and FN from the features that would be the following to be considered.

Sensor Feature Parameter Mean±Std p-value Shapiro-Wilk

IMU
MEAN

FP 12,3±19,83 p<0,01
FN 0,1±0,31 p<0,01
DT 1,2±0,26 0,23

STD
FP 42,3±117,56 p<0,01
FN 90,8±77,91 0,33
DT 1,6±0,64 0,17

VAR
FP 33,4±72,93 p<0,01
FN 127,4±110,77 p<0,01
DT 1,8±0,82 0,13

MEAN+3STD
FP 10,0±21,08 p<0,01
FN 59,3 ±77,76 p<0,05
DT 1,4±0,56 0,20
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RMS
FP 25,0±26,35 p<0,01
FN 97,3±108,27 p<0,01
DT 1,5±0,76 p<0,01

EMG
MEAN

FP 31,9±35,58 p<0,01
FN 19,3±24,73 p<0,01
DT 0,9±0,41 p<0,05

STD
FP 11,6±21,76 p<0,01
FN 16,8±22,21 p<0,01
DT 1,1±0,43 0,94

VAR
FP 6,3±10,934 p<0,01
FN 4,4±7,63 p<0,01
DT 1,1±0,417 p<0,05

MEAN+3STD
FP 32,6±36,96 0,06
FN 6,6±13,92 p<0,01
DT 0,9±0,42 0,20

RMS
FP 36,5±47,03 p<0,01
FN 19,2±34,59 p<0,01
DT 1,2±0,26 0,44

Table 4.4: Statistical analysis with Friedman test considering all the statistical features for
the threshold establishment and the parameters for each sensor.

Sensor Parameter Friedman
(p-value)

EMG
FP 0,12
FN p<0,01
DT 0,19

IMU
FP 0,07
FN p<0,05
DT 0,65

Table 4.3 shows the average and standard deviation of the FP and FN values in both
sensors, where the lowest values (highlighted in blue) are presented with the MEAN feature
and the VAR feature for the IMU and EMG sensors, respectively. Hence, a second feature
was selected depending on the FP and FN values performed to verify between one another
the existence of significant difference. To select the second feature, the data was organized
from the lowest to the highest FP and FN values to see the order of the features that could
work in the detection. The FP and FN values from the second feature for each sensor can be
seen in bold, where for the EMG sensor is the STD feature, and for the IMU sensor is the
MEAN+3STD.

Wilcoxon test was implemented per sensor with those two features and the two following
features beginning from the second previously analyzed until the last feature is compared.
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The p-value was fewer than 0.05 considering the first two features for the IMU sensor (The
most suitable among all the features), indicating that there was significant difference (See
Table 4.5). With the EMG was possible to see that the statistical analysis (in pairs) of the
organized features gave a p-value greater than 0.05, indicating that there was not significant
differences.

Table 4.5: Statistical analysis with Wilcoxon test considering two features. The features were
organized from the lowest to the highest in terms of FN values. This order was considered to
analyze each feature with the following and verify whether significant differences exist.

Sensor Features Wilcoxon
p-value

IMU

MEAN vs MEAN+3STD 0,01
MEAN+3STD vs STD 0,19

STD vs RMS 0,90
RMS vs VAR 0,68

EMG

VAR vs STD 0,06
STD vs MEAN+3STD 0,02

MEAN+3STD vs MEAN 0,06
MEAN vs RMS 0.83

The fact that for the IMU sensor the first two features (the most suitable for the detection
in terms of FP and FN values) presented significant differences, led to choosing the MEAN as
the operator to establish the threshold, taking into account that the subject would have more
control with T-FLEX activation and the Serious Game progression. On the other hand, since
the first two features for the EMG sensor did not present significant differences, the selection
of the feature was based on the FP and FN performed, considering the one that could allow
the subject to have control in T-FLEX activation and the Serious Game, which corresponds
to VAR.

Table 4.6 shows the results of Wilcoxon test, which was implemented to see whether the
detection with both sensors and the statistical feature selected for the threshold establishment
had significant differences in the parameters. This Table shows that there are not significant
differences.
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Table 4.6: Statistical analysis with Wilcoxon test considering the features selected for each
sensor (MEAN for IMU and VAR for EMG).

Parameter IMU EMG Wilcoxon
(MEAN) (VAR) p-value

FP 12,3±19,83 6,3±10,934 0,6
FN 0,1±0,31 4,4±7,63 0,1
DT 1,2±0,26 1,1±0,417 0,9

4.2 Second session

Since the features for the IMU and EMG sensors were chosen, the second session took place
with the Ankle exoskeleton T-FLEX and the Serious Game Jumping Guy: Ankle Rehabil-
itation Therapy with T-FLEX. The Second session was carried out as a study case, where
two subjects participated and tested the Serious Game with the IMU and EMG sensors as
the activation command for T-FLEX. The performance of the subjects in the Game with T-
FLEX can be seen in Table (4.7. In this table can be seen the parameters of Precision, Hits,
Mistakes, Ideal Jumps (IJ), Early Jumps (EJ) and Late Jumps (LJ). The precision expresses
in percentage the hits achieved concerning the expected total; the hits represent all the ene-
mies avoided by jumping over them; the mistakes represent all the enemies that were missed;
IJ represents the jumps of the avatar that completely avoided the enemy; EJ represents the
jumps performed 0.15 s before the ideal jump, and LP represents a jump 0.34 s after the ideal.

Table 4.7: Results from the second session using T-FLEX and the Serious game. In bold can
be seen the greatest precision percentage performed among the sensors in each level of the
Serious Game, and in red can be seen the minimum percentage of precision that each sensor
achieved.

Participant Level Sensor Precision Hits Mistakes IJ EJ LJ

P1

1 IMU 89.5% 102 12 71 16 15
EMG 89.7% 104 12 59 7 38

2 IMU 79.9% 83 3 76 6 49
EMG 78.9% 138 37 76 4 58

3 IMU 91.7% 209 19 77 3 129
EMG 85.9% 195 32 107 12 76

P2

1 IMU 94.1% 112 7 68 13 31
EMG 74.1% 83 29 41 3 39

2 IMU 72.7% 128 48 75 19 34
EMG 82.9% 136 28 75 21 40

3 IMU 84.3% 194 36 121 31 42
EMG 78.4% 178 49 89 25 64

The performance of the participants in the game can be seen graphically in Figure 4.3 con-
sidering the IMU and EMG sensor. Graphs a) and b) correspond to the performance of both
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participants with the IMU sensor in the Serious Game. Graphs c) and d) correspond to the
performance of both participants with the EMG sensor in the Serious Game. It possible to see
that with the EMG sensor, the amount of late jumps and failures were higher than with the
IMU sensor. However, the amount of IJ prevailed respect to EJ, LJ and failures in both cases.

Figure 4.3: Visualization of the participants’ performance in the first level of the Serious
Game. a) The performance of the first participant in the first level with the IMU sensor.
b) The performance of the second participant in the first level with the IMU sensor. c) The
performance of the first participant in the first level with the EMG sensor. d) The performance
of the second participant in the first level with the EMG sensor.

4.3 Questionnaires

After the second session, the participants from the study case were asked to answer two
questionnaires (See annexes). The results from the device satisfaction questionnaire can be
seen in Table 4.8. It can be seen that the device received a 5,0 points score in the criteria of
Ease of use and Effectiveness, showing that the participants were satisfied with everything
related to the device function. The other criteria received a similar score, giving as a result,
an overall score of 4,18 (considering the average of the evaluation of both participants) for
the satisfaction with T-FLEX.
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Table 4.8: Results from the participants in the study case with the experience with T-FLEX.
In red can be seen the criteria that received the lowest score respect to the given scores. In
green is possible to see the criteria that received a maximum score from the participants.

Criteria Total evaluation P1 Total evaluation P2
Dimension 4,0 4,0
Weight 3,0 4,0

Ease of implementation 4,0 3,0
Posture 4,0 5,0

Ease of use 5,0 5,0
Effectiveness 5,0 5,0
Comfort 4,0 4,0
Security 4,0 4,0

Device satisfaction 4,1 4,2

The results from the second questionnaire can be seen in Table 4.9. This Table shows
the participant’s experience in the session, mainly considering the visual feedback and the
experience with the sensors in the Serious Game progress. The Learning item refers to un-
derstanding all the game’s dynamic and its potential in ankle therapy. The Operability item
is about handling the game (speed, reaction time with the sensors over the avatar, interface,
and game duration). The Attractiveness item is about the aesthetic part of the game. The
Communication item refers to the explanation of the game methodology and the messages
that it provides. The Satisfaction item verifies the goals, feedback performance and opinion
about the implementation in therapy. The last item, the motivational model, refers to the
motivation and fun that the game can provide.

The overall results were the same for both participants. However, in the items of Attrac-
tiveness, Communication, Operability and Learning, the participants experience was slightly
different.
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Table 4.9: Results from the participants in the study case with the methodology carried out
in the session.

QUEST item Total evaluation P1 Total evaluation P2
Learning 4,5 4,6

Operability 3,9 3,7
Attractiveness 4,6 4,4
Communication 4,3 4,6
Satisfaction 4,2 4,2

Motivation model 4,0 4,0
Session experience 4,3 4,3
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Chapter 5

DISCUSSION

This study aimed to develop and Electromyography (EMG) interface based on movement in-
tention detection for the activation of the ankle exoskeleton T-FLEX. Therefore, a threshold-
based algorithm for the Tibialis Anterior EMG signal (muscle involved in the ankle dorsi-
flexion) was proposed. The algorithm considered the statistical features extraction for the
threshold establishment. These features corresponded to the MEAN, standard deviation
(STD), variance (VAR), MEAN + 3STD, and the Root Mean Square value (RMS).

The movement intention detection system with which T-FLEX have already worked is
with an Inertial Measurement Unit (IMU) sensor placed on the foot tip. The algorithm for
this sensor was based on the threshold establishment through the extraction of the statistical
feature MEAN. Hence, the movement intention detection with the EMG and IMU algorithms
were evaluated, considering the same statistical features proposed for the threshold establish-
ment for the EMG, to see whether the performance of the EMG algorithm is accurate with a
specific feature and if the IMU algorithm enhance its performance with a different statistical
feature. The algorithms were tested with each statistical feature independently and the exper-
imental procedure to evaluate the statistical features in the detection of movement intention
was divided into two sessions.

In the first session, the EMG and IMU algorithms were running simultaneously and the
participants had to do a dorsiflexion movement at the moment when they hear the sound
pulse. The total number of sound pulses in the ten minutes of the session was approximately
237, so the participant had to do the same number of movements. Ideally, the algorithms
would have to detect the same amount. However, as can be seen in Table 4.1 and Table 4.2,
with the features used for the threshold establishment the algorithms presented False Positive
(FP) and False Negative (FN) values, showing that the detection was not completely accurate.

In order to avoid an uncomfortable experience in the second session, the main criteria to
the establishment of the statistical features as the threshold operators was based on allowing
the subject to have the control of T-FLEX and the Serious Game, which could be achieved by
avoiding a high amount of FP and FN values. This way, the FP and FN values performed by
each feature were analyzed. The average of the FP and FN values presented in all the features
can be seen in Table 4.3, and it is possible to notice that some features did not perform a high
amount of FP and FN values respect to the others, which would mean that the detection was
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more accurate.

Statistical tests, such as Shapiro-Wilk, Friedman and Wilcoxon, were carried out (see Ta-
ble 4.3, Table 4.4 and Table 4.5). The p-value from the Shapiro-Wilk test showed that the
data had not a normal distribution. This led to applying the Friedman test, considering that
the data were paired, obtaining a p-value lower than 0.05 for the FN parameter in the EMG
sensor and IMU sensor, showing that there were significant differences between the detection
carried out with all the statistical features considering that parameter.

Considering the results presented in Table 4.3, it was possible to see that among all the
features, MEAN was the most suitable in terms of FP and FN values for the movement in-
tention detection using the IMU sensor and for the EMG sensor, VAR was the most suitable.
These features presented an error below 10% in the detection. The average of the detection
time (DT) of each feature can be seen in Table 4.3 and it is possible to see that the DT
remained approximately 300 ms lower with the EMG sensor than with the IMU sensor. How-
ever, among the statistical features that had the lower amount of FP and FN values for each
sensor, the DT remained close (± 100 ms).

To analyze the data from Table 4.3, as was previously mentioned, the Friedman test was
implemented, and the results demonstrated that the parameters of FP and DT did not have
significant differences. However, each sensor presented significant differences in the detection
considering the FN parameter (See Table 4.4). In Table 4.3 was possible to see that the FP
and FN values presented were close in the MEAN and MEAN+3STD features considering the
IMU algorithm. Hence, each feature was organized from the one that performed the lowest
FP and FN values to the highest and verify whether the selection of the following feature
can affect the results in the detection. The Wilcoxon test was applied to those features by
pairs considering the FN parameter from each feature due to the results given in Table 4.4
and see if they had significant differences. Table 4.5 shows that significant differences exist
between choosing MEAN or MEAN + 3STD as the threshold operators for the IMU sensor,
despite that the MEAN + 3STD was the second feature to perform the lowest FP and FN
values. Therefore, the MEAN feature was selected due to the test results and having the
lower amount of FP and FN values among all the statistical features.

The FP and FN values were close in the STD and VAR features considering the EMG
algorithm. The features were organized from the one that performed the lowest FP and FN
values to the highest and the Wilcoxon test was applied to those features by pairs to see
whether they have significant differences. In Table 4.5 it is possible to see that there was not
significant difference, and considering that the subject would have more control with T-FLEX
activation and the Serious Game progression with few FP and FN values, the VAR was se-
lected.

The first two features mentioned above for the EMG algorithm have already been evalu-
ated in a previous study (See reference [82]) for the preprocessing stage of the EMG signal.
The latter study evaluates how early is done the movement prediction considering the statis-
tical feature used for the preprocessing. With these features a fast prediction was achieved,
and for this reason they say that modifying the threshold with these features would improve
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the detection, mainly with VAR, due to its low computational cost with respect to STD.

On the other hand, in Table 4.3 was possible to see that, with the EMG algorithm, the
MEAN performed six times more FP values respect to the VAR, and this fact was also pre-
sented with the feature MEAN + 3STD. The error presented with the latter feature in the
detection was over 13%, while in a previous study (See reference [79]) the error considering
this feature was from 5% to 9%. However, analyzing the MEAN and STD features separately,
the error achieved was about the 13% and the 5% for the MEAN and STD, respectively. These
features have been used for the establishment of a double threshold (See reference [83]), where
the error in the detection was about 20%. This shows that considering a double threshold
for the algorithm used in this project would perform a more accurate detection respect to the
study mentioned.

To analyze the features selected for each sensor for the threshold establishment, the
Wilcoxon test was implemented (See Table 4.6). It was possible to see that the p-value
in all the parameters indicate that there were not significant differences between the EMG
and IMU performance. This way, the statistical results show that each algorithm could not
stand out more than the other in the detection.

It is crucial to know that, at the moment of implement the algorithms in real-time, the
reaction time could be affected by the FP and FN values presented. These values can be
presented because of the way that the threshold is calculated with the statistical features
or external factors. The latter can be explained by the fact that some subjects manifested
tiredness in the final part of the test. About 60% of the participants felt sleepy, and some
others found the cushion that kept the leg above the floor uncomfortable. These events could
have affected the results of the detection carried out by the algorithms. That is, the presence
of stages where muscle activity was not seen despite the order made by the sound commands,
movements related to getting into the seat for more comfort, or early movement performance
when the participant thought the sound pulse would sound.

For this reason, considering the second session, the algorithms for detecting movement
intention were evaluated for each sensor in real-time to verify their performance. Some ad-
justments were carried out, such as increasing samples for the threshold calculation to ensure
that a high amount of FP values would be avoided. The latter was done to prevent FP values
as activation commands for T-FLEX and ensure that the subject has control of the orthosis
in the longest possible time of the test. However, when the participants were doing the test,
some FP values appeared, making it challenging to handle the orthosis in some parts of the
game.

The participants expressed that the difficulty was more significant when the FP values
appeared when the EMG sensor was being tested. This happened because, even though at
the beginning, the EMG sensor and algorithm received some changes to enhance the results,
when the exoskeleton T-FLEX was placed, the sensor received increase pressure to the muscle.
The signal that was being received arrived with more noise, affecting the stage of the thresh-
old calculation and, thus, the movement intention detection. The pressure over the sensor
was giving the sense of muscular activity, and the algorithm was detecting a high amount
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of FP values, activating the exoskeleton even when the participant was not performing any
movement. This situation led to adding some delays in the algorithm so that there would be
enough time to detect the first movement (intended from the participant) and then wait some
time without detecting anything.

When the session started, with all the changes made to enhance the ankle exoskeleton
T-FLEX, with the EMG signal, it was possible to see that the detection was slow, comparing
it with the person’s moment doing the dorsiflexion movement. When the game started, the
participants expressed that the detection from EMG was slow (It can be seen in Figure 4.3),
expressed in the parameter "Late".), and when some FP value appeared, it was difficult to
handle it. On the other hand, the participants expressed that the detection of movement
intention from the IMU sensor was faster, according to when the dorsiflexion movement was
performed, and although there were more FP values than with EMG, the participants ex-
pressed that those moments did not bother the rest of the test.

The results from Table 4.7 showed the results after finishing all levels of the Serious Game,
in which a higher precision was achieved with the IMU sensor. With the IMU sensor, the
amount of "Hits" (enemies overcome) was higher than the EMG sensor, except for the second
level. The minimum precision obtained from the system based on movement intention detec-
tion from the IMU sensor was 72,7% and with the EMG sensor was 74,1%. The maximum
precision of the system considering the IMU sensor was 94,1%, while it was about 89,7% for
the EMG sensor. It was possible to see that the participants had the lowest precision percent-
age in the second level. This could have happened because this level was a transition where
the FP values started to affect in both participants performance, showing this values without
having the same period of time as in the first level to avoid failures. This FP values were
close to the real movement, so the performance and precision of both participants improved
in the last level, where the frequency of the enemies increased and the FP values appeared
close to the movement and did not let the avatar fall right over an enemy.

Considering a previous study, which involves the movement intention detection with EMG
in the lower limb (See reference [84]), the minimum precision achieved was 93% and the max-
imum was 97%, while in Table (4.7) is possible to see that the minimum was 74,1% and the
maximum was 89,7%. Although the signal in the previous study and in this study corre-
sponded to the lower limb, the previous study used a threshold with more complexity in its
calculation. This way, more accuracy in the detection could be achieved.

Two questionnaires were done to know the participants perspective in the second session
study case. Table 4.8 shows the score given by the participants considering their experience
with T-FLEX, which according to the score, their experiences were similar. The 87.5% of
the criteria established in the questionnaire received a score of 4,0 and 5,0. It could be seen
that the Ease of use and Effectiveness were parameters in the criteria that both participants
agreed and scored with five points. However, in the Weight and Ease of implementation
parameters, the participants alternated a 3,0 score (lowest considering all the already given
scores), showing that the experience considering those parameters from the criteria was reg-
ular. However, the general score shows a high level of adaptability of the user to T-FLEX.
Moreover, the participants expressed as the three most important aspects the Ease of use,
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Device effectiveness, and Device security.

On the other hand, in Table 4.9, the participants’ experience with the Serious Game and
its handling with the sensors were the same in terms of score. The lowest score can be seen
in the Operability item, which contains the game performance and the movement intention
detection performance with the sensors. Due to the difficulty handling the EMG sensor and
the FP values to progress in the Game, this sensor received a lower score than the IMU sensor.
Despite the performance with the sensors, the overall score represents that the participants
did not have a bad experience.

All the information mentioned above suggests that it is necessary to fix some parameters
considering external factors to improve the movement intention detection algorithms. More-
over, taking into account that in this study, the IMU sensor presented a faster reaction and
that the EMG sensor presented fewer FP values than the IMU sensor, a combination of both
strategies could lead to an algorithm that can give a more accurate performance.
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Chapter 6

CONCLUSIONS

Games controlled by Electromyography (EMG) can be handled by quick contractions, pro-
longed contractions, or simultaneous contraction of the flexor and extensor muscles. They
have shown to be a graphical tool for control training for robotic devices, since the actions
are similar to how subjects would control a real device. Also, they are considered as a tool
for motor rehabilitation and have shown more outstanding results than using just EMG as-
sessment.

It is necessary to know the functionality of the muscles involved in specific movements
for rehabilitation. The lower limb does not require delicate motor control tasks, so it is not
needed to recruit multiple muscles to analyze a particular movement. Thus, EMG signals have
been considered to evaluate, for instance, gait performance and motor learning, centering in
some muscles (those who contribute more).

The EMG has been considered to assist movements by detecting motion intention and
control of robotic rehabilitation systems, such as exoskeletons, to assist flexion and extension
exercises. Thus, EMG is a potential tool for the implementation of robot-assisted rehabilita-
tion.

Studies have shown different methods for detecting the movement intention from the EMG
signal. They can be based on features extraction, such as mean, standard deviation (STD),
variance (VAR), Root Mean Square (RMS), to establish a threshold, or more complex pro-
cesses involving Neural Networks. However, an appropriate detection has been achieved with
statistical features as the threshold, as is in the case with VAR. Hence, it is possible to predict
the movement simply and efficiently.

The ankle exoskeleton T-FLEX has two modes of operation, gait mode and therapy mode,
and for this study, the therapy mode was considered. T-FLEX already had an algorithm
for movement intention detection considering an Inertial Measurement Unit (IMU) sensor.
Thereby, this study aimed to develop a threshold-based EMG algorithm to detect the move-
ment intention detection. It was compared the movement intention detection through an
EMG sensor and the IMU sensor to control of T-FLEX. This comparison was made consid-
ering the statistical features MEAN, VAR, STD, MEAN + 3STD, and RMS as operators for
the threshold establishment.

51



Each statistical feature was evaluated to figure out which one could fit more for the move-
ment detection for each sensor. The best feature, considering the False Positive (FP) and
False Negative (FN) values performed, was selected. This process was carried out in a session
that lasted about 10 minutes. A second session was carried out with the features selected for
each sensor, where the movement intention detection would be evaluated with T-FLEX and
a Serious Game.

The results showed that it was possible to develop an EMG-based interface for the con-
trol of T-FLEX. The best performance of the detection with the EMG sensor was with the
feature of VAR, and with the IMU sensor was the feature of MEAN. After the second session,
the participants manifested that the control of the serious game and the ankle exoskeleton
T-FLEX was better using the IMU sensor. According to the participant’s movement, the
reaction was faster with this sensor than with the EMG sensor.

According to the EMG signal, some changes were established in the algorithm before
starting the test to enhance the T-FLEX behavior. However, the time for the detection was
affected. The FP values that appeared in the test with the IMU sensor did not significantly
affect the participant’s performance in the Serious Game. Besides, the precision with the IMU
sensor in the study case was higher than with the EMG sensor.

The slow reaction time from the EMG sensor was not expected. This could happen due to
the changes made to the algorithm, mainly because of external factors, such as the pressure
from T-FLEX over the EMG sensor. This could affect the detection because of the noise
added to the signal. For this reason, it is advisable to consider a trial with the EMG signal
that results from the muscular activity with the ankle exoskeleton T-FLEX so that the ap-
propriate management of the signal will be carried out and the signal of the desired muscle
will not be affected.
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Chapter 7

RECOMMENDATIONS AND
FUTURE WORKS

Other techniques for the threshold calculation can be some options to enhance the algorithm’s
detection. Some studies proposed to use the combination of the statistical features, like vari-
ance (VAR) and standard deviation (STD) to establish the threshold due to the velocity and
performance that those features have had in the detection of movement intention. Also, the
implementation of some additional features can be considered.

On the one hand, an adjustment in the EMG sensor’s setup, so the sensor avoids the
pressure, can be considered to fix the external factors that could have affected the movement
intention detection. On the other hand, some strategies involving a more complex threshold
calculation could bring better results in movement detection, such as an adaptive threshold,
or even apply a constant false alarm rate (CFAR) threshold.

For future works, in the short term, it is the enhancement of the connections to avoid
repeating tests due to sudden disconnections of the EMG sensor. Also, the establishment of
additional filters to the signal so that the performance with T-FLEX would not require delays
and would show a faster reaction in the participant’s perspective and better results in the
Serious Game.

In the medium term, the adjustment of parameters in the movement intention detection
algorithm would detect the minimum intention of movement. This way, the system would
be considered for rehabilitating post-stroke patients with a limited range of movement in the
lower limb. Moreover, the combination of the IMU sensor detection can be considered.

In the long term, some concepts involving Neural Netwoks can be considered to get better
results. The signals recorded for the first session and some others can be targeted and used
for the training model, and analyzing some other works can lead to a movement intention
detection algorithm. Also, adding the EMG signal from the Gastrocnemius to the movement
intention detection system could better detect the movement, detecting not only dorsiflexion
but plantarflexion, and can be linked to how T-FLEX works.
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1 Abstract

This document presents an experimental protocol that compares two detection methods of ankle flexion
movement intention through two sensors: one Electromyography (EMG) sensor and one inertial sensor. It is
expected to evaluate the performance of both sensors independently and integrated into the T-FLEX ankle
orthosis in order to control the level of assistance if the device along with a serious game.

2 Statement of the problem

The World Health Organization defines disability as a general term covering deficiencies, limitation of ac-
tivities and participation restrictions. Physical disability, which affects mobility, is generated mainly by
Strokes,cerebral palsy and spinal cord injuries. Acute stroke is a frequent neurological emergency, with 17
million annual cases.This, makes it the leading case of disability [1], [2].

Like other accidents, Strokes also present side effects. Among, these is the partial or complete loss of
motor functions(hemiplegia), debility (hemiparesis) localized. These effects are counteracted by seeking to
improve the motor capacity of patients, through rehabilitation processes based on physical therapy. [3].
Nevertheless, these processes tend to require much effort by the rehabilitator [4]. That is why these robotic
devices have been implemented in physical therapy as tools to speed up the rehabilitation process, recover
motor functions and improve people’s quality of life [5].

Despite the advantages of using robotic devices, distal joints,as the ankle, represent a challenge in these
rehabilitation processes. Different active orthoses have been designed to assist ankle movement in the sagit-
tal plane, restricting natural movement in frontal and transverse planes [6]. This is done to provide the
patient stability and lift the foot during the swing phase [7]. However, this restriction can lead to abnor-
mal movements in other joints, inappropriate for a patient in a relearning stage during his/her rehabilitation.

Ankle exoskeleton (T-FLEX) has been developed to counteract these deficiencies. T-FLEX is part of the
AGoRA robotic platform (Minciencias grant 801-2017). T-FLEX is an active wearable ankle orthosis based
on the variable stiffness principle [8]. This device counts with a flexible filaments bidirectional system that
besides assisting the dorsi-plantar movement of the ankle flexion, allows correcting the internal or external
rotation that the user presents, without restricting the natural movement in the other planes. Also, T-FLEX
allows increasing the system’s rigidity, through the tension of bio-inspired tendons composed of a flexible
element (Filaflex) and rigid filaments. This device counts with two operation modalities: (1) Therapy used
to generate repetitive movements in the user and (2) Assistance used to provide support in the stance phase
and provide the user dorsi-plantarflexion movements.
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The therapy modality of the orthosis (T-FLEX) only generates programmed movements. That, there
is no interaction between the subject and the orthosis. Ankle movement intent detection alongside serious
game Jumping Guy, looks for generating a different response to repetitive movement. In other words, it seeks
to involve the subject more so that he has decision control over the moment of action.Jumping Guy: Ankle
Rehabilitation Therapy with T-FLEX is a serious game that involves audiovisual feedback to motivate the
rehabilitation process and vary its intensity.Its objective is to generate the jump of an avatar, by detecting
of the plantar and dorsal flexion movements of the ankle, to evade the enemies and advance in the game.

This protocol is proposed to evaluate the best method to detect the intention of ankle dorsiflexion
movement, that is, the strategy that, with minor delay and greater precision, allows to capture the voluntary
movements of the users, about the variation of the given intensity during the different sessions of the serious
game.

3 Justification and use of the results

The purpose is to verify the performance of the movement intention detection algorithms through EMG and
IMU sensors and the variation of the assistance with T-FLEX presented with the serious game on the user.

4 Objective

4.1 General Objective

To analyze two methods of motion intention detection, using EMG and IMU sensors, in the activation of
the T-FLEX ankle exoskeleton.

4.2 Specific Objectives

• To determine the statistical characteristic between average, variance, and standard deviation, each
sensor better detects movement intention.

• To analyze movement intention detection using an EMG sensor in the tibialis anterior and an inertial
sensor in the tip of the foot in the use of the T-FLEX ankle exoskeleton.

• To analyze the usability of a serious game independently using two movement intention detection
methods for the activation of the T-FLEX ankle orthosis

• To determine if there is a possibility to combine the two methods of motion intent detection as a new
method with which better results are obtained.

5 Methodology

For the development of this protocol, Myoware electromyography sensors (AT-04-001 (Pololu, United States))
will be used to acquire EMG signals in the tibialis anterior and in addition to this, an inertial sensor (BNO055
(Bosch , Germany)).

Ten healthy subjects will participate and the experiment will take place at the Julio Garavito Colombian
School of Engineering, which will consist of two stages. The first, a session of approximately 30 min to choose
one of the three statistical methods (Average, standard deviation and variance) on which the algorithm for
detecting movement intention through EMG and IMU sensors is based. The second stage consists of another
session, a week after the first session, of approximately 1 hour to test the detection of movement intention of
EMG and that of the inertial sensor in the three levels of the serious game with the T-FLEX ankle orthosis
(Figure 1) considering the highlighted statistic in the previous session.
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Figure 1: Ankle Exoskeleton T-FLEX.

5.1 Operational variables definition

The evaluation of the two different movement intention detection methods, is expected to analyze the vari-
ables acquired in two main groups: variables acquired in the first session and variables acquired in the second
session. The variables related to surveys are subjective and subject to the perception of the participant.

5.1.1 First Session

The variables measured in this section will be taken during the experiment.

• Muscular Activity: Muscle activity will be measured by calculating the average, variance and stan-
dard deviation of the signal given by the electromyography sensor in the tibialis anterior.

• Angular Velocity: The angular velocity (rad / s) will be measured along the sagittal plane through
the inertial sensor.

• Articular Range: The Euler angles (°) will be measured through the inertial sensor to estimate the
joint range that the ankle has when dorsiflexed.

• Video Recordings: The dorsiflexion movements will be recorded in a synchronized way with the pro-
gressive sounds of activation of the movement to have in another way the time in which the movements
are carried out.

5.1.2 Second Session

The variables measured in this section will be taken during and at the end of the experiment.

• Muscular Activity: Muscle activity will be measured by calculating the average, variance and stan-
dard deviation of the signal given by the electromyography sensor in the tibialis anterior.65



• Angular Velocity: The angular velocity (rad / s) will be measured along the sagittal plane through
the inertial sensor.

• Articular Range: The Euler angles (°) will be measured through the inertial sensor to estimate the
joint range that the ankle has when dorsiflexed.

• Serious Game Results: Each of the data reported by the game will be stored. This includes: the
number of hits, number of mistakes, percentage of accuracy and type of response to the enemy (Ideal,
Early or Late).

• Video Recordings: Dorsiflexion movements will be recorded with the device and sensors during the
serious game test as another way of keeping track of the time the movements are performed.

• QUEST: The QUEST test will be carried out to know the level of user satisfaction with the device.
This information will be used as feedback from the user regarding the operation and structure of the
system. This questionnaire can be seen in Section 7.1.

• Serious Game Survey: A survey will be carried out within the framework of the Likert scale to
evaluate the experience and level of adaptability to serious play and each of the control strategies
proposed. This questionnaire can be seen in Section 7.2.

5.2 Study type and general design

The study presented in this protocol is longitudinal, observational, prospective and open. On the other
hand, regarding the general design, the experiment will handle the repetitive measures method.

5.3 Inclusion criteria

Healthy users between the age range of 18 to 70 years. The participants’ height must be between 150 and
190 cm, taking into account T-FLEX’s anthropometric design.

5.4 Exclusion criteria

Under the influence of alcohol, drugs, or any type of hallucinogen, users suffer from some type of cognitive
disability that prevents them from volunteering, reading, understanding and signing informed consent.

Additionally, candidates will be excluded from the study if they present any of the following conditions:

• Any pathology associated with the ankle.

• Uncontrolled hypertension.

• Uncontrolled epilepsy.

• Pain in the lower limbs or the spine.

• Severe spasticity (Level 4 of the Ashworth scale).

• The presence of wound or pressure ulcers make it impossible to use the device.

• The user does not have affiliation to the general health social security system (EPS or EPSS).
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5.5 Equipment and facilities

• Robotic Ankle Orthosis (Support and Actuation System) T-FLEX.

• EMG Sensor Myoware (AT-04-001).

• Inertial Sensor Bosch BNO055.

• Disposable Electrodes for EMG.

• Serious game executables: Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX

• Camera

5.6 Costume Condition

The user must wear a lower garment to be lifted to expose from the knee area or shorts.

5.7 Pre and post-test procedure

5.7.1 Entering and leaving the facilities

Before entering the facilities, the volunteer will be asked to fill out a form present in section (6.0.1) related
to the Julio Garavito Colombian School of Engineering’s biosafety measures. The user must carry the
basic biosecurity implements (mask, mask, alcohol, and anti-fluid suit). The volunteer will go through a
disinfection area, and the temperature will be taken. When leaving, the person will go through this last
procedure again.

5.7.2 Disinfection of laboratory implements

The research environment and all the implements used during the test will be previously disinfected to
minimize the risk of contagion of COVID-19. This process will be repeated once the test is finished.

5.8 Test procedure

The procedure that will be carried out during the execution of this experiment is divided into two main
sessions adjusted to a visual feedback strategy with a serious game and dorsiflexion movements of the ankle.
The intervention to which the subject will be subjected involves two main stages in each session: location
of the necessary muscles or another specific area of the lower limb to correctly locate the EMG and IMU
sensors (instrumentation phase) and the performance of repetitive movements during the session.

The instrumentation of the inertial sensor corresponds to the third metatarsal of the foot with the z-axis
in opposition to the gravity vector and the x-axis towards the back of the body. For the EMG sensor the
electrodes will be in the corresponding muscle (Tibialis anterior).

To position the electrodes and the EMG sensor, the recommendations are given in SENIAM will be
followed. However, some modifications were made considering the dimensions of the sensor and the length
of its reference cable, which will later be used with T-FLEX. According to SENIAM, the recommendations
are to follow the direction of the line drawn between the fibula and the tip of the middle malleolus and place
the sensor at 1/3, having as a reference some area of the ankle. Considering what the T-FLEX covers, it is
proposed to place the sensor at 2/3 of the distance, ensuring that the signal being captured remains that of
the tibialis anterior. Considering the reference wire’s length, the reference would be in the lower part of the
tibia (figura 5.8).

On the other hand, to perform repeated movements, the person will be sitting with a 90 degree knee
flexion; the member where the measurements are made must not make contact with the ground.
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Participant with electrode and Myoware sensor in the cor-
responding places.

First Session

This stage consists of choosing the algorithm for the detection of movement intention through sensors EMG
and IMU. This procedure will be performed without the orthosis, where the participant will be subjected to a
test with sound pulses that progressively increase in frequency for approximately 10 minutes. The volunteer
must perform dorsiflexion movements when a sound is played, which will appear every 3, 2 and 1.5 seconds
within the established time. For the detection of movement intention, three statistics will be taken into
account. Each one will be evaluated separately in an offline manner considering the previous test. Through
the results the statistical characteristic with which each algorithm performs a better detection will be chosen.

In this way, the sequence of activities is given by:

1. User instrumentation.

• EMG surface electrode placement in the areas to be treated (tibialis anterior muscle).

• Inertial sensor location on the tip of the foot.

2. Verification of connections and reading of sensors.

3. Instruction to the user about the test.

4. Start test.

5. Verification of stored data.

6. Cleaning and disinfection of equipment and instrumentation.

Second Session

During this stage, in addition to using both sensors, the T-FLEX ankle orthosis will be used in therapy
mode and serious game Jumping Guy: Ankle Rehabilitation Therapy with T-FLEX. The experiment consists
of 2 tests of 20 minutes that involve the three levels of the game in two conditions: (1) with the EMG sensor
and (2) with the IMU sensor. During the test, the participant must generate the avatar’s jump to avoid
colliding with the enemy through plantar and dorsal flexion movements assisted by the orthosis. The first
level of play induces a dorsal-plantar flexion every 3 s, the second every 2 s, and the third every 1.5 s. The
participant will execute each level with both conditions considering a 5-minute break between tests. In this
case, each sensor’s motion intention detection method will consider the best statistic found in the previous68



stage.

In this way, the sequence of activities is given by:

1. Installation of the clamping system and actuation of the robotic orthosis.

• Insole adjustment on the wearer’s shoe.

• Placement and adjustment of the orthosis to the leg.

• Securing tendons and hemp to motor mounts.

• Adjust electronic wiring.

• Verification of the functioning of the orthosis in therapy mode.

2. User instrumentation

• EMG surface electrode placement in the areas to be treated (tibialis anterior muscle).

• Inertial sensor location on the toe.

3. Verification of connections and reading of sensors.

4. Running the serious game program: Jumping Guy: Ankle Rehabilitation Therapy with T-Flex.

5. Instruction to the user about the test.

6. Start test.

7. Verification of stored data.

8. Completion of the surveys (once the sessions have been completed).

9. Cleaning and disinfection of equipment and instrumentation.

Finally, an evaluation will be carried out with the variables indicated in section 5.1.2, to quantify the
participant’s progress during the experiment.

5.9 Information gathering and methods for data quality and control

The collected data will be stored in a special folder where each participant will have their folder with their
information. Connection verification and data reading must be carried out before starting the test regarding
the sensors used.
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6 Informed consent

This section of informed consent is directed to the people who are invited to participate voluntarily in the
research, which is divided into two parts:

• Information about the study

• Consent form to sign if the volunteer agrees to participate

Part I: Information

Introduction

These informed consent sheets may contain words that you do not understand. Please ask the main investi-
gator or anyone in the study to explain any words or information that you do not clearly understand. You
will be given a copy of the complete informed consent document.

Purpose

Mobility disability has become a significant problem in Colombia as in the whole world. Regarding mobility
disability associated with the ankle, there is little development of devices in the Colombian health system
that assist the patient during the march and improve their pattern recovery.

For this reason, an ankle exoskeleton (T-FLEX) has been developed, that is, a wearable robotic ankle
orthosis that allows to assist the movement of dorsi-plantar flexion of the ankle and correct an internal or
external rotation that the user presents. The above is achieved through two modes of operation that the
device has, the first is the therapy modality to generate repetitive movements to the patient helping in their
rehabilitation, and the second is the assistance modality in order to provide support in the stance phase and
provide the patient with dorsi-plantar flexion movement.

Given the above, this study seeks to verify the performance of the ankle movement intention detection
algorithms through EMG and IMU sensors and the variation in the assistance that T-FLEX presents on the
user for their participation in the serious game.

Type of Research Intervention

This investigation will include a protocol of non-invasive measurements during repetitive flexion movements.

Selection of participants

In this project, a non-random sample will be used based on people willing to participate voluntarily in the
project. These will be selected taking into account their state of health and physical conditions

Inclusion criteria

Healthy volunteers between 18 and 70 years of age who are between 150 and 190 cm tall, considering T-
FLEX’s metric design, aware of the risks and inconveniences that the experiment may cause.

Exclusion criteria

Under the influence of alcohol, drugs, or any type of hallucinogen. Users who suffer from some type of cog-
nitive disability that prevents them from volunteering, reading, understanding, and signing informed consent.

In addition, candidates will be excluded from the study if they present any of the following conditions:
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• Any pathology associated with the ankle.

• Uncontrolled hypertension.

• Uncontrolled epilepsy.

• Pain in the lower limbs or the spine.

• Severe spasticity (Level 4 of the Ashworth scale).

• Presence of wounds or pressure ulcers that make it impossible to use the device.

• Not having affiliation to the general health social security system (EPS or EPSS)

Participation in this research is entirely voluntary. You can choose to participate or not.
Whether you choose to participate or not, all the services you receive at this facility will
continue, and nothing will change. You can change your mind later and stop participating
even if you have agreed earlier.

Procedures and Protocol

In the methodological procedure, 10 healthy volunteers will be taken into account. Each participant must
carry out a total of two sessions.

Duration

This procedure will have 2 sessions. The first with a duration of approximately 30 minutes and the second,
a week later, with approximately 1 hour. The first part of each session will have 5 to 15 minutes for
instrumentation and putting on the device. In the remaining time, the seated participant will perform the
dorsi-flexion and relaxation movements.

Methodology

During the execution of the experiment, in both sessions there will be an instrumentation phase where the
tibialis anterior is identified and the appropriate position to place the inertial sensor on the limb where the
measurement will be made. Once this muscle has been identified, it will be proceeded to identify the nearby
areas that will correspond to the reference of the sensor that will be positioned in the muscle, fulfilling that
they are bone, and in this way make the appropriate adjustments so that the sensor is positioned in the
corresponding muscle with your reference. Once the aforementioned is completed, the electrodes will be
adjusted on the sensor and placed on the volunteer, preparing them to acquire electromyography (EMG)
signals, which refer to electrical signals produced during muscle contraction.

To position the electrodes and the EMG sensor, the recommendations given in SENIAM were followed.
However, some modifications were made considering the dimensions of the sensor and the length of its
reference cable, which will later be used with T-FLEX. These modifications are:

• Tibialis anterior: For this muscle, the recommendations are to follow the direction of the line drawn
between the fibula and the tip of the medial malleolus and place the sensor at 1/3, having as a reference
some area of the ankle. Considering what the T-FLEX covers, it is proposed to place the sensor at
2/3 of the distance, ensuring that the signal being captured remains that of the tibialis anterior.
Considering the length of the reference wire, the reference would be in the lower part of the tibia.

To position the inertial sensor, the third metatarsal of the foot is considered with the z-axis in opposition
to the gravity vector and the x-axis towards the back of the body.
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First Session

The participant will be sitting on a chair performing a 90 degree knee flexion; likewise, the participant’s
lower limb must be elevated in such a way that it does not contact the ground. When the conditions
are set, the test will start. The participant will perform dorsi-flexion and relaxation. Each of these is
interspersed, to obtain a result such as: DF (dorsi-flexion) - Relaxation - DF (dorsi-flexion) - Relaxation.
These movements will depend on the sound pulses set for the test.

Second session

The participant will be sitting on a chair performing a 90 degree knee flexion; likewise, the participant’s
lower limb must be elevated in such a way that it does not touch the ground. When the conditions are
set, the test will start. The participant will perform dorsi-flexion and relaxation with the device. Each
of these is interspersed, to obtain a result such as: DF (dorsi-flexion) - Relaxation - DF (dorsi-flexion)
- Relaxation, in order to advance in the game.

For the second session there will be a 5-minute rest period between the test for each sensor.
Figure 2 shows an example of the two proposed movements is observed (A. dorsi-flexion, B. relaxation).

Figure 2: proposed movements for the protocol. A) Dorsi-flexion. B) Relaxation.

Validation: At the time of the test, the information from the inertial sensor corresponding to the Euler
angles will be used to estimate the joint angle exerted by the ankle at the moment in which the intention
of dorsiflexion movement is detected. In addition to this, the leg will be recorded in the sagittal plane to
record the entire process of the person performing the test. This applies to both sessions.

Dress conditions

Light shorts at the knee or pants that can show the muscles necessary for the placement of the electrodes.

Risks

By participating in this research, you may expose yourself to feeling fatigued or pain due to the repetitive
movements performed, you may experience cramps or a slight numbness in the limb with which the test is
being performed due to the posture required for the test or you may feel a tingling in the area where the
electromyography sensor is placed. If this occurs, immediately notify the Investigator-in-charge to pause,
adjust the items, and see if it is feasible to continue the test.

COVID-19 Considerations

Suppose you have an acute respiratory infection, cough, fever, nasal congestion, generalized muscle pain,
headache or sore throat, chest pain or shortness of breath, and other symptoms related to COVID-19, which
may affect your participation in the test. In that case, you should withdraw from it for your safety and
that of the researchers involved who will be interacting with you, notifying the research center staff of your
current health condition. 72



Aches or pains

When participating in this research, you may experience discomfort from the use of electrodes placed on
your body.

Benefits

Your participation in the development of this project could benefit the health of people who require this
means of therapy, helping them in their rehabilitation process. Likewise, their participation will contribute
to fulfilling the purpose of the research, and future generations probably benefit from the results.

Incentives

No money, gifts, or incentives will be given to you for taking part in this research.

6.0.1 Facility entry form

To enter the educational institution Escuela Colombiana de Ingenieŕıa Julio Garavito you must fill out a
form found in the link below:

https://form.jotform.com/EscuelaingEncuestaSalud/reporte-obligatorio-salud

You will be asked to choose the modality you will enter, which you must choose as ”In-person (to apply
to the campus)”. Once the modality has been chosen, you will be asked to enter your data, these being: full
name, exact age, cell number, email, and your relationship with the institution.

Additionally, you will be shown a list of symptoms related to COVID-19, which you must indicate if you
have presented them in the last seven days. Later there is another section where you are asked for your
health history that has been diagnosed in the last five years, and then you will be asked to sign to confirm
that your answers are true.

Finally, a photo of your identification document and the date of admission to the institution will be
requested. Once the terms have been accepted and the form has been sent, you will receive a QR code to
the previously entered email, which you must present at the entrance to be able to enter the institution.

Confidentiality

In this project, the information will be linked. In other words, the information can be related or connected
with the person to whom it refers. However, this information will be recorded anonymously. In this case, it
can be linked to the person to whom it refers except through a code or other means known only to the owner
of the information. In this way, the personal information of the participating subjects is protected. Your
identity will never be revealed or published. The recordings of the test will be made so that the movement
of the ankle and the participant’s posture can be appreciated without revealing their face. This information
will be used to show the space and how the test was carried out.

Sharing the results

During the study, the participants will know the status of the research project and the preliminary results
at all times. The disclosure of the final results obtained from this research will be sought so that other
interested people can learn. Confidential information will not be shared.

Right to refuse or withdraw

You do not have to take part in this research if you do not want to. You can stop participating in the
research at any time you want. It is your choice and all your rights will be respected.73



If you have chronic diseases such as cancer, diabetes, hypertension, among other conditions that may
affect your immune response due to complications from Covid-19, or if you consider that participating in
the test is a potential risk to your health, taking into account the health emergency , you have the right to
deny your participation or to withdraw at any time you wish.

Who contact to

If you have any questions, you can ask them later, even after the study started. If you have questions later,
you can contact any of the following:

Marcela Munera 310 273 4857
Daniel Gomez 321 360 2314
Angie Pino 301 487 1663
Camila Castellanos 312 443 3027
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Part II: Consent Form

I, ,
identified with the citizenship card number , declare that I have read
and understood this document and that my questions about the tests for this research have been answered
satisfactorily; I, therefore, give my informed consent to participate in the research called ”Ankle flexion
movement intention detection by electromyography and inertial sensors in healthy subjects”. I agree that
my name, age, and other anthropometric data are stored, and I am aware that I will be recorded throughout
the sessions. I know that I can withdraw from the experiment at any time. In addition, I understand that
despite preventive care such as social distancing, hand washing, disinfection of laboratory implements, there
is a risk of the possibility of contagion by Covid-19.

I certify that during the last 15 days I have not had contact with people diagnosed with COVID-19
and that in case of presenting any symptoms related to those exposed in the COVID-19 Considerations
section, I will immediately notify the researchers to Maintain the necessary preventive isolation measures
established by the District Health Secretariat and the National Health Ministry and I will notify if I will be
ordered to take the antigen or PCR for COVID-19. In such a case, I will report the result.

Participant Subject:
Name:
Address:
Cellphone:
Signature: ID:

Investigator statement
I certify that I have explained the nature and purpose of the investigation to this person and that this person
understands what their participation consists of, the possible risks and benefits involved. All the questions
this person has asked have been answered appropriately. Likewise, I have read and adequately explained the
parts of the informed consent. I certify with my signature.

Investigator:
Name: ID:
Investigator Signature:

Date (Year/month/day):

Thank you for your collaboration.
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7 Questionnaires

7.1 QUEST

Name:
Evaluation Date:
Age: Genre:
Pathology:

The purpose of this survey is to assess your satisfaction with the device. The survey consists of 8
questions.

• For each of the questions, rate your level of satisfaction (how pleased you are with the device) using
the following scale from 1 to 5.

1 2 3 4 5
Not

Satisfied at all
Not

Satisfied
More or less

Satisfied
Satisfied

Very
Satisfied

• Leave no questions unanswered

• In each question, you declare that you are not very satisfied, please write it in the comments section.

Thank you for your collaboration.

How satisfied are you with:? 1 2 3 4 5 Comments
The dimensions of the system

(tight, width, length)?
The device’s weight

The ease of
the implementation of the device?

The ease to wear
(have it on) the device?
Usability of the device?

The device’s effectiveness
according to its functionality?

The comfort of the device?
The security of the device and

the possibility that the system does not harm you?

Below you will find the list of the same 8 satisfaction questions. Please select the THREE questions that
are most important to you, mark them with an x in the THREE boxes of your choice:

1. Dimensions.

2. Weight.

3. Ease of implementation.

4. Ease of use of the device.

5. Device usability.

6. Device effectiveness.

7. Device comfort.

8. Device security. 76



7.2 Serious Game Survey

This survey aims to know the experience between the user and the serious game. Mark on the scale from 1
to 5 according to your perception, where 1 totally disagrees and 5 totally agrees.

1 2 3 4 5
Totally
disagree

Disagree
Neither agrees or

disagrees
Agree

Totally
Agree

Criteria Statement 1 2 3 4 5 Comments

Learning

It was easy to play
It was not hard to understand

the game dynamic
The video game is familiar

The tutorial gave the necessary
instructions to know the

game operation
It is easy to read the statements

The video game is helpful to
achieve a therapeutic goal

Operability

The speed of the game was continuous
Options are visible,
and easy to identify

Game duration is appropriate
The interface is easy to use

Interface functions
are understandable

It is easy to keep up
with the levels in the game

It is easy to correct an action
to continue playing

Detection of errors is clear
Response time

of the EMG sensor was
appropriated for progress in the game

Response time
of the IMU sensor was appropriated

for progress in the game

Attractiveness

The video game is aesthetically pleasing
Text combination and
graphs were enough
Color combinations

were visually pleasing
Interface elements

fit your profile
The video game DOES NOT generate eye

discomfort or any type of headache

Communication
The explanation is clear about the

video game input and output requirements
The language used is simple and clear

The density of the texts are appropriate

Satisfaction

Goals are achieved77



comfortably and safely
Feedback from your

performance was clear
You feel improvement in ankle

function thanks to the video game
You would use the video game

as a therapy modality

Motivation Model
You felt motivated while playing

You find the video game fun
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