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Abstract
The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD)
could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. We recruited 78
individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest
multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the
PSEN1 gene and exhibit an AOO ranging from the early 1930s to the late 1970s. To shed light on the genetic underpinning that
could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with
neuroanatomical, cardiovascular, and cognitive measures in AD were genotyped. Standard quality control and filtering proce-
dures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO-associated SNPs. A full
two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. We identified two key epistatic
interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~
8 years (95% CI 3.2–12.7, P = 1.83 × 10−3) and ~ 7.6 years (95% CI 3.3–11.8, P = 8.69 × 10−4), respectively, and validated our
previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. This new evidence involving
APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to
potentially determine AOO in individuals genetically predisposed to AD.
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Introduction

The prevalence of Alzheimer’s disease (AD) continues grow-
ing at an alarming pace. In 2006, the number of patients with
AD was reported to be over 26.6 million worldwide, and it
could rise by approximately fourfold to over 106.2 million by
2050 [1]. This neurodegenerative condition is incurable and
constitutes a massive burden for patients, their families, and
the public health system.

Genetic isolates have shown to be a powerful tool for
the genetic mapping of inherited diseases [2]. For more
than three decades, we have been studying the world’s
largest known pedigree segregating AD in which the
E280A (p.Glu280Ala) mutation in the Presenilin-1
(PSEN1) gene causes early-onset AD [3, 4]. This pedigree
is genetically homogeneous, exhibits a high degree of
endogamy, and originated centuries ago as a consequence
of a founder effect during the colonizing of Colombia by
Spaniards [2–6]. To date, more than 5000 individuals de-
scend from the original founder, 1784 have been enrolled
in a comprehensive ongoing clinical monitoring study,
and 1181 individuals have been genotyped (459 carry
the PSEN1 E280A mutation) [3]. Although the median
Alzheimer’s disease age of onset (ADAOO) in this men-
tioned pedigree is ~ 49 years [3], it varies from the early
30s to the late 70s in some individuals [3, 7–10]. It is
hypothesized that this substantial variation in the
ADAOO is the result of interactions between PSEN1
and other key genes to modify ADAOO, and that this
modification results in some members of this pedigree
developing signs and symptoms of AD at an earlier or later
age than other members (that is, these gene interactions with
PSEN1 either accelerate or decelerate ADAOO).

In a recent study, we performed a pooling/resampling-
based genome-wide association study (GWAS) and success-
fully identified both known and novel loci associated with
ADAOO in individuals with the E280A mutation, including
DAOA, NPHP1, CLUAP1, EXOC2, CADPS2, GREM2, and
CD44 [7]. Subsequent genetic studies in PSEN1 E280A mu-
tation carriers identified functional exonic variants within
some of these genes [9] and demonstrated that the
APOE*E2 allele (rs7412, P = 5.44 × 10−35, PFDR = 2.13 ×
10−30) delays ADAOO by ~ 12 years [8]. Interestingly, in a
separate study, we also reported an exonic missense mutation
in the DAOA gene (rs2391191, P = 1.94 × 10−4) that was
found to delay the ADAOO in patients from the Paisa cohort
in ~ 4 years [9]. It is also noteworthy to remark that the variant
SH3RF3-rs6542814, flanking NPHP1, delays ADAOO by ~
9 years [11], and the presence of two copies of the rare allele in
NPHP1-rs906815 (rs906815, P = 4.51 × 10−6) accelerates
ADAOO by ~ 21 years compared to the common allele in
Caribbean Hispanic families carrying the PSEN1 G206A mu-
tation [12].

Since cognitive function and decline are highly polygenic
traits where a large number of genetic factors of small effect
are involved, it is difficult to find associations between these
factors and clinical outcomes assessing cognition or cognitive
decline [13, 14]. One of the standard methods to overcome
this issue is to increase the sample size and subsequently in-
crease the power to detect small effect sizes. Another possible
approach is to perform targeted analysis by employing specif-
ic genetic markers that could be relevant to AD.

In the present study, we screened 78 individuals from the
above-described pedigree and genotyped 65 single nucleotide
polymorphisms (SNPs) previously reported to be associated
with dementia and cognition. These SNPs showed association
with neuroanatomical differences in brain areas that play es-
sential roles in cognition such as the hippocampus, or that
were related with hypertension because common genetic links
appear to occur between AD and cardiovascular disease
(Supplementary Table 1). We successfully replicated the asso-
ciation between the APOE*E2 allele and ADAOO, found two
novel variants that also delay the age of onset of this patho-
logical condition, and identified epistatic interactions between
the APOE*E2 allele and variants within the Astrotactin 2
(ASTN2) and Syntrophin, Gamma 1 (SNTG1) genes that dra-
matically delay the ADAOO in PSEN1 E280A mutation
carriers.

Methods

Subjects

Seventy-eight individuals with AD (47 [60%] women, 31men
[40%]) carrying the PSEN1 E280A mutation from the
Metropolitan Area of Medellin in Antioquia, Colombia, were
included in this study. Genetic studies have shown that this
community has not been subject to microdifferentiation [2, 5].
Clinical, neurological, and neuropsychological assessments at
the Group of Neurosciences ADClinic used a Spanish version
of The Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD) evaluation battery [15] adapted for the cul-
tural and linguistic characteristics specific to this population
[3, 16–18]. Mild cognitive impairment (MCI) and AD affec-
tion status were defined based on Petersen’s and DSM-IV
criteria, respectively [19, 20]. The Ethics Committee of the
University of Antioquia approved this study (Protocol 1115-
408-20543). Informed consent was obtained from all
participants.

DNA Extraction and SNP Genotyping

Genomic DNA was extracted from peripheral blood, and
whole-genome amplified, fragmented, hybridized, fluores-
cently tagged, and scanned using the Infinium assay [21].
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Sixty-four SNPs were selected based on previous associ-
ations with dementia, cognition, neuroanatomical differ-
ences, and blood pressure (Supplementary Table 1), and
further selected in our sample. Genomic DNA was nor-
malized to a concentration of ~ 50 ng/μl, and 2.5 μL of
genomic DNA was mixed with 2.5 μL TaqMan
OpenArray Master Mix. The resulting samples were dis-
pensed using the OpenArray® AccuFill™ System onto
OpenArray plates with each plate containing 48 samples
and 65 SNP assays per sample. The QuantStudio™ 12K
Flex instrument (Applied Biosystems, Carlsbad, CA,
USA) was used to perform the real-time PCR reactions
on the loaded OpenArray plates. The fluorescence emis-
sion results were read using the OpenArray® SNP
Genotyping Analysis software v1 (Applied Biosystems),
and the genotyping analysis performed using TaqMan®
Genotyper v1.3 with the auto call feature and the default
settings.

Genetic Association Analysis

Genotypes for the selected SNPs were processed, subject
to quality control and association analysis performed using
Golden Helix® SNP Variation Suite (SVS) 8.3.2 (Golden
Helix, Inc. Bozeman, MT, USA). Quality control exclusion
criteria included (i) deviations from Hardy-Weinberg equi-
librium with P < 0.05/m (where m is the number of markers
included for analysis), (ii) a minimum genotype call rate of
90%, (iii) the presence of one or more than two alleles, and
(iv) a minor allele frequency (MAF) < 1% to exclude rare
variants [22]. Genotype and allelic frequencies were esti-
mated by maximum likelihood, and the identity by descent
(IBD) matrix between all pairs of individuals was used for
quality control.

Single- and multi-locus additive, dominant and recessive
linear mixed-effect models (LMEMs) with up to 10 steps in
the backward/forward optimization algorithm [23–25] were
used to study the association between ADAOO and the afore-
mentioned SNPs. The advantage of these models is the inclu-
sion of both fixed (sex and years of education) and random
effects, the latter to account for potential inbreeding (which, in
our case, was estimated using the IBD matrix described
above). A single-locus LMEM assumes that all loci have a
small effect on the trait, while a multi-locus LMEM assumes
that several loci have a large effect on the trait [25]. The op-
timal model was selected using a comprehensive exploration
of multiple criteria (see [8–10] for more information). After
the estimation procedure completed, the P values associated

with the LMEM coefficients β̂1; β̂2;…; β̂m were extracted
and corrected for multiple testing using the false discovery
rate (FDR) [26] and a method based on extreme-values theory
[27].

Effect of SNP × SNP Interactions on ADAOO

We evaluated potential SNP × SNP interactions between
markers modifying ADAOO in carriers of the E280A muta-
tion using a modified version of the full two-locus epistatic
model [28–30]. Conceptually, the analysis of SNP × SNP in-
teractions intends to determine whether the joint effect of two
SNPs on the ADAOO is greater than that of either marker
alone. For each pair of markers found to modify ADAOO in
our patients, the ADAOO was compared at each genotype
combination after correcting for potential confounding vari-
ables. Since the maximum number of genotype combinations
is nine, it is likely that the sample size at each of these com-
binations is small. To overcome this, a nonparametric boot-
strap [31, 32] procedure with B = 10,000 replicates was im-
plemented to derive permutation-based P values for these
comparisons.

Results

ADAOO Distribution

The average ADAOO in all PSEN1 E280A mutation carriers
was 48.8 ± 4.9 years (blue vertical line, Fig. 1a). Mean
ADAOO did not differ significantly by gender (P = 0.55,
Fig. 1b). A total of 37 patients (20 women [54%] and 17
men [46%]) had an ADAOO < 48 years [7]. Years of educa-
tion ranged between 0 and 16 years; four patients (5%) never
attended school, 43 (55%) finished elementary school (grades
1 to 5), 26 (34%) finished high school (grades 6 to 11, inclu-
sive), and 5 (6%) had tertiary education. The average
ADAOO differed across education groups (F3,74 = 3.724,
P = 0.015) (Fig. 1b). However, closer inspection of the data
revealed that this effect was a consequence of the APOE*E2
allele in a 66-year-old male who never attended school. After
excluding individuals that did not attend school, the effect of
education groups on the ADAOO was no longer statistically
significant (F2,71 = 0.373, P = 0.690). Thirty-seven (47%) in-
dividuals developed AD earlier than the average for this pop-
ulation (ADAOO < 48 years; early onset) and 41 developed
late-onset AD (ADAOO ≥ 48 years). The average ADAOO
was statistically different between these groups (early onset
44.8 ± 1.9, late onset 52.5 ± 3.9, P < 2.5 × 10−16, Fig. 1b). No
association between gender (P = 0.979, Fig. 1b) or years of
education was found (R2 = 0.028, P = 0.076, Fig. 1b).

ADAOO-Associated SNPs

A dominant multi-locus LMEM with three steps in the
forward/backward selection algorithm [25] was selected based
on the mPPA and pseudo-heritability criteria. This oligogenic
model includes variants rs7412 (APOE, P = 1.94 × 10−4,
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PFDR = 9.34 × 10−3, Table 1), rs7852878 (ASTN2, P = 1.94 ×
10−4, PFDR = 9.34 × 10−3, Table 1), and rs16914781 (SNTG1,
P = 1.94 × 10−4, PFDR = 9.34 × 10−3, Table 1), which explains
~ 43% of the ADAOO variance. The proportion of the
ADAOO variance explained by each marker is ~ 24, ~ 13,
and ~ 8% for rs7412, rs7852872, and rs16914781,

respectively. No gender- or education-specific effect of these
SNPs was found (Table 1). Because all estimated β coeffi-
cients from this model are positive (Table 1), these alleles
delay the ADAOO in our sample of PSEN1 E280A mutation
carriers. In particular, individuals with the C/T genotype in
APOE-rs7412 (that is, the APOE*E2 allele) have an
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Fig. 1 a ADAOO distribution in 78 patients with Alzheimer’s disease
carrying the PSEN1 E280A mutation. Notice the presence of two hidden
groups with an average ADAOO of ~ 46 and ~ 51 years old, respectively.
To identify these groups, a mixture of two Gaussian distributions was
fitted as implemented in the mixtools [33] package for R [34]; the
number of hidden groups was determined based on the log-likelihood

criterion (the lowest the better). The blue vertical line is at ~ 48 years,
which corresponds to the average ADAOO in our sample. Box and violin
plots for the ADAOO by b gender, c early onset, and d education group.
Only differences in the average ADAOO were found by AD status. e
ADAOO as a function of the years of education. ADAlzheimer’s disease,
ADAOO Alzheimer’s disease age of onset

Table 1 Results of the association analysis for ADAOO in 78 patients with PSEN1 E280A Alzheimer’s disease (a). Proportion of variance explained
and gender- and education-specific effects of ADAOO associated SNPs (b)

(a)

Chr SNPa Position Gene Marker information Multi-locus linear mixed-effects model

Ref/Alt MA (Freq) CR Change β (SEβ) P PFDR
19 rs7412 45,412,078 APOE C/T T (0.046) 0.974 p.Arg176Cys 8.213 (1.505) 6.48 × 10−7 4.21 × 10−5

9 rs7852872 119,249,338 ASTN2 C/G G (0.396) 0.987 Intronic 3.684 (0.881) 8.10 × 10−5 2.63 × 10−3

8 rs16914781 51,287,481 SNTG1 A/G G (0.339) 1.000 Intronic 3.273 (0.872) 3.52 × 10−4 7.62 × 10−3

(b)

SNPa PVE Sex Education group

χ2 df P χ2 df P

rs7412 0.239 0.023 2 0.989 4.303 6 0.636

rs7852872 0.133 1.041 1 0.308 2.681 3 0.443

rs16914781 0.076 0.939 2 0.625 6.331 6 0.387

aUCSC GRCh37/hg19 coordinates

ADAOO Alzheimer’s disease age of onset, Chr chromosome, SNP single nucleotide polymorphism, Ref/Alt reference/alternate allele,MA minor allele,
Freq frequency,CR call rate, β regression coefficient, SEβ standard error of β, PP value,FDR false discovery rate,PVE proportion of variance explained,
χ2 test statistic, df degrees of freedom
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ADAOO ~ 8 years later than that of individuals with the C/C

genotype (β̂ ¼ 8:21; ŜEβ̂ = 1.5; Table 1a and Fig. 2a).

Likewise, PSEN1 E280A mutation carriers with C/G or G/G
in ASTN2-rs7852878 have an ADAOO ~ 3.7 years later com-

pared to that of C/C individuals (β̂ ¼ 3:68; ŜEβ̂ = 0.88;

Table 1 and Fig. 2a). In addition, members of this pedigree
with the G/G genotype in SNTG1-rs16914781 have a ~
3.3 years delay in the ADAOO compared to those with A/A

or A/G (β̂ ¼ 3:27; ŜEβ̂ = 0.872; Table 1 and Fig. 2a).

Effect of the APOE*E2×ASTN2 and APOE*E2×SNTG1
Interactions on ADAOO

The presence of the APOE*E2 allele in E280A mutation
carriers was found to delay ADAOO by ~ 8.1 years (95%
CI 4.65–11.58, P = 1.37 × 10−5) (Fig. 2b). A similar effect
was observed when this same allele interacts with markers
ASTN2-rs7852878 and SNTG1-rs16914781, which

suggests an epistatic mechanism between APOE*E2 and
ASTN2 (Fig. 2b), and between APOE*E2 and SNTG1
(Fig. 2b) to modify the ADAOO in carriers of the
E280A mutation. In particular, the ADAOO in individuals
with the APOE*E2 allele and C/G genotype in ASTN2-
rs7852878 is ~ 8 years (95% CI 3.2–12.7, P = 1.83 × 10−3)
later than that of individuals lacking the APOE*E2 allele
(Fig. 2b). Similarly, those with C/C in ASTN2-rs7852878
carrying the APOE*E2 allele have an ADAOO ~ 6.6 years
(9% CI 1.2–11.9, P = 0.017) later compared to non-
carriers (Fig. 2b). Conversely, individuals with the A/A
genotype in SNTG1-rs16914781 carrying the APOE*E2
allele have an ADAOO ~ 7.6 years (95% CI 3.3–11.8,
P = 8.69 × 10−4) later than that observed in non-carriers
(Fig. 2b), and the presence of the APOE*E2 allele delayed
the ADAOO in ~ 11 years (95% CI 6.6–15.2, P = 1.7 ×
10−5) in individuals with the A/G genotype in SNTG1-
rs16914781 (Fig. 2b). We found no effect of the
ASTN2×SNTG1 interaction on the ADAOO.
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Fig. 2 a Effect of the presence of the APOE*E2 allele, and the
genotypes in rs7852872-ASTN2 and rs16914781-SNTG1 on
ADAOO. A two-sample t test indicates the presence of the
APOE*E2 allele increases the ADAOO by ~ 8.1 years (t72 = 4.67,
95% CI 4.6–11.6, P = 1.37 × 10−6). Pink, blue, and dotted horizontal
lines are, respectively, the within genotype average ADAOO, the

individuals’ ADAOO, and the global average ADAOO in our
sample. b Effect of the APOE*E2×ASTN2 and APOE*E2×SNTG1
interactions on ADAOO. Green lines symbolize protection, red lines
susceptibility, and the gray line the average ADAOO in our sample.
Note that the APOE*E2 allele delays ADAOO regardless of the
interacting marker. Abbreviations as in Fig. 1
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Discussion

In this study, we targeted neuroanatomical, cardiovascular,
and cognitive-associated markers in familial AD from the
Paisa community, a genetic isolate from Antioquia,
Colombia. Even though several GWAS studies have provided
a potential list of a handful of putative candidate genes for
sporadic AD (i.e., an age of onset > 65 years), most of those
genes failed in their replication. It is well known that hetero-
geneity of genetic and environmental background could large-
ly account for this apparent discrepancy. Thus, to increase
power in our analyses, our approach was aimed at performing
a targeted analysis in a multigenerational family from a local
community that is exposed to a quite homogenous environ-
ment. More specifically, we employed 65 genetic markers
related to Alzheimer’s disease in a large family from the local
Paisa community that originated from a common ancestor
from Northern Spain during the 1500s. In this community,
Alzheimer’s disease is quite common as a result of the high
frequency of the autosomal dominant and fully penetrant
PSEN1 E280A allele. Our main goal was to shed light on
the genetic underpinning that could explain the large spread
of the age of onset of AD that ranks from the early 1930s to
late 1970s.

This cohort was also subjected to two earlier preliminary
studies in which smaller sample sizes were employed, and
different outcomes were observed [35, 36]. Since the time
those studies were performed, more E280A carriers have been
identified. Hence, here we expanded the sample to detect new
genes that could explain the widespread of the ADAOO ob-
served in E280A carriers. Our present data show that the pres-
ence of the APOE*E2 allele confers protection by delaying the
ADAOO by ~ 8.2 years (95% CI 5.2–11.2, P = 4.21 × 10−5;
Fig. 2a), which confirms our most recent reported finding in a
sample of 71 PSEN1 E280A mutation carriers displaying an
extreme ADAOO [8]. Basically, by increasing the sample size
to 78 patients carrying the E280A mutation, in the present
study, we corroborated the decelerating APOE*E2 effect on
ADAOOpreviously shown in individuals from the Paisa com-
munity [8]. Power analyses indicate that, overall, the ADAOO
can be safely tested using our current sample size (see
Supplementary Material).

Collectively, previous and current work in this genetic iso-
late suggests that the ADAOO accelerating and decelerating
effects conferred by the APOE*E4 and APOE*E2 alleles, re-
spectively, become evident. Therefore, our results provide
convincing evidence that not only does the APOE*E2 allele
exert a protective role in the onset of AD in sporadic patients
[37, 38], but also in the PSEN1 E280A familial cases.

The role of beta-amyloid (Aβ) in AD has been openly
challenged [39–41]. One of the primary reasons is that there
is evidence showing that Aβ deposition rises with healthy
aging and its increase is not necessarily correlated with the

onset of dementia and the progression to AD [41, 42].
However, it is noteworthy to remark that patients with familial
Alzheimer’s disease display fibrillar Aβ pathology several
years before symptoms onset [43]. For instance, by employing
florbetapir PET analyses, Fleisher et al. showed that individ-
uals from the Antioquia cohort carrying the PSEN1 E280A
mutation showed evident accumulation of fibrillar Aβ at a
mean age of 28.2 years, which was approximately 16 and
21 years before the expectedMCI and dementia onset, respec-
tively [44]. Thus, it appears that fibrillar Aβ pathology could
represent an early preclinical stage of AD. Another piece of
evidence supporting that Aβ is involved in the pathogenesis
of AD is the fact that the three well-known genes that cause a
dominant Mendelian form of familial AD (APP, PSEN1, and
PSEN2) are involved in the processing of Aβ peptides
[45–47]. Aβ peptides vary between 37 and 43 amino acids
in length depending on the γ-secretase cleavage site.
Mounting evidence suggests that the majority of early-onset
familial ADmutations inAPP, PSEN1, and PSEN2 elevate the
Aβ1–42:Aβ1–40 ratio, which favors the aggregation of neu-
rotoxic oligomeric assemblies of Aβ. It is considered that
Aβ1–42 is more amyloidogenic than other Aβ peptides,
which assemble into soluble Aβ oligomers that are thought
to cause synaptic loss and a progressive cognitive decline in
AD [48]. Aβ1–42 oligomers can elicit an inflammatory cas-
cade by triggering the activation of microglia [49]. Moreover,
Aβ oligomers associate with membrane proteins in synapses
[50] and astrocytes [51]. In post-synaptic, neurons increase the
Ca2+ concentration causing inflammation and cell death [50].
Post-mortem studies carried in brain tissue from the E280A
kindred suggest that their PSEN1 mutation selectively in-
creases the processing of the amyloidogenic peptide Aβ1–
42 [47]. Mounting evidence suggests that there are links be-
tween Aβ and tau in the pathogenesis of AD [52–54]. Aβ
promotes abnormal tau phosphorylation and aggregation into
neurofibrillary tangles, which is associated with neuronal tox-
icity and impaired cognition in AD. For instance, in functional
studies employing transgenic animal models and neuronal cell
culture, it was found that a 56-kDa amyloid oligomer elicited
an influx in intracellular Ca2+ that triggered phosphorylation
of tau at a site that promoted its aggregation [55]. This recent
finding expands previous evidence supporting a possible link
between Aβ and tau in the pathogenesis of AD [52–54].

In this context, it can be argued that the APOE*E2 variant
might cause a beneficial impact on AD by improving the
clearance of central Aβ, and consequently delay the onset of
AD [56]. On the other hand, the APOE*E4 variant accelerates
the ADAOO since it performs poorly in the clearance of Aβ
peptides thereby favoring the formation of aggregates and the
occurrence of the disease [57, 58].

Marker rs7852878, harbored in ASTN2, was also found to
delay ADAOO in individuals with AD carrying the E280A
mutation. ASTN2 is an integral membrane protein that
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participates in glial-guided neuronal migrations and is largely
expressed within the hippocampus [59]. Genomic variants in
genes engaged in neuronal migration processes have been
linked to several neurocognitive and psychiatric disorders. For
instance, genes casually linked to schizophrenia such as
Disrupted in schizophrenia-1 (DISC1), Reelin, neuroregulin
(NRG), and its receptor, ERBB4, control neuronal migration
during brain development [60]. Likewise, genes linked to
ADHD (LPHN3) [61, 62], autism (YWHAZ) [63], and depres-
sive behavior (BDNF) [64] also control neuronal fate within
different brain regions. Interestingly, SNPs within ASTN2 have
been associated with cognitive decline and reduced hippocam-
pal volume [65, 66] and several psychiatric conditions such as
schizophrenia [67, 68], ADHD [69], and bipolar disorder [68].
More recently, genetic variants within ASTN2 have been asso-
ciated with ADAOO in late-onset AD [70].

We found that marker rs16914781 within SNTG1 delays
ADAOO by ~ 3.2 years in individuals carrying the PSEN1
E280A mutation (Table 1). SNTG1 belongs to the syntrophin
family; it is an adapter protein that participates in the subcel-
lular organization of several proteins. It also mediates gamma-
enolase trafficking to the plasma membrane and is involved in
neurotrophic signaling [71]. SNTG1 is expressed exclusively
in neurons, including Purkinje cells, hippocampal pyramidal
cells, and in multiple cortical regions, where it could be
playing important roles in the pathophysiology of AD and
other neurodegenerative/neuropsychiatric conditions [59,
72]. SNTG1 has been reported as a highly penetrant recessive
locus in schizophrenia [72], and as AOOmodifier gene in AD
[7]. More recently, a circular RNA hotspot involving SNTG1
has recently been identified inmultiple system atrophy (MSA)
[73], a neurodegenerative disorder causing parkinsonism, cer-
ebellar ataxia, and autonomic, urogenital, and pyramidal dys-
function in various combinations. Previously, a case report
displayed an association of MSA and AD [74]. SNTG1 has
also been implicated in obstructive sleep apnea [75], a condi-
tion that is highly prevalent in patients with Alzheimer’s dis-
ease [76].

To the best of our knowledge, we are the first to demon-
strate a significant association between variants within ASTN2
and SNTG1, and ADAOO in individuals with familial AD
caused by a fully penetrant mutation. Our study suggests that
the genetic variants described here exert a protective effect by
delaying ADAOO up to ~ 3.7 years (Table 1); this value in-
creases to ~ 11 years when the APOE*E2 allele is present
(Fig. 2a). Future studies need to be performed to address the
underlying action mechanism describing the interaction be-
tween ASTN2 and PSEN1, and between STNG1 and PSEN1.
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