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Evidence of Induced Innovation in  
US Sectoral Capital’s Shares 

 
Abstract: We use annual data on capital’s share and relative factor prices from 35 US industries 
from 1960 to 2005 to test the induced innovation hypothesis. We derive, from a production 
function framework, testable implications for the effect of contemporaneous and lagged factor 
price ratios on capital’s share of production. The predicted effect is positive or negative 
depending on the elasticity of substitution between labor and capital. From panel regressions, the 
estimated effect of the contemporaneous factor price ratio implies an elasticity of substitution 
that is less than unity, consistent with the consensus from the literature. Based on this, our 
negative estimated effects for lagged price ratios are both statistically significant and consistent 
with the induced innovation hypothesis.  
 
 
 
 
JEL Codes: O31, O47, E25, E23 
 
Keywords: induced innovation, biased technical change, capital’s share, labor’s share, elasticity 
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1. Introduction 

Capital’s share of aggregate income/output is constant. This is one of Kaldor’s (1961) stylized 

facts of economic growth. It is the stylized fact which, to a large extent, supports the widespread 

use of the Cobb-Douglas (1928) production function in macroeconomics. Alternatively, if 

capital’s share is constant and factor prices are equal to marginal productivities, then the 

elasticity of output with respect to capital is constant and the Cobb-Douglas production function 

is a reasonable approximation of the aggregate production function.1  

 However, at the sectoral level, capital’s shares fluctuate markedly (e.g., Young (2010) for 

the US; Zuleta et al. (2010) for Columbia; Garrido-Ruiz (2005) for Spain).  Solow (1958) and 

Young (2010) argue that, in the US, that the evolution of aggregate capital’s share is not 

surprisingly stable given the sectoral fluctuations.2 There have is also evidence that the capital’s 

shares of many economies, if measured properly, have clear trends (e.g., Zuleta (2008b), Zuleta 

et al. (2008) and Sturgill (2009)). The fluctuations and trends and economy’s capital’s shares are 

not exogenous givens; they are indicative of underlying economic phenomena. One potential 

underlying phenomenon is induced innovation. We argue here that, for the US from 1960 to 

2005, evidence suggests that induced innovation is a significant determinant of the evolution of 

sectoral capital’s shares at the roughly 2-digit SIC sector level. 

 The idea of induced innovation was popularized by a series of authors including Kennedy 

(1964, 1973), Samuelson (1965), Ahmad (1966), Drandakis and Phelps (1966), Weizsäcker 

(1966) and Binswanger (1974). Their models predict that a decrease in the relative cost of a 

                                                 
1 A Cobb-Douglas is a sufficient but not necessary condition for balanced growth; the necessary condition is labor-
augmenting technical change (Uzawa (1961) and Jones and Scrimgeour (2008)). However, balanced growth does 
imply that aggregate production possibilities asymptotically behave like a Cobb-Douglas. 
2 Young (2010) demonstrates that the largest component of US sectoral labor’s shares variation is independent 
across sectors. Therefore, it is not surprising that the aggregate share’s variance is considerably smaller than the 
average sectoral share variance. Solow (1958) makes the same argument but lacks the quality of data available to 
Young.  
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factor induces innovations biased towards more intensive use of that factor. (Hence this literature 

is also referred to as the biased literature). In the longer run, such induced innovation can 

significantly affect the distribution of income across factors. In the shorter-run, biased 

innovations may contribute to macroeconomic fluctuations (Young, 2004). The results presented 

here highlight the importance of research into the preceding. 

 The theory of induced innovations has been recently revisited by several authors 

including Zeira (1998), Acemoglu (2002), Boldrin and Levine (2002), Funk (2002), Zuleta 

(2008a) and Zuleta and Young (2010). However, while these models are consistent with 

observed trends in factor shares and prices, there is a near absence of empirical evidence 

explicitly supporting the induced innovation hypothesis. (Zuleta et al. (2010) is one exception 

using Colombian data.)  

 In this we formally derive testable implications of induced innovation in a production 

framework and then bring those implications to the US data. We utilize the Jorgenson (2007) 

KLEM data based on 35 US sectors. This is an input-output database and is described in 

Jorgenson et al. (1987) and Jorgenson and Stiroh (2000). For our purposes, the database provides 

the prices and quantities are productive factors – capital and labor, in particular – as well as 

sectoral value-added.   

 The paper proceeds as follows. Section 2 introduces the production function framework 

and derives the testable implications. Section 3 describes our calculation of capital’s shares, 

factor ratios, and factor price ratios from the KLEM data. Results based on the empirical model 

derived from Section 2 are reported and discussed in Section 4. Section 5 concludes. 
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2. Induced (Biased) Innovations in a Production Function Framework 

Consider a CES production function where capital and labor are used to produce output: 

(1)         
1

1 LAKAZY LK  . 

In (1) the only constant we will assume is  implying a constant elasticity of substitution, 







1

1
. No exact definition of biased technical change has been established.3 For our 

purposes, biased technical change may be represented by factor-augmentation (AK or AL growth) 

and/or changes in the effective factor weighting parameter ().4 

 If factor prices are equated to the factors’ marginal products in production, then the 

marginal product of labor and marginal product of capital are, respectively, 

           11
1

11 
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Note that the ratio of marginal products (factor prices) is, 
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 It follows that labor’s share is, 

(2)    

wL

rK



1

1
1   

where 

                                                 
3 Biased technical change is generally any change that is not neutral in some specified way. While Hicks-neutral 
(represented by a scalar on the production function) and Harrod-neutral (labor-augmenting) are the most oft evoked 
types of neutrality, numerous types of neutral technical change have been defined (Sato and Beckman, 1968).  
4 Factor-augmenting technical change will not affect factor shares if the elasticity of substitution is unity (i.e., the 
Cobb-Douglas case). 
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Capital’s share is then α. Substituting (3) into (2) yields, 
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and then, 
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Taking natural logs of the above equation results in, 
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Equation (4) is linear and states that the distribution of income across factors is determined by 

the contemporaneous ratio of factor prices and the state of technology (represented by the first 

and second right-hand-side terms). The right-hand-side of (4), 









1
ln , is monotonically 

increasing in capital’s share. The elasticity of substitution parameter () determines the extent to 

which both factor-augmenting technical change and changes in the capital to labor ratio affect 

capital’s share.5  

 Based on the idea of induced innovation, we hypothesize that the state of technology, 
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, is a function of lagged factor prices. (Presumably, current 

                                                 
5 Note that Z does not appear in (4) because it is a Hicks-neutral technology shifter and will not affect the income 
distribution. 
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factor prices cannot bias the state of technology today since induced innovation takes time.) We 

specify, 
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where the βs are parameters and δ and  can be interpreted as the effect of biased but not induced 

technical change and/or omitted lagged factor price ratio terms. Note that δ, interpreted this way, 

may be a function of time if there are trends in technology. (This is a possibility that we include 

and test in the empirical analysis below.) Given (5) we can restate (4) as, 
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Equation (6) will serve as the basis for our regressions reported below in Section 4. 

 Note that if induced innovation works either through relative factor augmentation, 

(AK/AL) or the weighting of effective factors (θ), we have a clear prediction about the sign on the 

partial effects of lagged (log) price ratios (βi  for i = 1, ..., I) that is conditional on the value of the 

elasticity of substitution (σ). Assume that 0 < σ < 1 such that 


 1
1  is negative and, 

(7)   1
1

1
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.6 

Now assume that lagged values of (r/w) have been high. Producers will wish to economize on 

the relatively expensive factor (K). What sort of innovation will this induce in terms of the 

production function parameters? What will this imply for the signs on the βis? 

 First consider the case of factor augmentation. In a neoclassical production function such 

as (1), it is the ratio of effective factors, (AKK/ALL), that matters, all else equal. If producers wish 

                                                 
6 This represents the existing consensus in the literature. For examples, Caballero (1994), Caballero et al. (2005), 
Chirinko et al (1999 & 2007) and Antràs (2004). Also, Chirinko (2008) provides a review. 
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to reduce their capital to labor ratio, (K/L), they can work towards this goal by increasing AK 

relative to AL, i.e., through relative capital augmentation. Since 0
1

1 













, we can predict 

that βi < 0 for i = 1, ..., I. 

 Second, consider the case of effect factor weighting. If lagged values of (r/w) have been 

high, producers can decrease the relative need for K by innovating to increase 
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 we can predict, in this case as well, that βi < 0 for i = 1, ..., I. 

 Alternatively, while for 0 < σ < 1 we would expect the coefficients on lagged (log) factor 

price ratios to be negative, the coefficient on the contemporaneous price ratio is 





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 which 

we would expect to be positive since 0
1
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




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



. Therefore, for 0 < σ < 1, we would expect 

that the coefficients on lagged versus contemporaneous price ratio terms to be of different signs.  

 While we focus in this paper on induced innovation as a determinant of capital’s shares, it 

is not the only determinant proposed by economists. For example, characteristics of the labor 

market may be important determinants of capital’s shares. Labor contracts or employment 

insurance may alter the distribution of income across productive factors (Gomme and 

Greenwood (1995); Boldrin and Horvath (1995)). Alternatively, capital’s share may be a 

function of the bargaining power of labor (Bental and Demougin, 2008). We will argue that our 

results below support the induced innovation hypothesis. However, we cannot make strong 

statements regarding the inconsistency of the results with alternative hypotheses. 
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3. Data 

 The KLEM database combines sectoral data from the US Bureau of Labor Statistics and the US 

Bureau of Economic Analysis for 35 US sectors. The data are annual with observations from 

1960 to 2005. Variables include the quantity of output (Q) and the price of output (PQ); the 

quantity and price of capital services (QK and PK); the quantity and price of labor inputs (QL and 

PL); the quantity and price of energy inputs (QE and PE); and the quantity and price of materials 

inputs (QM and PM).  Dividing service values by prices yields the quantities K, E, and M.    

 Value added is computed for each industry, i, as VAi = QiPQ,i – VE,i – VM,i .  Then 

capital's share in value-added is computed as i = SK,i(1 – SM,i – SE,i) where  

SX,i = VX,i QiPQ,i  for X = L, M, and E.  Then aggregate value-added is VA = i VAi and sector 

shares in value-added are wi = VAiVA. Table 1 lists the 35 sectors and the net change (from 1960 

to 2005) in capital’s shares and value-added shares. In many sectors there are clearly substantial 

(mostly positive) changes in capital’s shares. The largest net changes are associated with the coal 

mining (0.469) and petroleum and coal products (0.357) sectors.  

 Net changes tend to obscure short-run and medium-run changes in capital’s shares. Also 

in Table 1, there are three broad sector groupings, agriculture, manufacturing, and services, 

highlighted by shading.7 Figure 1A plots the capital’s shares of these three broad sectors. (Figure 

2B excludes agriculture because its volatility dominates the first graph.) Capital’s share in 

agriculture appears to have at least two periods of trend: increasing before the 1980s and then 

decreasing thereafter into the mid-1990s. Manufacturing capital’s share trends upward during the 

                                                 
7 We focus on here on the broad sector groups to simplify the presentation in tables and figures. In Section 4 below 
we use observations from the 35 sectors taken separately for the econometric analysis. 
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1960 to 2005 period; capital’s share in services appears basically flat. However, all three series 

fluctuate considerably. 8 

 Aggregate capital’s share over the 1960 to 2005 time period (Figure 2) remains in a 

narrower band than the capital’s shares of agriculture or manufacturing due to those sectors 

shrinking as a share of the economy while service’s value-added share increases considerably. 

Agriculture is a very small share of value-added – about 3 percent on average – during the entire 

time period. Figure 3 demonstrates how manufacturing and services value-added shares 

following dramatically different paths. Services increases from just about 40 percent to over 60 

percent of the US economy. Manufacturing is the mirror image, decreasing from over 30 percent 

to less than 20 percent of the economy.  

 Table 2 summarizes the statistical properties of the broad sector value-added and capital’s 

shares that constitute, together, the evolution of US aggregate capital’s share from 1960 to 2005. 

It presents the means and standard deviations of all the series, as well as the cross-sectoral 

correlations of both capital’s shares and value-added shares.  

 

4. Econometric Analysis 

Recall the empirical model that we derived from a CES production function and the induced 

innovation hypothesis: 

(6)   t
t

t

jt

jt
J

j
i

t

t

w

r

w

r













































 




 ln

1
ln

1
ln

1

. 

Here we restate (6) as a regression equation: 

                                                 
8 Zuleta and Young (2010) develop a two sector growth model where induced innovation occurs in one sector 
(manufacturing) while labor and capital are perfect complements in the other sector (services). Their model results 
in sectoral capital’s shares evolving in a pattern very similar to Figure 2B.    
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where i indexes sectors and 
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




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
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10 . Since our data represent a dynamic panel, the δis will 

be interpreted as sectoral fixed effects. A fixed effects model is most reasonable in this case for 

various reasons. First, our time series are stationary and we want to control for idiosyncratic 

industry effects rather than temporal effects. Second, even though we report the results of 

estimating a random effects model below as a check on robustness, Hausman tests indicate that 

the fixed effects estimates are more efficient. Lastly, we note the fixed effects models estimated 

and reported on below do not have significant residual autocorrelation.   

 From the KLEM data set, our computed capital’s shares will serve as α. (Labor’s share is 

(1 – α).) Our dependent variable in all regressions is the natural log of α/(1 – α). To compute 

relative factor price ratios, PK and PL will be used, respectively, as r and w.  

 The regressions we report on below all include the contemporaneous log of r/w and five 

lagged values of that variable.9 Column 1 of Table 3 reports fixed effects regression results of the 

baseline specification. Since most individual sector capital’s shares increase on net over the 1960 

to 2005 time period, column 2 also reports results when a time trend is included. Again, this time 

trend may proxy for trends in technology that are not induced by relative factor prices. (It may 

also proxy for trends in non-technical determinants, e.g., decreased bargaining power on the part 

of labor). In either specification, the coefficient on contemporaneous ln(r/w) is positive, 

significant at the 1 percent level, and implies a point estimate of the elasticity of substitution (σ) 

                                                 
9 Both the Akaike and Schwarz criteria (AIC and SIC respectively) continuously decrease through the inclusion of 
20 lagged terms. Such a large number of lags is unreasonable for a panel where T = 46. Also, a clear pattern emerges 
where the first two lagged terms of ln(r/w) and last lagged term have negative and significant estimated partial 
effects; all coefficients on intermediate lags are not significant. We report five lags based on a minimized SIC when 
a time trend is included. In regards to induced innovation, the most interesting finding is the robustness of a negative 
effect associated with the first two lags.  
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between 0.274 and 0.352. These point estimates are qualitatively consistent with the consensus 

view that US σ is less than unity (Chirinko, 2008).10 

 Relevant to the induced innovation hypothesis, the coefficients on the first and second 

lags of ln(r/w) are always negative at better than the 5 percent level of significance. They are of 

the opposite sign of the coefficient on contemporaneous ln(r/w). Given that σ is estimated to be 

less than zero, the opposite signs are consistent with induced innovation.  

 The third and fourth lags of ln(r/w) are not associated with statistically significant 

coefficient estimates. The coefficient on the fifth lag is statistically significant and negative at 

better than the 1 percent level when no time trend is included (column 1). However, the inclusion 

of a time trend decreases the absolute value of the point estimate decreases by nearly 80 percent 

(column 2). Statistical significance also decreases; the p-value is about 8.5 percent. This change 

in the size and significance of the fifth lag term due to inclusion of a time trend carries through 

all of our subsequent regression results. Because of this, the estimated effects of lags one and two 

of ln(r/w) appear to be the more interesting results in regards to induced innovation.  

 Returning for a moment to the statistically significant time trend, recall the relationship 

(5), derived from the CES production function: 
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The time trend is positive and the coefficient point estimate on contemporaneous (r/w) implies 

that γ is negative; thus (γ/(1 – γ)) is negative. One way, then, to account for the positive time 

trend is that there is net labor-augmentation over time, i.e., (AK/AL) is falling over time. This 

                                                 
10 The range of existing σ estimates covers much of the (exclusive) range from zero to unity. Chirinko and Mallick 
(2007) is one recent example of an estimate (0.33) quantitatively very close to our findings. 
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would be a not unreasonable conclusion and consistent with the well-known necessary condition 

for balanced growth in the neoclassical growth model (Jones and Scrimgeour, 2008). 

 Columns 3 and 4 of Table 3 report random effects results for specifications analogous to 

those for which columns 1 and 2, respectively, report results. A random effects model may be 

appropriate because while relevant cross-sectional unit is a sector, e.g., input price data for that 

sector comes largely from US Current Population Survey (CPS) data across establishments. 

Each survey is filled out with some unavoidable subjectivity on the part of those completing the 

survey. Therefore, sectoral effects may be random. On the other hand, we have data on all 

sectors in the population. Also, recall the arguments from above in favor of fixed effects 

including, importantly, the results of Hausman tests. Therefore, we view the Column 3 and 4 

results as a robustness check. In any case, no result changes in a meaningful way either 

qualitatively or quantitatively. The random effects results are essentially identical to the fixed 

effects results.    

 An immediate concern with our regressions is that they constraint the coefficients across 

sectors. This may be particularly implausible in regards to sectoral elasticity of substitutions. In 

this case, the variation across coefficients would be systematic, not random.11 To ameliorate this 

potential problem, we interact the effect of contemporaneous ln(r/w) with two dummy variables 

representing the broad sector groups of manufacturing and services. In other words, we modify 

our specification in the following way: 

(9)   
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11 This is, incidentally, a good argument for preferring a fixed effects model. 
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where DM,it (DS,it) = 1 if i is a manufacturing (services) sector; 0 otherwise. This specification at 

least allows the elasticity of substitution to differ systematically for each of these two broad 

sectors relative to the residual sectors.12 

 Columns 5 and 6 report fixed effects results for specification (9) without and with, 

respectively, a time trend added. The results are largely unchanged save for the fact that the 

general point estimate of σ increases to between 0.356 and 0.440. This is due to the fact that the 

manufacturing interaction is positive and statistically significant at better than the 1 percent level. 

This implies that the elasticity of substitution in manufacturing is slightly lower: between 0.243 

and 0.315.  (The services interaction term is much smaller and never statistically significant.) 

Importantly, the coefficients on the first and second lags of ln(r/w) are always negative and 

significant at better than the 95 percent level. 

 As one more robustness check, column 7 reports the same regression as column 6 except 

that the natural log of aggregate (i.e., the sum total across industries) value-added is included as a 

variable. Several authors (e.g., Boldrin and Horvath (1995), Gomme and Greenwood (1995), and 

Young (2004)) have noted that capital’s share exhibits weakly procyclical behavior. However, 

controlling for aggregate output has nearly no effect on our results despite the fact that its 

coefficient estimate is statistically significant at better than the 1 percent level. Furthermore, 

taking into account all of the other regressors, the estimated sign on aggregate value added is 

negative (-0.114). This can be contrasted to a fixed effects regression of our dependent variable 

on only (log of) total value-added. In that case the coefficient estimate is positive (0.110) and 

                                                 
12 We also explored a specification with an agriculture interaction dummy as well. However, agriculture is only a 
single sector (1) so there is a very small number of observations (41 using the five lags) available to estimate the 
interaction term. Also, the estimated agriculture interaction term implies a negative σ. Since this result is nonsensical 
and, importantly, none of the other coefficients reported in columns 5 and 6 below change in an economically or 
statistically significant was, we do not report those results. 
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significant at better than the 1 percent level. Indeed, the coefficient is nearly the mirror image of 

that reported in column 7 of Table 3.   

 To summarize the results reported in Table 3, (a) the coefficient estimates on 

contemporaneous ln(r/w) are positive, statistically significant, and consistent with quantitatively 

reasonable estimates of the US elasticity of substitution between labor and capital (σ); (b) 

negative, statistically significant effects associated with the first and second lags of ln(r/w) are 

robust across estimation techniques, inclusion of a time trend, and broad sector interactions; (c) 

the elasticity of substitution estimates combined with the opposite signs of contemporaneous 

versus lagged ln(r/w) effects is consistent with the induced innovation hypothesis.  

 Since we, and most of the literature, estimate US σ to be less than unity, an examination 

of industry-level ln(r/w)’s over time lends intuitive plausibility to the induced innovation story. 

As displayed in Figure 4, industry factor price ratios are typically decreasing during the 1960 to 

2005 time period. Since, 

   
 
 wrd

LKd

/ln

/ln
  

and 0 < σ < 1, all else equal we would expect that as (r/w) falls the capital to labor ratio (K/L) 

rises but not proportionately. Referring back to (2), capital’s shares should be falling. Since we 

know that this is not the case, induced labor-saving innovations are a reasonable countervailing 

force.   

 

5. Conclusions  

In this paper we used a production function framework to derive testable implications for the 

induced innovation hypothesis. Capital’s share of income is shown to be a function of both 

contemporaneous and lagged factor price ratios. The elasticity of substitution between labor and 
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capital is implied by the value of the coefficient on the contemporaneous price ratio. The value 

of the elasticity of substitution, in turn, tells us the predicted sign of coefficients on lagged price 

ratios. 

 We bring these testable implications to a panel of 35 US industries with annual 

observations from 1960 to 2005. A monotonic transformation of capital’s share is our dependent 

variable. The estimated coefficient on the contemporaneous factor price (of labor over that of 

capital) ratio implies an elasticity of substitution less than unity. This is consistent with the 

consensus view from the literature and implies that the coefficients on lagged factor price ratios 

should be negative. Indeed, our estimates of these coefficients are negative and statistically 

significant. These estimated induced innovation effects are robust to both fixed effects and 

random effects estimation techniques; inclusion or exclusion of a time trend; controlling for 

different elasticities of substitution in manufacturing versus services; and the inclusion of 

aggregate value-added to control for cyclical effects.   

 Despite the renewed interest in the theory of induced, factor-saving innovations (e.g., 

Zeira (1998), Acemoglu (2002), Boldrin and Levine (2002), Funk (2002), Zuleta (2008a) and 

Zuleta and Young (2010)), there is a paucity of formal evidence. Recent studies are often 

focused on a single industry (e.g., Thirtle et al. (2002) and Liu and Shumway (2009) for 

agriculture). On the other hand, a recent Popp (2002) uses patent data to link changes in energy 

prices to energy-saving innovation. However, our study is, to our knowledge, unique in being an 

economy wide study of induced innovation, based on a production function framework, and 

focused on the two major productive factors: capital and labor.  

 Empirical important induced innovation effects are not only supporting evidence for the 

theories cited above. If they exist, as suggested by our results, they may have important policy 
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implications. For example, the long-run neutrality; short-run non-neutrality of monetary policy is 

a mainstay of macroeconomics. However, monetary policy may, by affecting interest rates, alter 

relative factor prices for sustained periods of time. One interesting question is: to what extent 

does such policy induce innovation with lasting effects on the economy? This is just one 

interesting and related question and we leave its answer to future research.  
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TABLES 

TABLE 1–CHANGE IN INDUSTRY CAPITAL'S AND VALUE-ADDED SHARES: 1960 – 2005 

 
 
Industry  

 
 

Description 

 
Change in    

Capital's Share 

 
Change in Value-

Added Share 
1 Agriculture 0.156 -0.019 
2 Metal Mining 0.299 -0.002 
3 Coal Mining 0.469 -0.002 
4 Oil and Gas Extraction 0.098 -0.008 
5 Non-metallic Mining 0.204 -0.002 
6 Construction 0.126 -0.032 
7 Food and Kindred Products 0.177 -0.010 
8 Tobacco -0.067 -0.001 
9 Textile Mill Products 0.158 -0.008 
10 Apparel 0.027 -0.011 
11 Lumber and Wood 0.142 -0.003 
12 Furniture and Fixtures 0.001 -0.001 
13 Paper and Allied 0.020 -0.006 
14 Printing, Publishing and Allied 0.133 -0.005 
15 Chemicals 0.160 -0.004 
16 Petroleum and Coal Products 0.357 0.002 
17 Rubber & Miscellaneous Products 0.055 0.001 
18 Leather 0.087 -0.004 
19 Stone, Clay, Glass 0.065 -0.006 
20 Primary Metal 0.254 -0.016 
21 Fabricated Metal 0.217 -0.013 
22 Non-electrical Industry 0.011 -0.011 
23 Electrical Industry 0.087 -0.008 
24 Motor Vehicles -0.096 -0.008 
25 Transportation Equip & Ordinance 0.098 -0.009 
26 Instruments 0.026 0.001 
27 Miscellaneous Manufacturing 0.276 -0.003 
28 Transportation 0.117 -0.021 
29 Communications 0.132 0.006 
30 Electrical Utilities 0.061 0.004 
31 Gas Utilities 0.018 -0.003 
32 Trade 0.127 -0.029 
33 Finance, Insurance & Real Estate  0.014 0.069 
34 Services -0.054 0.157 
35 Government Enterprises   

Notes: Calculated from 35 annual industries' data, 1960 to2005. Capital's share is of annual value 
added. Shaded areas, from top to bottom, represent "Agriculture," "Manufacturing," and 
"Services" broad sector groupings. 
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TABLES (CONT.) 
 

TABLE 2 – SUMMARY STATISTICS FOR US BROAD SECTORS 
 

 
 
Statistic for 

 
Manufacturing 

 
Services 

 
Agriculture 

 
Capital's Share    
Mean 0.298 0.334 0.502 
σ 0.036 0.012 0.086 

ρx,Manufacturing 1.000 0.195 -0.198 

ρx,Services 0.195 1.000 0.352 

ρx,Agriculture -0.198 0.352 1.000 

Δ1960,2005 0.126 0.036 -0.156 

Value-Added Share    
Mean 0.263 0.490 0.030 
σ 0.041 0.070 0.007 

ρx,Manufacturing 1.000 -0.981 0.912 

ρx,Services -0.981 1.000 -0.911 

ρx,Agriculture 0.912 -0.911 1.000 

Δ1960,2005 -0.123 0.199 -0.019 
Notes: Data from 35-KLEM database.  Methodology described in Jorgenson et al (1987).  
Manufacturing includes "Food and Kindred Products," Tobacco," "Textile Mill Products," 
"Apparel," "Lumber and Wood," "Furniture and Fixtures," "Paper and Allied," "Print, Publishing 
& Allied," "Chemicals," "Petroleum and Coal Products," "Rubber and Miscellaneous Products," 
"Leather," "Stone, Clay and Glass," "Primary Metal," "Fabricated Metal," "Non-electrical 
Industry," "Electrical Industry," "Motor Vehicle," "Transportation Equipment and Ordinance," 
"Instruments," and "Miscellaneous Manufacturing" industries.  Services include "Services," 
"Trade," and "Finance, Insurance and Real Estate" industries. 
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TABLE 3 – REGRESSION RESULTS 

             
 Notes: Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

  

  (1) (2) (3) (4) (5) (6) (7) 

Variables 
Fixed 

Effects 
Fixed 

Effects 
Random 
Effects 

Random  
Effects 

Fixed  
Effects 

Fixed 
Effects 

Fixed 
Effects 

              

r/w 0.647*** 0.726*** 0.648*** 0.726*** 0.560*** 0.644*** 0.644*** 

(0.041) (0.032) (0.041) (0.031) (0.050) (0.039) (0.040) 
        

σ 0.352 0.274 0.352 0.274 0.440 0.356 0.356 

        

Manufacturing     0.125*** 
(0.040) 

0.112*** 

(0.031) 
0.108*** 
(0.031) 

Services     0.017 
(0.068) 

0.090* 

(0.089) 
0.093*

(0.054) 
        

σManufacturing     0.315 0.243 0.248 

σServices     0.423 0.266 0.263 

        

r/w(-1) -0.155*** -0.121*** -0.155*** -0.121*** -0.153*** -0.119*** -0.118***

 (0.053) (0.042) (0.053) (0.042) (0.053) (0.042) (0.042) 

r/w(-2) -0.151*** -0.096** -0.151*** -0.096** -0.149*** -0.095** -0.094***

 (0.053) (0.042) (0.053) (0.042) (0.053) (0.042) (0.042) 

r/w(-3) 0.005 0.041 0.005 0.041 0.007 0.043 0.041 

 (0.054) (0.043) (0.054) (0.043) (0.054) (0.042) (0.042) 

r/w(-4) -0.046 -0.025 -0.046 -0.025 -0.045 -0.026 -0.029 

 (0.055) (0.043) (0.055) (0.043) (0.055) (0.043) (0.043) 

r/w(-5) -0.257*** -0.058* -0.257*** -0.058* -0.255*** -0.058* -0.066**

 (0.042) (0.034) (0.042) (0.034) (0.042) (0.034) (0.034) 

     

Time Trend  0.018*** 0.018***  0.018*** 0.026***

  (0.001) (0.001)  (0.001) (0.003) 

Aggregate Value-      -0.114***

Added      (0.042) 

      

Observations 1435 1435 1435 1435 1435 1435 1435 

AIC 0.050 -0.434   0.044 -0.441 -0.449 

SIC 0.200 -0.279   0.202 -0.279 -0.284 

R2 0.915 0.948 0.239 0.0528 0.916 0.948 0.949 
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FIGURES 
 

FIGURE 1A – US BROAD SECTORAL CAPITAL’S SHARES 
 

 
 

FIGURE 1B – US BROAD SECTORAL CAPITAL’S SHARES (EXCLUDING AGRICULTURE) 
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FIGURES (CONT.) 

FIGURE 2 – US AGGREGATE CAPITAL’S SHARE 

 

 

FIGURE 3 – US MANUFACTURING AND SERVICES SECTOR VALUE-ADDED SHARES 
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FIGURES (CONT.) 

FIGURE 4 – NATURAL LOG OF FACTOR PRICE RATIO (r/w) FOR 35 US INDUSTRIES 
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