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a b s t r a c t

Point processes with alternating arrival rates arise in various applications, including finan-
cial modelling. We obtain explicit expressions for the distributions of these processes, i.e.
for the sums

n
m=1 X

(m) and
n

m=1(−1)mX (m),where X (m) are independent exponentially
distributed random variables with alternating parameters.

The distribution of the compound Poisson process with Markov modulation and with
exponentially distributed jumps is also studied.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Sums of independent and identically (exponentially) distributed randomvariables having the Erlang distribution arewell
studied. Randommotions with constant velocities alternating at Erlang-distributed times have been studied in Di Crescenzo
(2001).

If all terms have different exponential distributions, the distribution is called a generalised Erlang (or hypo-exponential),
and this case is also well known, see e.g. Ross (2007).

However, the case of a sum of the exponentially distributed terms with alternating parameters is not studied. This case
is important for applications, notably for financial modelling, see e.g. Ratanov (2007) and Kolesnik and Ratanov (2013).
The complete and arbitrage-free market models based on the Poisson (Cox) processes with alternating random switching
intensities have been studied by Ratanov (2014). The financialmarketmodels based on the telegraph processeswith random
jumps (e.g. with the exponentially distributed jumps) have been studied before by López et al. (2012) and Ratanov (2015),
see also Ratanov (2013). Some generalisation of the hypo-exponential distribution recently appears for reliabilitymodelling,
see Saboor et al. (2015).

This paper concerns the two main different cases: the hypo-exponential distribution with the terms of the same sign
and the hypo-exponential distribution with alternating signs of summands. The distributions of terms are assumed to be
alternating. The analysis is based on convolutions of the standard Erlang distributions. These convolutions are expressed
explicitly by the confluent hypergeometric Kummer functions (if the jumps have the same signs) and by the Bessel
polynomials (if the jumps have alternating signs).
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The compound Poisson processes (with Poisson subordinator and with i.i.d. jumps) are recently studied by Di Crescenzo
et al. (2015). The present paper generalises some of the results Di Crescenzo et al. (2015) to the case with alternating
parameters.

Then, we study the marginal distributions of a Markov modulated compound Poisson process with alternating
parameters. The similar problems on the Markov modulated compound Poisson process are studied by Xu et al. (2015) by
applying the double Laplace transform with respect to the level and time of the process. See there some numerical results
and plots of the marginal distributions.

In the present paper we study the distributions of the alternating sums of the exponentially distributed independent
random variables by direct methods. As a by-product we collect some useful explicit formulae.

In Section 2 we get hypo-exponential distributions with alternating parameters. The cases with the same and with
alternating signs are discussed separately. In Sections 3 and 4 we study various forms of compound Poisson processes with
alternating states by applying the results of Section 2.

2. Hypo-exponential distributions with alternating parameters

Let X (n), n ≥ 1, be independent random variables, which are distributed with alternating cumulative distribution
functions G0 and G1. Consider the jump process

X (+,n) = X (1) + X (2) + · · · + X (n), n ≥ 1. (2.1)

Assume that X (+,0) = 0. Note that the cumulative distribution function of the sum X (+,n), n ≥ 1, is given by the n-fold
convolution of alternating G0 and G1 (beginning with Gk), G

(∗,n)
k (x) = Gk ∗ G1−k ∗ Gk ∗ · · · ∗ Gσn,k  

n

, and g(∗,n)k = g(·; n;Gk,

G1−k) are the corresponding density functions, k ∈ {0, 1}. Here σn,k = k, if n is odd, and σn,k = 1 − k, if n is even.
By symmetry, g(x; 2n;G0,G1) ≡ g(x; 2n;G1,G0).
In this section we provide explicit formulae for the distribution of the jump process X (+,n), assuming the alternating

exponential distributions of jumps X (n). Consider first the process with positive jumps.

2.1. Positive exponential jumps

If X (n), n ≥ 1, are identically and exponentially distributed, G0(x) ≡ G1(x) = (1 − e−ax)1{x>0}, the variable X (+,n) has
the standard Erlang-n distribution with the density function

f (x; n; a) =
anxn−1

(n − 1)!
e−ax1{x>0}. (2.2)

If the alternating exponential distributions G0 and G1 are different, G0 ≠ G1, we say, that the distribution of X (+,n) is the
generalised Erlang (or hypo-exponential) distribution with alternating intensities.

Proposition 2.1. Let jumps X (n) be positive and exponentially distributed with the alternating cumulative distribution functions

G0(x) = (1 − exp(−a0x))1{x>0} and G1(x) = (1 − exp(−a1x))1{x>0}, a0, a1 > 0.

The density functions g(·; n;G0,G1) of X (+,n) are given by

g(x; n;G0,G1) = a(×,n)0 ·
xn−1

(n − 1)!
exp(−a0x)Φ ([n/2] ; n; (a0 − a1)x)1{x>0}, n ≥ 1. (2.3)

Here

a(×,n)0 := a0 · a1 · a0 · . . . · aσn,0  
n

=


an/20 an/21 , if n is even

a(n+1)/2
0 a(n−1)/2

1 , if n is odd,

[n/2] is the integer part of n/2 andΦ(·; ·; z) is the confluent hypergeometric Kummer function.

Note that the identity g(x; 2n;G0,G1) ≡ g(x; 2n;G1,G0) (which is valid by symmetry) follows from (2.3) by formula
(9.212.1), Gradshteyn and Ryzhik (1980). Moreover, by (2.3) with n = 1 we have, see (9.211.2), Gradshteyn and Ryzhik
(1980),

g(x; 2;G0,G1) ≡ g(x; 2;G1,G0) =
a0a1

a0 − a1


e−a1x − e−a0x


1{x>0},

which is the well-known two-phase hypo-exponential distribution, see e.g. Ross (2007). If a0 = a1, formula (2.3) coincides
with the standard Erlang-n distribution, (2.2).
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Proof. We prove (2.3) with an even number of jumps, in the case of an odd n the proof is similar.
The density function g(·; 2n;G0,G1) is represented by convolution of two Erlang-n densities, (2.2),

g(x; 2n;G0,G1) = g(x; 2n;G1,G0) =

 x

0
f (x − y; n; a0)f (y; n; a1)dy

=
an0a

n
1

[(n − 1)!]2
e−a0x

 x

0
(x − y)n−1yn−1e(a0−a1)ydy, x > 0. (2.4)

By applying (3.383.1), Gradshteyn and Ryzhik (1980)we obtain formula (2.3) for the sumwith an even number of terms. �

Remark 2.1. Let G0(x) = (1 − exp(−a0x))1{x>0} and G1(x) = (1 − exp(−a1x))1{x>0}, a0, a1 > 0. Note that conditioning
on the first arrival we have

g(x; n;G0,G1) =

 x

0
a0e−a0yg(x − y; n − 1;G1,G0)dy, n ≥ 1. (2.5)

The set of the integral equations (2.5) is equivalent to

ĝ(ξ ; n;G0,G1) =
a0

ξ + a0
ĝ(ξ ; n − 1;G1,G0), n ≥ 1, (2.6)

where ĝ(ξ) =


∞

0 e−ξxg(x)dx is the Laplace transform.
Since X (+,0) = 0, system (2.6) is supplied with the initial equation ĝ(ξ ; 0;G0,G1) = 1. One can easily obtain the solution

of (2.6):

ĝ(ξ ; n;G0,G1) =
a(×,n)0

(ξ + a0)(×,n)
, n ≥ 1. (2.7)

By applying the inverse Laplace transform to (2.7) one can get the different proof of (2.3).

2.2. Exponential jumps with alternating signs

Bearing in mind financial applications assume jumps X (n) in (2.1) to be of alternating signs. Let

G0(x) =


exp(a0x), if x < 0
1, if x > 0 , G1(x) = (1 − exp(−a1x))1{x>0} (2.8)

be their cumulative distribution functions.
We express the density functions of X (+,n) by the Bessel polynomial

yn−1(z) :=

n−1
m=0

(n + m − 1)!
m!(n − m − 1)!

(z/2)m, n ≥ 1,

(see Krall and Frink (1948)), and its derivative y′

n−1(z) =
1
2

n−1
m=1

(n+m−1)!
(m−1)!(n−m−1)! (z/2)

m−1.

Proposition 2.2. The density functions g(x; n;G0,G1) are given by

g(x; 2n;G0,G1) = hn(x)yn−1(α(x)), (2.9)

g(x; 2n + 1;G0,G1) =
a0

a0 + a1
hn(x)


yn−1(α(x))+

α(x)
n

y′

n−1(α(x)), x > 0,
1 +

2
nα(x)


yn−1(α(x))+

α(x)
n

y′

n−1(α(x)), x < 0,
(2.10)

g(x; 2n + 1;G1,G0) =
a1

a0 + a1
hn(x)



1 +

2
nα(x)


yn−1(α(x))+

α(x)
n

y′

n−1(α(x)), x > 0,

yn−1(α(x))+
α(x)
n

y′

n−1(α(x)), x < 0,
(2.11)

n ≥ 1. Here α(x) =
2

(a0+a1)|x|
, hn(x) =

an0a
n
1

(a0+a1)n
|x|n−1θ(x)
(n−1)! and θ(x) =


e−a1x, if x > 0
ea0x, if x < 0 .

Note that the density functions (2.9) with n = 1 correspond to the asymmetric Laplace distribution, Kotz et al. (2001),

g(x; 2;G0,G1) =
a0a1

a0 + a1
θ(x), −∞ < x < ∞. (2.12)
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Proof. Similarly to the proof of the previous proposition, see (2.4), we obtain formulae (2.9)–(2.10) by the convolution of
two Erlang distributions. For instance, in the case of even number of jumps,

g(x; 2n;G0,G1) = g(x; 2n;G1,G0) =




∞

0
f (y; n; a0)f (x + y; n; a1)dy, if x > 0,

∞

0
f (y; n; a1)f (−x + y; n; a0)dy, if x < 0,

where f is the Erlang density (2.2).
If x > 0, we have

g(x; 2n;G0,G1) = g(x; 2n;G1,G0) =
an0a

n
1

[(n − 1)!]2
e−a1x


∞

0
(x + y)n−1yn−1e−(a0+a1)ydy

=
an0a

n
1

[(n − 1)!]2
x2n−1e−a1x

n−1
m=0

(n − 1)!
m!(n − m − 1)!


∞

0
yn+m−1e−(a0+a1)xydy

=
an0a

n
1

(n − 1)!
x2n−1e−a1x

n−1
m=0

(n + m − 1)!
m!(n − m − 1)!

[(a0 + a1)x]−n−m,

which gives (2.9) (for x > 0). In the case of x < 0 we proceed similarly.
Likewise, we obtain for n ≥ 1

g(x; 2n + 1;G0,G1) =




∞

0
f (y; n + 1; a0)f (x + y; n; a1)dy, if x > 0,

∞

0
f (y; n; a1)f (−x + y; n + 1; a0)dy, if x < 0,

(2.13)

and

g(x; 2n + 1;G1,G0) =




∞

0
f (y; n; a0)f (x + y; n + 1; a1)dy, if x > 0,

∞

0
f (y; n + 1; a1)f (−x + y; n; a0)dy, if x < 0.

(2.14)

We complete the proof by applying to formulae (2.13)–(2.14) the manipulations similar to the case of even number of
jumps. �

Remark 2.2. Note, that if the independent jumps X (n) are identically distributed with the asymmetric Laplace distribution
(the density function is g(x) =

a0a1
a0+a1

θ(x), − ∞ < x < ∞, a0, a1 > 0, see (2.12)), then the density functions of X (+,n) are
given by (2.9).

Example 2.1. Let the independent jumps {X (n)}n≥1 be exponentially distributed with common parameter, Exp(a), and
N = N(t) be the homogeneous Poisson process with parameter λ. Consider the Cramér–Lundberg risk process (the com-
pound Poisson process with drift)

Y (t) = ct − X (+,N(t)).

Let τn, n ≥ 1, be arrival times. The distribution of Y (τn) is given by (2.9) with parameters a and λ/c instead of a0 and a1.
The similar approach can be applied to a jump-telegraph process driven by N(t), which is supplied with exponential

jumps X (n).

3. Compound Poisson processes with alternating states

Let σ = σ(t) ∈ {0, 1}, t ≥ 0, be a two-state self-exciting right-continuous Markov process independent of {X (n)}n≥1
with the alternating intensities λ0, λ1 > 0:

P{σ(t + dt) ≠ σ(t) | σ(t)} = λσ(t)dt + o(dt), dt → 0. (3.1)

The time intervals {τ (n)}n≥1 between the consequent switchings of σ are independent exponentially distributed random
variables with alternating intensities λ0 and λ1. By summing up τ (n), n ≥ 1, one can obtain the flow of switching instants

τ (+,n) := τ (1) + τ (2) + · · · + τ (n); τ (+,0) := 0. (3.2)

Let N(t) := max{n : τ (+,n) ≤ t}, t ≥ 0, be the counting process, which can be considered as the Cox process with the
instantaneous random switching intensities λ(t) = λσ(t). Notice that the underlying Markov process σ (state variable) is
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given by

σ(t) = 1 − σN(t),k, t ≥ 0, k ∈ {0, 1}.

The distributions of the sums τ (+,n), n ≥ 1, defined by (3.2), are given by Proposition 2.1 with λ0, λ1 instead of a0, a1.
Denote the density function of τ (+,n) by f0(t; n) = f0(t; n; λ0, λ1), (if τ (1) ∼ Exp(λ0)). If the initial state is 1, function

f1(t; n) = f1(t; n; λ0, λ1) = f0(t; n; λ1, λ0). Functions fk(t; n), k ∈ {0, 1}, n ≥ 1, were obtained in Proposition 2.1, see (2.3).
Let πk(t; n) = πk(t; n; λ0, λ1) := P{N(t) = n | σ(0) = k}, n ≥ 0, be the probability mass function of N(t).
Conditioning on the first switching of σ(t) similarly to (2.5) we obtain two systems of integral equations: for n ≥ 1

πk(t; n) =

 t

0
λke−λkuπ1−k(t − u; n − 1)du, (3.3)

fk(t; n) =

 t

0
λke−λkuf1−k(t − u; n − 1)du. (3.4)

Eqs. (3.3) and (3.4) are supplied with the initial functions:

πk(t; 0) = P{N(t) = 0 | σ(0) = k} = e−λkt , t ≥ 0, and fk(t; 0) = δ(t), k ∈ {0, 1},

where δ = δ(t) is Dirac’s δ-function. By (3.3)–(3.4) we have fk(t; 1) = λke−λkt = λkπk(t; 0) and then,

πk(t; n; λ0, λ1) =
fk(t; n + 1; λ0, λ1)

λσn+1,k

, t ≥ 0, n ≥ 1, k ∈ {0, 1}. (3.5)

From (2.3) and Eq. (3.5) (with λ0, λ1 instead of a0, a1) one can obtain

πk(t; n) =
λ
(×,n)
k tn

n!
e−λktΦ


n + 1
2


, n + 1; (λk − λ1−k)t


, t ≥ 0, n ≥ 1, k ∈ {0, 1}. (3.6)

We study the compound Poisson process J(t)with jumps X (n) occurring at times τ (+,n),

J(t) := X (+,N(t)), (3.7)

where sums X (+,n) are defined by (2.1).
If the initial state is k = σ(0), the distribution functionΦk(x, t) of J(t) is given by

Φk(x, t) = P{J(t) ≤ x | σ(0) = k} = e−λkt1{x≥0} +

∞
n=1

πk(t; n; λ0, λ1)G
(∗,n)
k (x), (3.8)

where πk(t; n) is given by (3.6) and G(∗,n)k (x) is the alternating n-fold convolution of the distributions of jumps, Section 2.
The corresponding density function is

ϕk(x, t) = e−λktδ(x)+

∞
n=1

πk(t; n; λ0, λ1)g(x; n;Gk,G1−k). (3.9)

In the case of positive exponentially distributed jumps we have

ϕk(x, t) = e−λktδ(x)+

∞
n=1

λ−1
σn+1,k

fk(t; n + 1; λ0, λ1)fk(x; n; a0, a1), (3.10)

where fk(t; ·; ·, ·) are given by (2.3).
Formulae (3.8)–(3.10) generalise the results of Di Crescenzo et al. (2015, Section 4).
Let T = Tµ be exponentially distributed, Exp(µ), independent of σ and X (n), n ≥ 1, random variable. Consider the

compound Poisson process J(t) stopped at time T . The density function of the random variable J(T ) is given by µϕ̂k(x;µ),
where ϕ̂k(x;µ) =


∞

0 e−µtϕk(x, t)dt . The Laplace transform ϕ̂(x;µ) takes the form:

ϕ̂k(x; µ) =
δ(x)
µ+ λk

+

∞
n=1

π̂k(µ; n)g(x; n;G0,G1),

where π̂k(µ; n) :=


∞

0 e−µtπk(t; n)dt . Due to (2.7) and (3.5)

ϕ̂k(x; µ) =
δ(x)
µ+ λk

+

∞
n=1

λ
(×,n)
k

(µ+ λk)(×,n+1)
g(x; n;G0,G1). (3.11)
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Remark 3.1. In the case of identical exponential distributions of jumps (Proposition 2.1 with a0 = a1 = a) formula (3.11)
can be obtained in the simple closed form. In this case g(x; n;G0,G1) = f (x; n; a) =

anxn−1

(n−1)! e
−ax1{x>0} is the standard Erlang

distribution. We have

ϕ̂k(x; µ) =
δ(x)
µ+ λk

+
e−ax

x

∞
n=1

(ax)n

(n − 1)!
λ
(×,n)
k

(µ+ λk)(×,n+1)
1{x>0}

and after easy algebra we obtain the densities of the random variable J(T ),

µϕ̂0(x;µ) =
µ

µ+ λ0
[δ(x)+ aβ0 exp(−ax) (β0 cosh(β0β1ax)+ β1 sinh(β0β1ax))] ,

µϕ̂1(x;µ) =
µ

µ+ λ1
[δ(x)+ aβ1 exp(−ax) (β1 cosh(β0β1ax)+ β0 sinh(β0β1ax))] ,

where

β0 =


λ0

µ+ λ1
, β1 =


λ1

µ+ λ0
.

4. Markov-modulated compound Poisson processes

Let ε = ε(t), t ≥ 0, be the right-continuous 2-state Markov chain with the infinitesimal generator

M =


−µ0 µ0
µ1 −µ1


.

Denote by εi the process ε = ε(t), t ≥ 0, under the given initial state i, εi(0) = i.
Consider the doubly stochastic counting Poisson process N = N(t) with instantaneous arrival rates, λε(t), λ0, λ1 > 0,

that are controlled by the underlying process ε.
More precisely, in contrast with Section 3, denote by {τ (+,n)}n≥1 the flow of instants with independent interarrival

intervals τ (n), assuming that when the Markov chain ε(t) is in state j, j ∈ {0, 1}, the arrivals occur at rate λj.
Process N = N(t) = N0(t)+ N1(t) counts the number of arrivals in [0, t], where N0(t) and N1(t),

N0(t) =

∞
n=1

1{τ (+,n)≤t, ε(τ (+,n))=0}, N1(t) =

∞
n=1

1{τ (+,n)≤t, ε(τ (+,n))=1},

count separately the arrivals that occur at the states ε(τ (+,n)) = 0 and ε(τ (+,n)) = 1.
Define the probability mass function −→π (t; ·, ·)with i-entry

πi(t; n0, n1) = P{N0(t) = n0, N1(t) = n1 | ε(0) = i}, n0, n1 ≥ 0, i ∈ {0, 1}. (4.1)

First, note that with n0 = n1 = 0 we have the differential equation

d−→π (t; 0, 0)
dt

= (M −Λ)−→π (t; 0, 0)

with the initial condition −→π (0; 0, 0) = 1. HereΛ = diag(λ0, λ1) and 1 = (1, 1)′. The solution is
−→π (t; 0, 0) = e(M−Λ)t1, (4.2)

see Fischer and Meier-Hellstern (1993, (22)).
Then, conditioning on the first switching we obtain the set of equations

π0(t; 0, n1) =

 t

0
µ0e−µ0u−λ0uπ1(t − u; 0, n1)du, n1 ≥ 0, (4.3)

π1(t; n0, 0) =

 t

0
µ1e−µ1u−λ1uπ0(t − u; n0, 0)du, n0 ≥ 0, (4.4)

and, moreover,

π0(t; n0, n1) =

 t

0
λ0e−λ0u−µ0uπ0(t − u; n0 − 1, n1)du +

 t

0
µ0e−λ0u−µ0uπ1(t − u; n0, n1)du, n0 ≥ 1, (4.5)

π1(t; n0, n1) =

 t

0
λ1e−λ1u−µ1uπ1(t − u; n0, n1 − 1)du +

 t

0
µ1e−λ1u−µ1uπ0(t − u; n0, n1)du, n1 ≥ 1. (4.6)
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Eqs. (4.3)–(4.6) can be rewritten in the differential form

d−→π (t; n0, n1)

dt
= (M −Λ)−→π (t; n0, n1)+

−→g (t; n0, n1), (4.7)

where −→g (t; n0, n1) = (λ0π0(t; n0 − 1, n1), λ1π1(t; n0, n1 − 1))′, presuming that gi(t; n0, n1) = 0, if n0 < 0 or n1 < 0.
Therefore,

−→π (t; n0, n1) =

 t

0
e(M−Λ)(t−u)−→g (u; n0, n1)du. (4.8)

Equations in (4.8) can be successively solved, using (4.2).
The solution can be expressed by using the spending time distributions.
Let Ti(t) =

 t
0 1{εi(u)=0}du, i ∈ {0, 1}, be the time spent by εi(·) in (0, t) at the state 0 starting at the state i. The

distribution of Ti(t) is well-known. The density functions of Ti(t) are given by

ψ0(s, t) = e−µ0tδ(s − t)+ e−µ0s−µ1(t−s)

µ0I0(2


µ0µ1s(t − s))

+
√
µ0µ1


s

t − s
I1(2


µ0µ1s(t − s))


1{0≤s≤t} (4.9)

and

ψ1(s, t) = e−µ1tδ(s)+ e−µ0s−µ1(t−s)

µ1I0(2


µ0µ1s(t − s))+

√
µ0µ1


t − s
s

I1(2

µ0µ1s(t − s))


1{0≤s≤t}, (4.10)

where I0 and I1 are the modified Bessel functions (Ratanov, 2010, (2.21)–(2.22)). See also Di Crescenzo and Zacks (2015),
where sojourn times Ti(t) have been analysed in detail.

Therefore

π0(t; n0, n1) =
λ
n0
0 λ

n1
1

n0!n1!
e−λ1t

 t

0
sn0(t − s)n1e−(λ0−λ1)sψ0(s, t)ds, (4.11)

π1(t; n0, n1) =
λ
n0
0 λ

n1
1

n0!n1!
e−λ1t

 t

0
sn0(t − s)n1e−(λ0−λ1)sψ1(s, t)ds. (4.12)

Here ψ0(s, t) and ψ1(s, t) are the density functions of T0(t) and T1(t) respectively, see (4.9)–(4.10).
Note that from (4.11)–(4.12) it follows:

π0(t; 0, 0) = e−(λ0+µ0)t +

 t

0
ψ̄0(s, t)e−λ0s−λ1(t−s)ds, (4.13)

π1(t; 0, 0) = e−(λ1+µ1)t +

 t

0
ψ̄1(s, t)e−λ0s−λ1(t−s)ds, (4.14)

where ψ̄0 and ψ̄1 are the regular parts of ψ0(s, t) and ψ1(s, t).
Consider two independent sequences of i.i.d. random variables {X (n)0 }, {X (n)1 }, n ≥ 1, with distribution functions G0 and

G1 respectively. Let JM(t), t ≥ 0, be the compound process summing up the jumps alternatively from the sets {X (n)0 }n≥1 and
{X (n)1 }n≥1,

JM(t) =

N(t)
n=1

X (n)
ε(τ (+,n))

. (4.15)

The distribution of JM(t) is determined as follows.

Proposition 4.1. Under the given initial state ε(0) = i the density function of JM(t) is

pi(x, t) = πi(t; 0, 0)δ(x)+


n0,n1≥0
n0+n1>0

πi(t; n0, n1) [f0(·; n0) ∗ f1(·; n1)] (x), i ∈ {0, 1}. (4.16)

Here f0(·; n0), f1(·; n1) are the density functions of the sums X (+,n0)0 , X (+,n1)1 respectively, and the probability mass functions
πi(t; n0, n1), n0, n1 ≥ 0, are determined by (4.11)–(4.14).
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The distribution of JM(t) has an atom at 0 of size πi(t; 0, 0), (4.13)–(4.14), cf. Xu et al. (2015).
If jumps are positive and exponentially distributed (see Proposition 2.1), then fk(·; n) = f (·; n; ak), k ∈ {0, 1}, n ≥ 1,

are the Erlang-n densities, see (2.2). Therefore for n0, n1 ≥ 1

[f0(·; n0) ∗ f1(·; n1)] (x) =

 x

0

an00 yn0−1

(n0 − 1)!
e−a0y

an11 (x − y)n1−1

(n1 − 1)!
e−a1(x−y)dy1{x>0}. (4.17)

Moreover, fk(x; 0) = δ(x). Hence for n0, n1 ≥ 0, n0 + n1 > 0,

[f0(·; n0) ∗ f1(·; n1)] (x) =
an00 an11

(n0 + n1 − 1)!
xn0+n1−1e−a1xΦ(n0; n0 + n1; (a1 − a0)x)1{x>0}, (4.18)

see Gradshteyn and Ryzhik (1980, (3.383.2)).
In the case of the alternating signs of jumps (Proposition 2.2) we have

[f0(·; n0) ∗ f1(·; n1)] (x) = an00 an11 θ(x)


xn1−1

an0(n0 − 1)!

n1−1
m=0

(n0 + m − 1)!
m!(n1 − m − 1)!(ax)m

, if x > 0,

|x|n0−1

an1(n1 − 1)!

n0−1
m=0

(n1 + m − 1)!
m!(n0 − m − 1)!(ax)m

, if x < 0,

(4.19)

for n0, n1 ≥ 1, see Gradshteyn and Ryzhik (1980, (3.381.4)). Moreover, [f0(·; 0) ∗ f1(·; n1)] (x) = f (x; n1; a1) and
[f0(·; n0) ∗ f1(·; 0)] (x) = f (−x; n0; a0).

Eqs. (4.16)–(4.19) provide the explicit form of the distribution of the Markov-modulated compound Poisson process.

Remark 4.1. If one of the arrival rates is zero, such that λ0 = 0 or λ1 = 0, then the Markov-modulated Poisson process N
is called the interrupted Poisson process, which is equivalent to a hyper-exponential renewal process, Kuczura (1973) and
Fischer and Meier-Hellstern (1993). In this case the times between switchings are distributed with the density function,

A(t) = pσ1e−σ1t + (1 − p)σ2e−σ2t , t > 0,

where p =
λ−σ2
σ1−σ2

and

σ1 =
1
2


λ+ µ0 + µ1 +


(λ+ µ0 + µ1)2 − 4λµ1


,

σ2 =
1
2


λ+ µ0 + µ1 −


(λ+ µ0 + µ1)2 − 4λµ1


.
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