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Abstract

Following Almeida et al. (2018) we implement a segmented three factor
Nelson-Siegel model for the yield curve using daily observable bond prices
and short term inter-bank rates for Colombia. The flexible estimation for
each segment (short, medium, and long) provides an improvement over the
classical Nelson-Siegel approach in particular in terms of in-sample and out-
of-sample forecasting performance. A segmented term structure model based
on observable bond prices, provides a tool closer to the needs of practitioners
in terms of reproducing the market quotes and allowing for independent local
shocks in the different segments of the curve.

Keywords: Term structure, Nelson-Siegel, Preferred habitat theory.
JEL codes: G12, E43, C53, C58.

1 Introduction

The term structure of interest rates is the relationship between interest rates or bond
yields and different terms or maturities. The term structure of interest rates is also
known as a yield curve, and it plays a central role economic and financial analysis.
For example, the term structure reflects expectations of market participants about
future changes in interest rates and their assessment of monetary policy conditions.

A large part of finance literature and applications by practitioners, regarding the
term structure of non-defaultable securities, is concerned with using available secu-
rity prices to estimate the fair market prices of other non-observable securities. As
mentioned by Engle et al. (2017) "this is important because fixed-income securities

and their derivatives trade only occasionally, and so must be priced based on other

securities that do trade.

The Nelson-Siegel model (Nelson and Siegel, 1987) is a statistical approach that
provides a parsimony specification to capture the differences in rates along the curve
(for different maturities). Its implementation in one or two stages allows to recover
the temporal variation of the factors maintaining the factor loading’s constant over
time. The specification of the model and the estimation methods provide a simple

∗The authors would like to thank Precia S.A. for providing a sample of historical bond prices.
This paper benefited from the comments received from seminar participants at the Central Bank
of Colombia and Universidad del Rosario.

†Universidad del Rosario. Corresponding author: carlos.castro@urosario.edu.co
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implementation, which is why, it turns out to be a successful model outside academia.
Although the Nelson-Siegel model is not arbitrage-free, Christensen et al. (2011)
propose a representation of the model that is arbitrage-free. However, it remains
unclear if no-arbitrage restrictions improve statistical validity and therefore, some
empirical applications shown that different variations of the Nelson-Siegel model
provide a better in-sample and out-of-samples fit of the yields than the class of
arbitrage free affine term structure models.

One of the important drawbacks of the academic literature is that the estimation
of the term structure is performed on synthetic interpolated zero coupon yields. For
example, one of the most important sources of US yields are based on interpolated
data from Gurkaynak et al. (2007). Working with interpolated data it is not clear
exactly what is the forecasting error, since there is no direct observable variable.
Therefore, it is preferable to work with data directly from the market. In addition,
creating a long time series of yields requires strong assumptions on matching bonds
across time, without understanding the implications on the outcome of interest, a
point forecast or a the level of uncertainty for risk management purpose. Only re-
cently, have some authors proposed methodologies to work directly on the bond price
data. Andreasen et al. (2019) use an arbitrage-free Nelson-Siegel model and propose
a one-step estimation approach that uses the directly observable bond prices in a
non-linear state space model. They compare this approach to the traditional two-
step procedure that uses the synthetic interpolated yields. Using simulations and
Canadian bonds they find that negligible errors in the synthetic interpolated yields
can lead to parameter instability of the models. Additionally they find superior
forecasting accuracy from the one-step approach.

Another regularity in modeling the term structure of interest rates is the use
of a similar functional form and constant parameters to describe the entire term
structure. However, preferred habitat theory of the term structure (Modigliani and
Sutch, 1966) advocates that local shocks may influence interest rates for each ma-
turity. Empirical evidence related to this theory reveals that U.S. Treasury bonds’
supply and demand shocks have non negligible effects on yield spreads, term struc-
ture movements, and bond risk premium. In an attempt to formalize the preferred
habitat theory, Vayanos and Vila (2009) propose an equilibrium model in which de-
mand directly influences and determines all yields in the term structure. According
to this theory, the equilibrium yield rate for each term is determined by the demand
and supply forces for that market, in other words, the preferences of investors on
securities at that point in the curve. Investors can substitute preferences over terms
that are not available in the market for a near term but available in the market.
DAmico and King (2013) note that investors act as arbitrators, guaranteeing the
relationship between the demand for the securities and the returns along the curve;
and on the other hand, they guarantee that the curve is smooth, meaning that the
yields for close periods are similar.

Inspired by the preferred habitat theory as presented in (Vayanos and Vila, 2009)
Almeida et al. (2018) propose a class of models that separate the yield curve into
segments preserving their own local shocks, but at the same time simultaneously
interconnected to compose the whole yield curve. The main objective of the family
of segmented models is to first, partition the segments of the curve in such a way that
the dynamics of each segment can be determined by maturities that are represented
in that segment; and second, the implementation of the segments along the curve
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must be globally consistent and smooth. This is achieved by ensuring that the rates
of return are similar for the terms that connect the segments and therefore are close
to each other. This is not equivalent to imposing non-arbitration restrictions. A
similar objective is pursued by Filipovic and Willems (2018) using a non-parametric
alternative to estimate the discount curve using market quotes that have maximal
smoothness.

In this paper we model and forecast the Colombian term structure of interest
rates using approximate yields that are estimated directly from the bonds, but
are not interpolated, and we use a segmented Nelson-Siegel three factor model as
proposed by Almeida et al. (2018). We estimate the model using daily data for
each year from January 2013 to September 2018. We provide independent results
for each year in the sample in order to avoid strong assumptions on the equivalent
maturities across time. Although, we could think that this is a drawback in terms of
forecasting, it is important to note that the cross sectional estimation in the Nelson-
Siegel three factor model provides a dimension reduction approach from the number
of observed maturities to the lower dimensional factors (for example three factors
in the classical Nelson and Siegel model) and hence we can use these estimated
factors to create out-of-sample forecast from one year to the next for any desired
maturity. Our results show that the segmented model with smoothing restrictions
has an in-sample and out-of-sample performances that is superior to non-segmented
Nelson-Siegel model. In addition the out-of-sample performance of the segmented
model, has a similar performance to the random walk model for short term horizons
(one and five days)1. However, for monthly forecast the random walk model has a
better performance.

The remainder of the paper is structured as follows. Section 2 gives a brief
introduction to the methodology as proposed by Almeida et al. (2018) for the
segmented term structure model. Section 3 provides a description of the Colombian
bond data. Section 4 presents the estimation results and the forecasting exercise.
Section 5 concludes.

2 Methodology

The segmented term structure model is proposed by Almeida et al. (2018). The
authors propose a general framework that can be applied to any parametric model
using exponential splines. In particular, we choose a three factor Nelson-Siegel type
model. The segmented model provides estimates for the factor that are specific
and independently estimated for each segment of the yield curve. In the traditional
Nelson-Siegel model the factor are estimated using simultaneously all of the maturi-
ties. This is an important drawback because small changes in the short part of the
curve could affect the long part of the curve. In addition, the methodology provides
an approach to estimate latent yields at the knots in which the term structure is
partitioned.

For the exercise we require N maturities in order to compose the yield curve
τi i ∈ [1, N ], where i’s represents each of the observed elements in the vector of
maturities. Then, we need to define in an exogenous way the latent yields and set

1The random walk model has always been a strong benchmark model in out-of-sample forecast-
ing of interest rates
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of k elements from the τ ′s vector in which we define the external and the internal
knots; we denote φ = {τ1, ..., τk}. Note that the internal knot are imposed by the
researcher and denote the maturity in the curve that is in between two segments.
On the other hand, the remaining elements of τ are treated as observed yields and
recognized as τ̃ = {τ2, ..., τk−1}, which are assumed to be measured with error in
contrast with the latent yield that do not contain error.

The term structure representation of observed and latent yields that make up
the yield curve are given by the following two equations,

yt(τ̃) = W (τ̃)Bt + ǫt(τ̃)
yt(φ) = W (φ)Bt,

where the matrix of factors loading’s (W (τi) = {1, gi(τi), hi(τi)}) is time invari-
ant and only depends on maturity and segments. On the other hand, the vector
Bt = {ait, b

i
t, c

i
t} represents the factors, that vary over time and also depend on the

segment i. These independent segments provide enough flexibility so that the model
is consistent with preferred habitat theory. The Nelson-Siegel model provides the
functional form for the factor loadings, see the appendix (seccion 6). As the method-
ology is based on splines, the process requires to have some constrains on the above
equations that creates smoothness across the segments. These smoothness condi-
tions are consistent with the role of active arbitrageurs that ensure no-arbitrage
conditions along the yield curve. The following equations contain the segmented
model, but in addition introduces the smoothness restriction in the knots.

yt(τ) = W (τ)Bt, s.t R(φ)B = 0

The smoothness restrictions create an equality constrained optimization problem.
These constraint guarantee that the parametric functional forms of each segment
and their first and second derivatives have the same value at each internal knot2.
However, since we have equality constraints in the optimization problem we can
transform the constrain problem into an unconstrained representation. The uncon-
strained problem has an additional advantage since we are able to reduce the number
of parameters to estimate. The appendix (section 6) provides the details and the
steps to have an optimization problem without restrictions,

yt(τ̃) = π(τ̃ , φ)yt(φ) + ǫ(τ̃),

The factor loading’s from the unconstrained model, (Bt = {ait, b
i
t, c

i
t}), can be esti-

mated with OLS.

3 Bond price data

We obtain daily data on bond prices from January 2013 to September 2018, provided
by Precia S.A. These are sovereign bonds denominated in local currency that are
trading in the secondary market3. Although we have six years of daily data we use
the bond prices data for each year, so we use specific observable maturities that
are trading over the course of a year. This means that for estimation we use only

2Details of how to build and introduce the matrix R are provided in the appendix (section 6)
3The Ministry of Finance of Colombia currently issued two types of bonds in the local market:

local currency denominates or inflation indexed bonds.
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the data for that particular year. This is of courses not a problem for in-sample
estimation. However, it does create some challenges for out-of-sample forecasting
from one year to the other. We will address these challenges in the next section.
We want to avoid having to built historical yields and make any arbitrary pairing
of bonds across time.

In addition, we are only using bonds with maturity above or equal to one year.
That is we disregard any bond that in the current year has a time to maturity
smaller than 12 months. For example for the year 2014 we have bonds with a time
to maturity (in years) equal to 1.8, 1.9, 2.5, 4.8, 4.9, 5.7, 6.6, 8.3, 10.6, 12.7, 14.3 at the
beginning of the year (figure 3).

Since we want to avoid any complex pre-processing of the bond price data in order
to obtain the yields we estimate a quick approximation of the yield to maturity that
most importantly does not involve any type of interpolation,

y(τ) =

Coupon/Interest Payment(Par Value - Bond Price)
Years to maturity

(Par Value + Bond Price)
2

Because the issuance of short term bond by the government is not stable over time,
in order to model the short part of the curve we use the inter-bank rate index. The
inter-bank rate in Colombia (IBR) is the reference short term rates in the wholesale
money market4. The index currently provides daily rates for the overnight, one
month, three months and six months. Although, it is important to note that the
risk factors associated to the sovereign bonds and the inter-bank rate differ, that is
the latter are not risk free and contain a credit risk premium5.

4 Empirical Application

For the empirical application we consider three segments representing the short,
medium and long term part of the yield curve and we estimate the model using the
sample (2013-2018) but using the observed yields during each year (figure 1). On
average we have 14 observable yields, the minimum number is 12 in 2016 and the
maximum is 17 in 2013. The first knot in the curve is the overnight rate and the
interior knots are 1.6 and 8. These knots were chosen in order to have a sufficient
amount of observed maturities in each of the three segments.

With the three segments and three factor in the Nelson-Siegel model we have a
total of 9 factors to estimate (Bt = {aSTt , bSTt , cSTt , aMT

t , bMT
t , cMT

t , aLTt , bLTt , cLTt }).
In addition we estimate the classical three factor Nelson-Siegel model (NS3), and
following Almeida et al. (2018) we estimate three versions of the segmented models.
The first we denote as a segmented model but without imposing the smoothness
constraints (NS3_S), the second is the weekly segmented model with the smooth-
ness constraints (NS3_W_S) and finally the strongly segmented model with the
smoothness constraints (NS3_S_S)6. The only difference in our application is that

4We obtain information on the inter-bank reference rates from the Banco de la Republica de
Colombia (the central bank).

5We do not make any adjustment or assumptions to compensate for this risk premium in the
inter-bank rates.

6The strongly segmented model is an extension that provides a more flexible specification of
the factor loading’s in each segment, this approach is explained in Almeida et al. (2018)
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we do not fine-tune the parameters that controls the degree of loading segmentation,
we set that parameter to 0.5.

Table 1 presents the in-sample fit using the root mean square error for the three
models in 2014 7 The results indicate that segmented models (weakly and strongly)
that impose smoothness conditions that guarantee continuity across the yield curve
have a better fit than the traditional Nelson-Siegel model. On average they have
an error that is 3 basis point below the non-segmented counterpart. The reason
behind the better fit is the possibility to accommodate the specific dynamics of each
segment in the yield curve.

We also perform an out-of-sample forecasting exercise for one, five (week), and 21
days (month). We use a rolling window of 126 days (approximately 6 months) and we
obtain forecast for the years 2014 to 2018. Our forecasting setup is different, because
we use the information of the previous year up to the last observed data to generate
forecast of the year of interest and then update the information using a rolling
window. As mentioned previously it is common practice in term structure modelling
to match bonds across year in order to obtain a historical time series of yields (figure
2). In the best of cases matching bond requires an arbitrary choice of which bond
to chose from one year to the next. In the worst of cases, in markets where there
are not many available maturities sometimes it is necessary to interpolate to match
the maturities across years. We propose an alternative that is transparent for any
replication study of the out-of sample forecast. Each year we can estimate the
number of factors in the segmented or the non-segmented model. Although we do not
observe the same maturities between the years the number of factors is fixed across
for the entire length of the sample. In other words, we take advantage of dimension
reduction mechanism behind these parametric term structure models. Suppose that
in the year 2013 we had 17 observed maturities and we obtain the estimated factors.
Then we can use an autoregressive of order one model to estimate and forecast these
factors and recover the yields for 2014. Since we consider a rolling window, as soon
as we start introducing new information from the 2014 observed yields we estimate
using the cross-section of maturities the factors and feed-in the information on to
the time series of factors and re-estimate the autoregressive models and forecast up
until the end of the evaluation window (see figure 2). Therefore, our approach is
not affected by the change in the number of observed maturities from one year to
the next. The biggest advantage from this method is that it avoids any arbitrary
decisions (that are rarely documented in the published articles) that are required to
built synthetic historical yields.

For every year we have around 240 out-of-sample forecast for the different hori-
zons that represent on average the number of trading days in the year. For the
out-of-sample forecast we compare the performance of three models base on the
RMSE: the classical Nelson-Siegel (NS), the random walk (RW) and the strongly
segmented Nelson-Siegel (SM). In tables, 2 and 5 we present the RMSE in basis
points at one day, one week and monthly forecast horizons for the year 2014 and
2017, respectively 8. The results indicate that the segmented model provides on av-
erage smaller errors for most observed maturities. However, for the monthly forecast
horizon it is not clear whether the segmented model performs better than a random
walk. As mentioned previously both the in-sample and out-of-sample results shows

7The results for the other years are available in an online appendix.
8The results for the other years are available in an online appendix.
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a better performance of segmentation in the family of parametric term structure
models based on Nelson-Siegel. Our results confirm the advantages in forecasting
performance of the segmented models reported in Almeida et al., 2018, however, our
results are based on real market quotes rather than using synthetically interpolated
yields.

We performed additional robustness test to confirm the findings. First we use
the Diebold and Mariano test to determine if the out-of-sample performance of the
segemented model is statistically different than the competing models, the non-
segmented Nelson-Siegel and the random walk. In table 3 we report the p-values of
the test. The null hypothesis is that the segmented model has the same accuracy
as the non-segmented Nelson-Siegel and the random walk, respectively. The results
indicate that for most maturities we can reject the null hypothesis at 5% significance
level and therefore, confirms the gain in out-of-sample forecasting performance iden-
tified in table 29. Second, we test whether the assumption of an autoregressive model
of order one, for the factors, is adequate for prediction; Hamilton and Wu (2014)
suggest that higher order autoregressive models provide a significant performance
improvement. We do not choose a particular specification but rather use an Au-
toarima algorithm so that for each sample and model type an optimal model is
chosen. Table 4 presents the comparison of the performance for one day ahead
forecast for 2014. The results indicate that there is no improvement for both the
un-segmented and the segmented Nelson and Siegel model, in fact what we see is an
average error that is 2 basis points higher when we use the Autoarima algorithm.
Finally, we explore whether the segmented models systematically outperform the
random walk method. We do this by estimating the cumulative square prediction
error (CSPE),

CSPEt =
t

∑

i=1

((ŷRW
i (τ)− yi(τ))

2 − (ŷNS3SS
i (τ)− yi(τ))

2)

Figure 4 show the evolution of the one day out-of-sample forecasting exercise for
the observed maturities during 2014. For the segmented model to systematically
outperform the random walk model the curves should have a non-negative slope.
The results indicate that this is not the case, since the slope from the beginning is
negative. This is expected since the first part of the forecast is using the estimated
factors from 2013. However, since we use a rolling window we do observe that when
we include in the forecast more information from 2014 the slope s close to zero
for many of the maturities, this means that at that point there is no significant
difference between the two forecasting models.

How do these results compare to what is observed in the literature? Although,
it is difficult to make a precise comparison given that most of the literature is based
on synthetic yield data from the U.S., our result indicate an improvement over affine
Nelson an Siegel models; For example Andreasen et al. (2019) with observed bond
data, report a RMSE ∈ (40, 55) basis points. With Colombian data and a similar
sample Velasquez-Giraldo and Restrepo-Tobon (2016) report RMSE ∈ (6, 17.5)
with an affine term structure model. Our results indicate a RMSE ∈ (2.1, 19) for
a similar forecast horizon. Therefore the performance is similar to the former and
outperfoms the U.S. model with observed bond data but using a non-segmented
model.

9The results for the other years are available in an online appendix.
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5 Conclusions

Term structure models are important for the pricing of instruments that are part
of trading and reporting activities in financial markets. The financial literature has
benefited from the research on term structure models performed from a monetary
policy perspective. However, central banks are mainly focused on the changes in the
general shape of the yield curve because this is informative as to the expectations
regarding monetary policy. For this use case, using synthetic interpolated yields as
a starting point in the model seems to be the norm and also performing simulta-
neous estimation of the parameters or functional forms of interest using all of the
maturities. On the other hand, practitioner and investors are more interested in the
performance of the model in terms of the observed market quotes. In addition are
not comfortable, for example, when small changes in short part yield curve have an
important impact on the long part and they are certain that these changes are in
part driven by the model. From an statistical point one would prefer models that
are locally robust to changes other parts of the curve and that are able to accommo-
date idiosyncratic shocks locally. The parametric terms structure model proposed
by Almeida et al. (2018) provides a simple approach that splits the yield curve into
segments and at the same time guarantee the smoothness and consistency across
the curve.

Our paper provides an example on how to accomplish the segmentation of the
curve and a proposal for using the observable yield during the year for in-sample and
out-of-sample predictions. The out-of-sample predictions are not affected by using
different maturities of the same bonds avoiding the need to make assumptions on
the matching of the bonds for a historical reconstruction. Out point of view is that
this is not necessary because of the dimension reductions that is performed on this
type of factor model. Since the factors are the time-varying element of interest we
can use them to connect the data generating process when the sample is estimated
year-by-year rather than forcefully building a long historical sample.

There is room for improvement on the performance of the in- and out-of-sample
forecasting exercise that can be explored using fine tuning. For example, the re-
searcher could identify which is the optimal split for the segments (re-define the
internal knots) and also change the values of the parameters that controls how
strong is the segmentation across the yield curve. In other words, how important
are idiosyncratic local shocks versus shocks that affect the entire curve.
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Figure 1: Representation of the non-segmented and segmented yield curve. The
three segments represent the short (ST), medium (MT) and long term (LT) segments
of the yield curve. NS denotes the classical Nelson-Siegel yield curve.

Figure 2: Matching bonds vs factors.
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Figure 3: Observed yields from Precia S.A. and IBR providesd by the central bank
in 2014.

Figure 4: Cumulative square prediction error for one day ahead forecast of the
segmented Nelson and Siegel model for 2014.
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τ NS3 NS3_S NS3_W_S NS3_S_S

0.004 12.8 78.8 6.3 5.7
0.1 9.6 75.1 3.5 2.3
0.3 10.5 70.6 8.4 6.6
1.8 14.6 59.1 8.4 8.3
1.9 19.9 58.7 12.7 3.6
2.5 14.7 50.0 5.2 3.6
4.8 17.3 39.1 13.6 21.8
4.9 20.1 29.5 23.6 15.4
5.7 10.7 25.9 10.3 5.5
6.6 6.9 23.9 10.9 9.9
8.3 18.1 2.3 6.4 17.3

10.6 17.6 8.5 21.0 8.7
12.7 12.4 11.0 7.5 17.2
14.3 8.7 4.8 8.2 2.7

13.9 38.4 10.4 9.2

Table 1: In-sample root-mean-square error (RMSE) in basis points between modeled
and observed yields, for 2014.

day week month
years NS SM RW NS SM RW NS SM RW
0.004 15.7 7.5 15.5 15.6 8.8 14.6 14.9 12.8 12.7
0.1 11.4 3.7 11.5 10.7 6.0 10.5 12.6 14.6 10.0
0.3 14.3 8.5 14.5 13.7 10.1 14.1 17.1 17.5 15.6
1.8 19.5 9.5 19.3 22.3 12.1 21.1 31.1 18.4 26.6
1.9 24.8 5.4 24.6 26.4 8.6 25.8 33.5 15.3 29.7
2.5 18.9 5.7 18.8 21.4 9.6 20.4 30.4 18.4 26.0
4.8 18.5 22.8 18.7 19.5 23.7 20.2 30.3 31.6 29.3
4.9 21.6 17.1 21.3 24.8 20.1 23.2 38.3 34.0 34.2
5.7 12.3 7.4 11.9 16.1 11.5 14.2 31.1 28.0 27.0
6.6 9.2 12.3 9.2 12.9 15.7 12.8 27.8 29.5 26.4
8.3 21.1 19.5 21.2 24.7 23.6 24.8 38.0 37.0 37.7
10.6 21.0 11.4 20.9 24.3 16.4 24.1 37.7 30.9 36.9
12.7 15.7 20.0 15.8 17.8 21.7 18.2 28.3 28.9 27.7
14.3 10.7 6.0 10.6 14.3 12.6 14.1 27.9 26.8 25.7

16.8 11.2 16.7 18.9 14.3 18.4 28.5 24.6 26.1

Table 2: Out-of-sample root-mean-square error (RMSE) in basis points for 2014.
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day week month
years NS RW NS RW NS RW
0.004 0.00 0.00 0.00 0.00 0.65 0.90
0.1 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.01
1.8 0.00 0.00 0.00 0.00 0.00 0.00
1.9 0.00 0.00 0.00 0.00 0.00 0.00
2.5 0.00 0.00 0.00 0.00 0.00 0.00
4.8 0.00 0.00 0.00 0.00 0.00 0.00
4.9 0.00 0.00 0.00 0.00 0.00 0.61
5.7 0.00 0.00 0.00 0.00 0.01 0.07
6.6 0.00 0.00 0.00 0.00 0.00 0.00
8.3 0.00 0.00 0.05 0.06 0.49 0.45
10.6 0.00 0.00 0.00 0.00 0.00 0.00
12.7 0.00 0.00 0.00 0.00 0.02 0.08
14.3 0.00 0.00 0.01 0.01 0.74 0.08

Table 3: p-values for the Diebold and Mariano test of forecast accuracy.

day day
AR(1) AUTO ARIMA

years NS SM NS SM
0.004 15.7 7.5 17.6 10.0
0.1 11.4 3.7 14.2 6.4
0.3 14.3 8.5 16.8 9.2
1.8 19.5 9.5 21.0 10.0
1.9 24.8 5.4 26.2 7.4
2.5 18.9 5.7 20.5 6.9
4.8 18.5 22.8 21.0 23.6
4.9 21.6 17.1 22.4 17.2
5.7 12.3 7.4 13.7 8.0
6.6 9.2 12.3 12.6 13.5
8.3 21.1 19.5 22.6 19.3
10.6 21.0 11.4 22.3 11.4
12.7 15.7 20.0 18.7 21.0
14.3 10.7 6.0 13.8 6.6

16.8 11.2 18.8 12.2

Table 4: Out-of-sample root-mean-square error (RMSE) in basis points for 2014,
with alternative specifications for the factor forecast.
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day week month
years NS SM RW NS SM RW NS SM RW
0.004 31.9 13.1 33.5 25.5 11.6 30.8 22.8 26.5 21.0
0.1 19.6 6.1 21.1 15.3 10.1 18.9 27.6 33.0 13.7
0.3 7.7 9.6 7.1 15.9 17.2 9.2 40.8 41.9 20.7
0.5 20.0 18.2 18.3 29.3 25.3 21.7 53.7 48.9 35.1
1.8 27.8 15.5 26.8 34.0 16.0 28.7 52.8 31.4 37.8
1.9 39.3 12.0 37.9 45.9 17.2 39.8 65.0 37.5 48.7
2.7 18.9 7.6 17.8 25.4 13.5 20.5 41.8 30.5 29.8
3.6 9.4 11.9 9.5 13.5 14.4 12.0 26.3 26.1 18.9
5.3 9.0 8.2 9.5 12.9 14.5 13.2 23.2 28.8 21.4
7.6 16.6 8.5 17.1 17.6 12.4 18.8 22.7 23.5 23.7
9.7 15.1 14.0 15.6 16.7 18.5 18.0 22.7 30.3 25.0
11.3 8.6 11.2 9.2 11.0 15.1 12.2 18.2 26.1 20.3
13.7 7.9 4.6 7.3 13.0 11.1 11.4 22.4 23.1 20.1
15.5 13.3 15.7 12.3 17.4 18.2 14.7 26.3 25.5 21.0

17.5 11.2 17.3 20.9 15.4 19.3 33.3 31.0 25.5

Table 5: Out-of-sample root-mean-square error (RMSE) in basis points for 2017.
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6 Appendix base on Almeida et al. (2018)

1. Nelson-Siegel factor loading’s: the level, slope and curvature of the yield curve.
The loading’s below are used in order to build the matrix W used to represent
the segmented curve.

1 (level)

g(τ) = 1−e−λτ

λτ
(slope)

h(τ) = 1−eλτ

λτ
− e−λτ (curvature)

2. R Matrix In order to create the matrix R of restrictions we require smooth-
ness conditions based on the the first and second derivatives of the factor
loadings.

First Derivatives Second Derivatives

g′(τ) = e−λτ (1+λτ)
λτ2

g′′(τ) = 1
λτ3

[2− e−λτ ((λτ)2 + 2(λτ + 1))]

h′(τ) = e−λτ ((λτ)2+(λτ)+1)−1
λτ2

h′′(τ) = 1
λτ3

[2− e−λτ ((λτ)3 + (λτ)2 + 2(λτ + 1))]

R Matrix Construction

Note that all the τj yields within the same segment need to be governed by
the same function (W (τj) = f i

t (τj)). Let ST, MT and LT denote the segments
related to short, middle and long term. The first three restrictions imply con-
tinuity of the segments at the knots.

• fST (τ4) = fMT (τ4), fMT (τ7) = fLT (τ7)

• f ′ST (τ4) = f ′MT (τ4), f ′MT (τ7) = f ′LT (τ7)

• f ′′ST (τ4) = f ′′MT (τ4), f ′′MT (τ7) = f ′′LT (τ7)

• f i
t (τi) = yt(τi)

The last condition will be important to measure the latent yields (Yields at
knots) and transforming a constrain problem to a final unconstrained with
a lower dimensional parameter space. Note that the structural form of R
allow us to decomposed the matrix into a square invertible matrix R1 and a
complementary R2 in order to reduce the dimensionality of parameters to be
estimated.

Xi(τ) = [1, gi(τ), hi(τ)] X ′

i(τ) = [0, g′i(τ), h
′

i(τ)] ;X ′′

i (τ) = [0, g′′i (τ), h
′′

i (τ)]
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R =

















XST (τi−1) −XMT (τi−1) 01x3
01x3 XMT (τi) −XLT (τi)

X ′

ST (τi−1) −X ′

MT (τi−1) 01x3
01x3 X ′

MT (τi) −X ′

LT (τi)
X ′′

ST (τi−1) −X ′′

MT (τi−1) 01x3
01x3 X ′′

MT (τi) −X ′′

LT (τi)

















R1 =

















XST (τi−1) −XMT (τi−1)
01x3 XMT (τi)

X ′

ST (τi−1) −X ′

MT (τi−1)
01x3 X ′

MT (τi)
X ′′

ST (τi−1) −X ′′

MT (τi−1)
01x3 X ′′

MT (τi)

















R2 =

















01x3
−XLT (τi)

01x3
−X ′

LT (τi)
01x3

−X ′′

LT (τi)

















,

By construction all rows of R1 are linearly independent, then, the matrix is
invertible with rank equal to M. As we have split the matrix R into two sub-
matrices, we also require the same process for the vector B of factors. Hence,
the original constrain is re-expressed from (R(φ̃) = 0) to

R1(φ̃)θ1 +R2(φ̃)θ2 = 0, (1)

where the vectors {θ1, θ2} are adjusted to match the dimensionality of sub-
matrix {R1, R2}.

F i
t =





ait
bit
cit



 , θ1 =













aSTt
bSTt
cSTt
aMT
t

bMT
t













, θ2 =









cMT
t

aLTt
bLTt
cLTt









Both {θ1, θ2} are the vectors of the time-varying factors to be estimated. First
we need to state that θ1 is the vector that accompanies the square invertible
matrix R1. We can use expression 1 to define a functional relationship between
the vector of parameters,

θ1 = −R−1
1 R2θ2 (2)

3. Unconstrained Procedure

Now we explain how to transform the constrained problem into an unconstrained
one with lower dimensionality of parameters.

yt(τ̃) = W (τ̃)Bt + ǫt(τ̃), B =

(

θ1
θ2

)

yt(τ̃) = w1(τ̃)θ1 + w2(τ̃)θ2 + ǫt(τ̃)

We also split the factor loading matrix W (τ̃) to match the set of factors {θ1, θ2}.
Then we use expression 2 and obtain a lower dimensional factor model that is only
a function of the unknown set of parameter θ2
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yt(τ̃) = [w2(τ̃)− w1(τ̃)R
−1
1 R2]θ2 + ǫt(τ̃)

yt(τ̃) = Z(τ̃)θ2 + ǫt(τ̃), dim(Z(τ̃)) = mx(k + 1)

If we choose a knot equal to maturity of an observed yield, we assume that the yield
at that knot is observed without error.

yt(φ) = W (φ)B, yt(φ) = w1(φ)θ1 + w2(φ)θ2, dim(yt(φ)) = (k + 1)

The above equation allows us to introduce the remaining constrains (missing in R)
in order to have a complete identification procedure. In all knots of the term struc-
ture we will require an exact fit compare to the observed curve.

yt(φ) = [w2(φ)− w1(φ)R
−1
1 R2]θ2 + ǫt(φ)

yt(φ) = Z(φ)θ2, dim(Z(φ)) = mx(k + 1) invertible.

If we define a matrix π, as a projection of the factor loadings of the observe
yields onto the latent yields, then we can recover an estimate of the latent yields in
the last expression.

π(τ̃ , φ) = Z(τ̃)[Z(φ)−1],
yt(τ̃) = π(τ̃ , φ)yt(φ) + ǫ(τ̃),

yt(φ) = Z(φ)(Z(τ̃)′Z(τ̃))−1Z(τ̃ ′yt(τ̃)

For forecasting purposes we do not need to recover the latent yields, therefore we
do not emphasize this step in the empirical application.
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