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Abstract

We o�er a new explanation of partial risk sharing based on coalition formation and segmen-

tation of society in a risky environment, without assuming limited commitment and imperfect

information. Heterogenous individuals in a society freely choose with whom they will share risk.

A partition belonging to the core of the membership game obtains. Perfect risk sharing does not

necessarily arise. Focusing on mutual insurance rule and assuming that individuals only di�er

with respect to risk, we show that the core partition is homophily-based. The distribution of

risk a�ects the number and size of these coalitions. Individuals may pay a lower risk premium

in riskier societies. A higher heterogeneity in risk leads to a lower degree of risk sharing. We

discuss how the endogenous partition of society into risk-sharing coalitions may shed light on

empirical evidence on partial risk sharing. The case of heterogenous risk aversion leads to similar

results.
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1 Introduction.

In developing economies where �nancial markets are lacking, individual incomes vary widely (see, in

particular, Townsend, 1994, for ICRISAT villages in India or Dubois, Jullien and Magnac, 2008, for

Pakistan villages). Nonetheless, the idiosyncratic part of income risk is relatively large, suggesting

that insurance against shocks is desirable (Townsend, 1995, Dercon, 2004). Thus we should expect

risk-averse households to pool risk in order to smooth consumption. If risk is fully insured, theory

tells us that individual consumption is determined by aggregate consumption (see Borch, 1962,

Arrow, 1964, Wilson, 1968). However, this proposition has been subject to many empirical rebuttals.

In developing economies, the empirical evidence supports partial risk sharing. Households are able

to protect consumption against adverse income shocks but full insurance is not achieved (see, among

many others, Townsend, 1994, Kazianga and Udry, 2005).1 Moreover, empirical works identify risk-

sharing groups and networks smaller than the entire society. For instance, Fafchamps and Lund

(2003) show that mutual insurance is implemented within con�ned networks of families and friends.

Mazzocco and Saini (2010), using ICRISAT data, show that the relevant unit to test for e�cient

risk sharing is the caste and not the village. Other individual characteristics also appear to be

key determinants of membership in risk-sharing groups or networks. Geographic proximity as well

as age and wealth di�erences also play a role in the formation of networks (see Fafchamps and

Gubert, 2007). Using data on group-based funeral insurance in Ethiopia and Tanzania, Dercon

et alii (2006) provide evidence of assortative matching according to physical distance, kinship,

household size and age. Arcand and Fafchamps (2012) �nd robust evidence of individuals' sorting

with respect to physical or ethnic proximity as well as wealth and household size for community-

based organizations in Senegal and Burkina Faso.2 It turns out that the distribution of individuals'

attributes over the population plays a key role in group memberships and the extent of risk sharing.

Two explanations of partial risk sharing in developing economics can be found in the theoretical

literature: imperfect information3 and limited commitment4. Here, we o�er a third explanation

based on the capacity of agents to voluntarily form risk-sharing groups. This generates a seg-

1Townsend (1995), Ray (1998), Dubois (2002), or Dercon (2004) are excellent surveys of the literature. For devel-

opped economies also, empirical evidence does not support the full insurance hypothesis (see Mace, 1991, Cochrane,

1991, Hayashi, Altonji and Kotliko�, 1996, Attanasio and Davis, 1996).
2See also the survey of Fafchamps (2008) on the role of families and kinship networks in sharing risk.
3See Atkeson and Lucas (1992) and Ligon (1998) for an explanation of ine�cient risk sharing based on moral

hazard. See also Deb and Suri (2012) who develop a model of informal credit through farming contract under hold-up

problem, moral hazard and limited liability.
4See Kocherlakota (1996), Ligon, Thomas and Worrall (2002) for studies of e�cient dynamic contracts in the

absence of commitment. See Genicot and Ray (2003) and Bold (2009) who investigate self-enforcing risk-sharing

agreements which are robust to coalitional deviations.
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mentation of society into a plurality of distinct groups formally de�ned by a core partition. Our

analysis allows us to understand how ex ante heterogeneity among individuals shapes the pattern

of risk-sharing coalitions and thus limits the extent of risk sharing. Our approach relies both on

commitment and perfect information on the individual's characteristics.

Formally, we �rst study a society comprised of many individuals, each one characterized by

the three following attributes : risk aversion, endowment and risk, de�ned as the variance of the

distribution from which is drawn an idiosyncratic shock. Individuals are characterized by a CARA

utility function; they may form a group in order to share risk. Individuals commit to sharing

their resources Pareto-optimally with members of their risk-sharing group. No speci�c risk-sharing

rule is a priori assumed. We examine the segmentation of society into such risk-sharing groups.5

We provide su�cient conditions on Pareto-weights attached on individuals in the social welfare

function for existence of a core partition. We show that for an optimal risk-sharing rule and a

distribution of individuals' attributes it is likely that the society is partitioned into distinct coalitions.

Hence, even when commitment to a Pareto-optimal allocation of resources and perfect information

on individuals' characteristics are assumed, perfect risk sharing does not necessarily arise when

heterogenous agents freely choose their risk-sharing group.

In order to draw sharper conclusions on the link between ex ante heterogeneity among individuals

and risk sharing we consider a speci�c risk-sharing rule: individuals share the random component of

their income equally with members of their risk-sharing group. We refer to this rule as the mutual

insurance rule. Individuals only di�er with respect to their risk.6 We show that the resulting core

partition is unique (under some mild assumption). It turns out that the key variable determining

the coalition formation process is relative risk heterogeneity, as measured by the variance ratios

between individuals. This leads the core partition to be homophily-based: coalitions pool agents

similar with respect to the variance of the idiosyncratic shock. In this perspective, the extent of risk

sharing is limited by the formation of coalitions due to heterogeneity. Two individuals belonging to

the same society do not necessarily share risk in the same coalition.

We study the impact of speci�c variance schedules on the core partition and show thanks to

these cases how the number and the size of coalitions belonging to the core partition are a�ected

by the distribution of risk within society.

De�ning an aggregate risk premium index and analyzing two societies with an equal number of

individuals, we compare the amount of resources devoted to risk sharing. We prove that a more

5Ghatak (1999), Chiappori and Reny (2005), Genicot (2006), Legros and Newman (2007), study risk-sharing

groups formation but these works consider that the size of groups is exogenously given.
6This could be justi�ed by the fact that individuals do not use the same technology and are di�erently exposed

to risks (see for instance Conley and Udry, 2010).
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risky society (in the sense of second-order stochastic dominance) may devote less resources to risk

sharing than a less risky one. This implies that some individuals may prefer to live in the more

risky society. This result too hinges on relative risk heterogeneity.

Further, we proceed to some comparative statics concerning the size of population. We show

that replication of society does not modify the boundaries of risk-sharing coalitions of the core

partition. On the opposite, the core partition may be modi�ed when individuals characterized by

new risks are added to society. It turns out that none of these ways of increasing the size of society,

even though allowing for risk diversi�cation, actually lead to the grand coalition and perfect risk

sharing.

We discuss the empirical implications of our model. Most empirical studies have found evidence

of partial risk sharing. This can be explained by the fact that individuals sort themselves into risk-

sharing groups smaller than the whole society. We show that the coe�cients of the consumption

function's speci�cation used in econometric studies depend on the number and size of risk-sharing

coalitions. Following empirical works (see in particular, Jalan and Ravallion, 1999, and Suri, 2009),

we consider that the average value of the coe�cient on individual income measures the extent of

risk sharing. One implication is that this coe�cient is larger, respectively smaller, when there is

more, respectively less, discrepancy between idiosyncratic shocks variances. Given our theoretical

prediction on the key role played by relative risk heterogeneity on the extent of risk sharing, we

claim that variables such as risk-ratios should be introduced in dyadic regressions used for assessing

the probability of forming a link between two individuals (Fafchamps and Gubert, 2007 and Arcand

and Fafchamps, 2012, use dyadic analysis to assess risk sharing).

These results highlight that these two dimensions (extent of risk sharing and aggregate risk

premium) matter for the assessment of risk sharing in society when social segmentation endogenously

emerges. Take two societies, one more risky than the other. The more risky society may be

characterized by a higher aggregate risk premium. According to this dimension, we may conclude

that insurance against risk is worse in this society. However, if the more risky society is more

homogenous leading to larger risk-sharing coalitions, then the extent of risk sharing would be larger

which is commonly interpreted as a better insurance outcome.

In order to check the robustness of our approach, we discuss the alternative case where individuals

di�er in their aversion to risk. That is, we focus on heterogeneous individual utility functions. We

prove that our propositions carry over to this case, even though the logic behind the formation of

the core partition di�ers. In this case, all agents are willing to pool with the most risk tolerant

agents.

The relationship between risk and group formation has already been studied by various authors.
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In particular, Genicot and Ray (2003) develop a group formation approach where one risk-sharing

coalition must be robust to potential subgroup deviations. This stability condition may limit the

size of the risk-sharing coalition. Bold (2009) solves for the optimal dynamic risk-sharing contract

in the set of coalition-proof equilibria. We depart from these works in two ways. First, we focus on

heterogeneity of individuals' attributes as the force limiting the size of risk-sharing coalition instead

of the absence of commitment. Second, we study the partition of society into possibly multiple

coalitions. Taub and Chade (2002) study under which conditions a core partition is immune to

future individual defections. Our focus is di�erent as we build a setup that allows us to characterize

a relationship between (i) the risk characteristics of a society, (ii) the membership and size of risk-

sharing groups and (iii) the extent of risk coping. Our paper bears some similarities with Henriet and

Rochet (1987) who develop a model of endogenous formation of mutuals using a cooperative game

theoretical approach. The modelling strategy is di�erent from ours as they assume a continuum of

agents, the existence of congestion costs and a binomial distribution of shock. Further, they focus

on formal insurance activity and do not address the issue of mutualization of risk under informal

insurance schemes. Finally, Bramoullé and Kranton (2007) develop a model of network formation

to tackle the risk sharing issue. As they consider identical individuals, they do not examine how

heterogeneity shapes the architecture of networks.

The plan of the paper is as follows. In the following section, we present our coalition-formation

framework with individuals di�ering with respect to the exposure to risk. We then characterize the

partition that emerges and study the relationship between the risk distribution, the size of risk-

sharing groups and the extent of risk sharing. Section 4 discusses the empirical implications of our

theoretical setup. In section 5, we study a coalition-formation framework where individuals di�er

with respect to their risk aversion. Section 6 concludes.7

2 The Model.

We consider a society I formed ofN agents, indexed by i = 1, ..., N . These individuals live T periods.

There is no production in this society and agents are endowed with quantities of a non-storable good.

At each date t, the endowment yit allotted to individual i has a deterministic component wit and is

a�ected by an idiosyncratic risk εit and a common shock νt :

yit = wit + εit + νt

where νt is i.i.d across individuals and time and normally distributed: νt  N (0, σ2ν). Moreover, εit

is i.i.d. across time and normally distributed: εit  N (0, σ2i ). Let the state of nature at each date

7Proofs of Propositions and Lemmas are provided in the Appendix.
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t be denoted by εt = (νt, ε1t, . . . , εjt, . . . εNt).

Individuals have instantaneous CARA utility functions and, at date 0, agent i is characterized

by the following expected utility function:

Ui = −E0

[
1

αi

T∑
t=1

δt−1e−αicit(εt)

]
with E0 the mathematical expectation operator at date 0, αi the absolute risk aversion parameter,

δ the discount factor and cit the consumption of agent i at date t in state εt.

Hence, we denote by Γi the vector of individual i's characteristics:

Γi = (σi, wi, αi).

There is perfect information in the following sense: the various idiosyncratic variances are public

information and the realizations of shocks are also perfectly observed by all agents when they occur.

It is assumed that there are no �nancial markets allowing any agent to insure himself against

his idiosyncratic risks. But agents have the possibility to form groups in order to cope with risk

according to a given transfer scheme.

2.1 Risk-sharing Coalitions.

Individuals have the possibility to group themselves in order to pool risk. A group is called a

risk-sharing coalition or club of individuals and a partition of the society is a set of risk-sharing

coalitions. More formally, we use the following

De�nition 1 A non-empty subset Sj of I is called a risk-sharing coalition and P = {S1, ..., Sj , ..., SJ}

for j = 1, ..., J is called a partition of I if (i)
J⋃

j=1
Sj = I and (ii) Sj

⋂
Sj′ = ∅ for j 6= j′.

According to this de�nition, any individual belongs to one and only one risk-sharing coalition.

The size of the j − th coalition, Sj ⊆ I, is denoted by nj .

We make two key assumptions. First, once risk-sharing coalitions are formed, we assume com-

mitment in the allocation of resources. This is a key di�erence with, for instance, Genicot and Ray

(2003) or Bold (2009). This commitment assumption allows us to make more transparent the link

between ex ante heterogeneity and the extent of risk-sharing in the society. Second, we require

that the coalition's resources be Pareto-optimally allocated between members of the coalition and

we do not assume a priori any risk-sharing rule, that is any transfer scheme. For any coalition S

⊆ I, Pareto-optimal allocations of resources between members of S are solutions of the following

program

max
{cit(εt)}

∑
i∈S

µi(S)

(
−E0

[
1

αi

T∑
t=1

δt−1e−αicit(εt)

])
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subject to the following feasibility constraint at each date t and each state εt:∑
i∈S

cit(εt) ≤
∑
i∈S

yit(εt)

where µi(S) denotes the non-negative Pareto-weight attached on individual i belonging to S.

It turns out that Pareto-optimal consumptions, denoted by ci (S), are equal to:
8

ci (S) =
1

αi

[
lnµi (S)−

∑
k∈S

lnµk(S)
αk∑

k∈S
1
αk

]
+

1
αi∑

k∈S
1
αk

∑
k∈S

(wk + εk + ν), ∀i ∈ S. (1)

For each agent i ∈ S and coalition S ⊆ I, ci (S) characterizes the set of allocations entailed by

optimal risk-sharing rules, each one being associated to a particular value of µi(S). At this stage,

in order to be as general as possible, we allow Pareto-weights to depend on the membership of S.

For any S ⊆ I, let us denote by |S| the cardinal of S and ΓS the characteristics of S, that is

ΓS ≡ {(Γi)i∈S} .

Optimal consumption of individual i in coalition S depends on ΓS as it is expressed by the char-

acteristics of all members of coalition S and their assigned weight µk(S) in S. We will prove that

heterogeneity between individuals plays a key role in the choice for each agent of their membership.

2.2 The Core Partition.

To address the issue of segmentation of society into risk-sharing coalitions, we consider the following

sequence of events:

1. Agents form risk-sharing coalitions and a partition of society is obtained.

2. Individuals commit to applying a Pareto-optimal allocation of resources within the coalition

they belong to.

3. Idiosyncratic shocks are realized. Agents then consume their optimal level of resources.

We solve this coalition-formation game by looking at a core partition de�ned as follows:

De�nition 2 A partition P∗ =
{
S∗
1 , ..., S

∗
j , ..., S

∗
J

}
belongs to the core of the coalition-formation

game if:

@£ ⊆ I such that ∀i ∈ £, Vi(£) > Vi(P∗)

where Vi(P∗) denotes the utility for agent i associated with partition P∗.

8See for instance Wilson (1968). If we considered a production sector and leisure choice, formulas of Pareto-optimal

consumptions would not be a�ected if separable utility functions are assumed (see Townsend, 1994). The good being

assumed non-storable, the time subscript is dropped in the sequel.
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According to this de�nition, a core partition is such that there is no blocking coalition, that is

there is no pro�table coalitional deviation.

We focus on two alternative assumptions about Pareto-weights and prove that a core partition

exists when the social welfare function relies on one or the other:

Proposition 1 A core partition exists if Pareto-weights satisfy either

(i) Assumption 1

lnµi (S) = Ψ(Γi) + Ω (ΓS) , with Ψ : R3
+ → R and Ω : R3|S|

+ → R, ∀i = 1, ..., N, ∀S ⊆ I

or

(ii) Assumption 2

lnµi (S) = αi

(
wi −

1

2

σ2i + σ2ν∑
m∈S

1
αm

)
, ∀i = 1, ..., N, ∀S ⊆ I.

Proposition 1 provides two characterizations of Pareto-weights that satisfy the common ranking

property. It is known to be a su�cient condition for the non-emptiness of the core partition (see

Farrell and Scotchmer, 1988, and Banerjee, Konishi and Sönmez, 2001). The common ranking

property implies that all individuals agree on the ranking of coalitions to which they belong.

Under Assumptions 1 and 2, benchmark cases of risk-sharing rules can be analyzed.

First, Assumption 1 allows us to us consider the utilitarian social welfare function, i.e. lnµi (S) =

lnµ for any i ∈ I which satis�es Assumption 1. It turns out that (1) can be expressed as follows

ci (S) =
1
αi∑

k∈S
1
αk

∑
k∈S

(wk + εk + ν), ∀i ∈ S

leading that any individual i consumes a fraction of the coalition resources, this fraction being equal

to the ratio of his risk tolerance, i.e. 1/αi, to the coalition S risk tolerance, i.e.
∑

k∈S(1/αk). If

individuals have the same risk aversion, this leads to the equal risk-sharing rule.9

Second, Assumption 1 covers the case where lnµi(S)
αi

= wi − αi
2 σ

2
i for any i ∈ I. For these

de�nitions of Pareto-weights, the following obtains

ci (S) = wi −
αi

2
σ2i +

1
αi

2
∑

k∈S
1
αk

∑
k∈S

(
αkσ

2
k

)
+

1
αi∑

k∈S
1
αk

∑
k∈S

(εk + ν) , ∀i ∈ S.

In the Proof of Proposition 1, we show that bargaining between members of coalition S generates

a Nash solution which is equal to these optimal levels of consumption.

9The implications of equal risk sharing on the formation of risk-sharing networks have been studied theoretically

(see Bramoullé and Kranton, 2007) and experimentally (see Barr et alii., 2011).
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Third, we can also consider under Assumption 1 that if lnµi(S)
αi

= wi for any i ∈ I then con-

sumption levels can be expressed as

ci (S) = wi +
1
αi∑

k∈S
1
αk

∑
k∈S

(εk + ν) , ∀i ∈ S. (2)

This risk-sharing rule amounts to share the whole stochastic resources of coalition S. Each individual

obtains a fraction of this amount de�ned as the ratio of his risk tolerance to the coalition S risk

tolerance. Calling it the mutual insurance rule, we study its implications in the next section (see

also Ray, 1998, for a study of such a rule).

Fourth, under Assumption 2, optimal consumption (1) is expressed as follows

ci (S) = wi −
1

2
∑

m∈S
1

αm

(
σ2i + σ2ν −

1
αi∑

k∈S
1
αk

∑
k∈S

(
σ2k + σ2ν

))
+

1
αi∑

k∈S
1
αk

∑
k∈S

(εk + ν) , ∀i ∈ S.

This rule has been studied by Baton-Lemaire (1981) and has the noteworthy implication that

when individuals have the same risk aversion, it leads the grand coalition to be in the core of the

coalition formation game whatever heterogeneity in I, that is, whatever the distributions of σ2i and

wi (see Proof of Proposition 1).

We can then o�er the following

Proposition 2 The grand coalition is not always in the core.

For an optimal risk-sharing rule and a set of individual characteristics ΓI, it is likely that the

society is partitioned into distinct coalitions. Given that individuals commit to sharing Pareto-

optimally the coalition's resources, perfect risk sharing obtains when the grand coalition belongs to

the core. This Proposition amounts to say that perfect information and commitment to a Pareto-

optimal allocation of resources do not inevitably imply perfect risk sharing when heterogenous

agents freely choose their risk-sharing group. These individual decisions generate the formation of a

plurality of risk-sharing coalitions re�ecting the heterogeneity of agents individuals. In other words,

the endogenous formation of risk-sharing coalitions possibly leads to partial risk sharing. The rest

of the paper is devoted to understanding the relationship between heterogeneity and partial risk

sharing.

3 A Particular Optimal Risk-Sharing Rule: Mutual Insurance.

We consider a particular optimal risk-sharing rule which is the mutual insurance rule and assume

that individuals have the same risk aversion parameter. As said before, for this rule consumption
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levels are given by (2) and can be rewritten as:

ci(S) = wi +

∑
k∈S εk

n
+ ν. (3)

When the non-stochastic component is identical for all agents, this rule amounts to the equal

sharing rule. This rule has the crucial advantage of focusing on transfers among agents solely

justi�ed by the objective of sharing risk among individuals as these transfers relate to the random

components of income. In other words, we abstract from any redistribution motive not related to

risk sharing. All our results will be deduced from this sole rationale.

The expected utility of individual i in group S, Vi(S), is:

Vi(S) = −E
[
1

α
e−αwi−α

∑
k∈S εk

n
−αν

]
.

As we assume a CARA utility function and normal distribution for each idiosyncratic shock, the

Arrow-Pratt approximation is exact:

Vi(S) = − 1

α
e
−α

[
wi− α

2n2

∑
k∈S σ2

k−
α
2
σ2
ν

]
. (4)

We de�ne the certainty-equivalent income for individual i in group S, denoted by ωi (S) , as:

ωi (S) = wi −
α

2

∑
k∈S

σ2k
n2

− α

2
σ2ν . (5)

The risk premium for any individual i in group S, denoted by π(S), is equal to α
2

∑
k∈S

σ2
k

n2 + α
2σ

2
ν

and thus is the same for every member of S.

The individual gain for agent i from membership to group S rather than to group S′ amounts

to a reduction in risk premium:

π(S′)− π(S).

In other words, an agent prefers joining a group (provided she is accepted in this group) in

which her certainty-equivalent income is higher. The more risky an agent, the more he bene�ts

from belonging to a given group (rather than remaining alone): individual gains from a group are

di�erentiated and actually increasing with the riskiness of the agent. This is the core characteristics

of a group functioning under our insurance rule. Hence, the formation of a group relies on the

trade-o� between heterogeneity and size. Accepting a new member has two opposite e�ects: on the

one hand, everything else equal, the higher its size, the lower the risk premium; on the other hand,

accepting an individual increases the sum of individual risks leading members to pay a higher risk

premium. Therefore when assessing the net bene�t of accepting a given individual, characterized

by a particular variance, an insider has to weigh these two e�ects.
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We have the following set of individual risk aversions

−→σ I = {σ21, σ22, . . . σ2N}

and without loss of generality, we index individuals as follows: for i and i′ = 1, .., N with i < i′ then

σ2i < σ2i′ . We will thus say that a lower indexed individual is a�less risky agent�(strictly speaking,

individual risk is associated with the law of motion of εi).

Given these di�erences among individuals, we de�ne λi ≡ σ2
i

σ2
i−1

for i = 2, ..., N. λi is called

the�risk ratio� between agents i− 1 and i. We will use the following

De�nition 3 Any society I can be characterized by a risk-ratio schedule Λ = {λ2, λ3, ..., λN} for

i = 2, ..., N .

This risk-ratio schedule captures the relative risk heterogeneity within society.

3.1 The Characteristics of the Core Partition.

In this section, we provide results on the impact of individual heterogeneity with respect to risk on

the segmentation of society in multiple risk-sharing coalitions.

From Proposition 1, we know that under a mutual insurance rule the core is not empty. We are

then able to o�er the following:

Proposition 3 A core partition P∗ =
{
S∗
1 , ..., S

∗
j , ..., S

∗
J

}
is characterized as follows:

i/ It is unique if

∀z = 2, ..., N − 1,
λz+1 − λz
λz+1 − 1

≥ − 1

z + 1
. (6)

ii/ It is consecutive, that is, if i and ĩ both belong to S∗
j then ∀i′, i > i′ > ĩ, i′ ∈ S∗

j .

iii/ For any two individuals i ∈ S∗
j and i′ ∈ S∗

j′ such that σ2i < σ2i′, then π(S
∗
j ) 5 π(S∗

j′).

The �rst result, i/, provides a su�cient condition for the core partition to be unique. The

condition on uniqueness depends on the rank of individuals. If the risk ratios are increasing with

the index z, this condition is always met. The condition may appear stringent when λz > λz+1,∀z =

2, ..., N − 1. The expression −1
z+1 is an increasing function of z which equals −1

3 when z = 2, −1
N

when z = N − 1, and tending to 0 when N is su�ciently large.10

10Let us stress that the core partition is generically unique (see for instance Farrell and Scotchmer, 1988) but we

need to provide a su�cient condition for uniqueness in order to proceed to our comparative static analysis.
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Turning to the characteristics of the core partition, the second result, ii/, is about consecutivity

which captures the homophily feature. Coalitions belonging to the core partition include agents

who are �close� in terms of exposure to risk. Take an individual who has to choose between two

individuals in order to form a risk-sharing coalition. It is easy to check that he always prefers the

less risky of the pair. This implies that if an agent i is willing to form a coalition with some other

agent i′, then all agents with a lower risk than i′ are also accepted by i in the coalition.11

The third result, iii/, is in line with consecutivity. Take the less risky individual characterized

by σ21. He is accepted by any possible coalition and chooses the group that incurs the lowest risk

premium. More risky individuals may not be accepted by agents characterized by low risks to pool

resources in a same group. They thus pay a higher risk premium in other coalitions.12

Given the consecutivity property, from now on, we adopt the following convention that for any

S∗
j and S∗

j′ , j
′ > j when σ2i < σ2i′ , ∀i ∈ S∗

j ,∀i′ ∈ S∗
j′ . Another way to express consecutivity is to say

that a core partition can be characterized by a series of �pivotal agents�, that is agents who are the

most risky agents of the coalition they belong to:

De�nition 4 Given the coalition S∗
j of size nj in the core-partition, the pivotal agent, de�ned by the

integer pj ∈ {1, ..., N} , associated with S∗
j and the next agent pj + 1 are characterized by variances

σ2pj and σ2pj+1, respectively, such that:

π(S∗
j \{pj}) ≥ π(S∗

j ) and π(S
∗
j ∪ {pj + 1}) > π(S∗

j ).

Hence,

σ2pj ≤ [2nj − 1]
∑

k∈S∗
j \{pj}

σ2k
(nj − 1)2

(7)

and

σ2pj+1 > [2nj + 1]
∑
k∈S∗

j

σ2k
nj2

. (8)

11The consecutivity property is obtained in other models of risk-sharing agreements (see for instance Henriet and

Rochet, 1987, and Legros and Newman, 2007).
12Let us remark that the CARA speci�cation is not crucial for the results obtained. If we assume an increasing

and concave utility function u(c) and in�nitesimal shocks, then using the Arrow-Pratt approximation would yield the

following risk premium for any individual i in group S

πi(S) = −u′′ (wi)

u′ (wi)

∑
k∈S σ2

k

|S|2
.

Hence, the purpose for each individual remains to obtain the lowest ratio
∑

k∈S σ2
k

|S|2 . However, when u(.) is not CARA

our mutual insurance rule is no more optimal.
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A pivotal agent, associated with coalition S∗
j , is by the consecutivity property, the most risky

agent belonging to this club. He is the ultimate agent for which the net e�ect of his inclusion in the

club is bene�cial for all other (less risky) agents belonging to the club. Even though he increases

the sum of risks in the club (i.e. the numerator of the risk premium), thus in�icting a loss to their

welfare, his addition also increases its size (the denominator of the risk premium). Actually, his

inclusion decreases the risk premium paid by each member of the coalition S∗
j . But if this coalition

were to include the next agent, pj + 1, as he is more risky than pj , the net e�ect of his inclusion

would be negative for all other agents of S∗
j . Therefore they prefer not to let him in. In brief, adding

the pivotal agent pj generates the lowest possible risk premium paid by each member of the coalition

S∗
j .

Let us remark that the de�nition of a pivotal agent depends neither on the level of the variance

nor on the degree of risk aversion. The conditions (7) and (8) can be rewritten as:

1 ≤ [2nj − 1]

(nj − 1)2

∑
k∈Sj\{pj}

pj−1∏
z=k+1

1

λz
(9)

and

1 >
[2nj + 1]

n2j

∑
k∈Sj

pj∏
z=k+1

1

λz
. (10)

What matters in the formation of a coalition, is the relative risk heterogeneity measured by risk

ratios. Consider the less risky agent, characterized by σ21. If he forms a coalition, it is necessarily

with a more risky agent. The best choice for him is agent 2 who adds the lowest increase in the

common risk premium:

π({1, 2}) = α

8
(σ21 + σ22) =

ασ21
8

(1 + λ2)

< π({1, i}) = α

8
(σ21 + σ2i ) =

ασ21
8

(1 +
i
Π
k=2

λk),∀i > 2.

This formula makes clear that agent 1 prefers to form a coalition with agent 2 than with any other

agent in society, because he is relatively closer to him in terms of risk. Eventually, what matters

for agent 1, is the sequence of risk ratios, that is the individual variances relative to his own. This

reasoning can be generalized to any n-agent coalition so as to obtain the core partition.

Given the consecutivity property of the core partition, the coalition S∗
j is fully de�ned by the

two agents whose indices are pj−1 + 1 and pj . In other words, the core partition is de�ned by the

set of pivotal agents. Then we are able to o�er the following:

Proposition 4 The core partition is characterized by a set of J pivotal agents indexed by pj satis-

fying (7) - (8) for j = 1, ..., J − 1 and σ2pJ = σ2N .
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Remark that the last coalition is peculiar. Its pivotal agent is per force agent N who satis�es

condition (7) and not condition (8). We refer to this ultimate coalition as the �residual� risk-sharing

coalition.

Finally, Proposition 4 highlights that, depending on the risk-ratio schedule, the mutual insurance

rule may lead to various risk-sharing groups. The grand coalition belonging to the core obtains if

the relative risk heterogeneity is su�ciently limited, corresponding to a ratio σ2N/σ
2
1 su�ciently

small.

3.2 Particular Risk-Ratio Schedules.

We have just emphasized the importance of the risk-ratio schedule Λ characterizing a society I in

the endogenous determination of the core partition of this society. In this subsection, we explore

the link between patterns of the risk-ratio schedule and the characteristics of the core partition.

This allows us to better understand how heterogeneity a�ects the way individuals congregate so as

to share risk. Formally, we want to assess the impact of Λ on the series of pivotal agents, i.e. on

the number and size of risk-sharing coalitions.

We restrict the analysis to risk-ratio schedules with simple monotonicity properties: either the

sequence of λi increases, decreases or remains constant. We then o�er the following

Proposition 5 If the risk-ratio schedule Λ = {λ2, λ3, ..., λN} is such that:

i/ λi = λ, ∀i = 2, ..N then n∗j = n, ∀j = 1, ..., J − 1.

ii/ λi ≤ λi+1, ∀i = 2, ..N then n∗j ≥ n∗j+1,∀j = 1, ..., J − 1.

iii/ λi ≥ λi+1, ∀i = 2, ..N then n∗j ≤ n∗j+1,∀j = 1, ..., J − 1.

This proposition makes clear that risk heterogeneity a�ects the core partition, that is the way

agents collectively cope with risk. To understand this proposition, each individual makes his decision

about membership with several principles in mind that we have previously uncovered. First, he

prefers joining the least risky coalition; second, he prefers being joined by the less risky agents

among those who are more risky than himself; third, when selecting (approving the admission of)

any member in his coalition, he takes into consideration the ratio between his risk and the one of a

potential entrant. Consecutivity, the ordering of coalition-risk premia, and the impact of risk ratios

in determining the pivotal agent of any coalition are the key elements for understanding how a core

partition relates to the risk-ratio schedule.

First, consider that the risk ratios are constant and equal to λ. From (9) and (10), we see that

inequalities determining the pivotal agent are identical for any club Sj . It turns out that coalitions
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in the core partition have the same size. In fact, it amounts to say that with constant risk ratios

individuals, while deciding to form a risk-sharing group, individuals face the same trade-o� whatever

the level of their exposure to risk.

Second, consider that risk ratio, λi, is increasing with the individual's index i. The condition

determining p2 implies higher values of the risk ratios than the one determining p1. Hence, pondering

the bene�t of increasing size and the cost of bearing risk with agents farther in the distribution of

risk, the size of S∗
2 turns out to be smaller than the size of S∗

1 . Repeating the argument, we �nd

that the succeeding club sizes decrease.

Third, the case where risk ratio λi is decreasing with the rank of individuals is easily understood

by using a similar argument. Now the cost of forming the second risk-sharing group is lower yielding

its size to be higher than for the �rst group.

3.3 Risk-Sharing Partitions and Aggregate Risk Premium.

We aim to study the impact of an increase in risk, on the pattern of risk-sharing coalitions and on

the resource cost of dealing with risk. We �rst de�ne the aggregate risk premium:

De�nition 5 The aggregate risk premium associated with the core partition P is de�ned as:

π(P) =
1

N

N∑
i=1

πi =
1

N

 J∑
j=1

njπ(Sj)


=

1

N

α

2

 J∑
j=1

1

nj

∑
k∈Sj

σ2k

+
α

2
σ2ν . (11)

The aggregate risk premium is an indicator of the willingness to pay for risk coping, at the

society level. From equation (11), it clearly depends on the core partition.

We should expect that an increase in individual risk should lead to a higher aggregate risk

premium. This is obviously true if the coalition structure is taken as given. However this is not

necessarily true when agents form their risk-sharing coalitions. It may happen that the change in

the whole core partition leads to di�erent risk-sharing arrangements, the outcome of which is to

decrease the average risk premium.

This counter-intuitive result is proven in the following

Proposition 6 Consider two societies I and I′ with εi, respectively ε
′
i, the idiosyncratic risk of any

individual i in I, respectively I′. Assuming that εi SS-Dominates ε′i for every i = 1, ..., N , then

society I may be characterized by a higher aggregate risk premium than I′ :

π(P ′) < π(P) (12)
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where P (resp. P ′) is the core partition associated with I (I′).

Proposition 6 highlights the fact that if endogenous formation of risk-sharing groups is taken

into consideration, we cannot claim that all individuals pay a higher risk premium in a more risky

society. We consider the case where society I′ is associated with a lower number of risk-sharing

coalitions than I, even though agents face more risk (higher idiosyncratic variances) in I′ than in I,

because as stressed in Proposition 5, this society is characterized by less risk heterogeneity. Hence,

in society I′, risk may be allocated in larger coalitions. In other words, in society I′, individuals have

the possibility to mutualize risk on a larger scale. This leads that the sum of these risk premia may

be lower in the more risky society and some individuals will pay lower risk premium and consume

more in this society.

3.4 Varying the size of society.

Our framework allows us to address the impact of a variation of population, that is an increase

of N through the addition of new agents. We distinguish two ways of varying the size of society:

replicating society or introducing individuals characterized by new risks (new values of σ2i ). We

shall prove that they lead to contrasting results.

We index the type of risk aversion by z, and denote by σ2 (z) the value of the risk aversion z

type. If there are Z types of risk aversions, we order them as follows σ2 (z) < σ2 (z′) for z < z′.

The set of risk aversion types writes

−→σ (I) = {σ2 (1) , σ2 (2) , . . . σ2 (Z)}

We denote by f(σ2 (z)) the fraction of the N individuals with the risk σ2 (z). This allows us to

distinguish between σ2i , the risk borne by agent i, and the z−th type of risk σ2 (z) . Here we consider

consecutive coalitions as we know that they belong to the core. We are thus able to show that

Lemma 1 When an individual i with risk σ2(z) is in S all individuals with the same σ2(z) belong

to S.

Therefore, the core partition is characterized by a set of pivotal types of agents, that is a set of

pivotal risks σ2 (p̃j).

For a given coalition S, we denote by−→σ (S) =
{
σ2 (z) , for any z = 1, ..., k

∣∣ ∀σ2i = σ2 (z) , i ∈ S
}
.

We de�ne the certainty-equivalent income for individual i in group S, denoted by ωi (S) , as:

ωi (S) = wi −
α

2

∑
σ2(z)∈−→σ (S) f(σ

2 (z))σ2 (z)

N
(∑

σ2(z)∈−→σ (S) f(σ
2 (z))

)2 − α

2
σ2ν . (13)
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Hence, individual i while choosing her welfare-maximizing coalition compares for any ωi (S) and

ωi (S
′). As, from (13), this comparison does not depend on N , we immediately obtain the following

Proposition 7 The core partition is de�ned by a set of pivotal risks which depends on the density

function of the risk distribution but is invariant to N.

However this proposition states that the relative sizes of types as captured by the density function

matter for the characterization of the core partition. This result is a direct consequence of the mutual

insurance rule which implies that the risk premium is a weighted average of all risks in this coalition

with weights capturing the relative size of a type within the coalition. It turns out that the trade-o�

between size and heterogeneity driving the formation of coalitions does not depend on N .

This proposition allows us to address the case of replication of society I. Let us consider the

integer a and aI is the society derived from I in which there are aN agents, i.e. a copies of any

individual i.

It is immediate to state that

Corollary 1 The replication of society I does not modify the set of pivotal risks.

As replication does not modify the density function, f(σ2 (z)), the set of pivotal risks character-

izing the core partition is una�ected. Of course, the size of any coalition S∗
j increases proportionally

with a. Replication reduces the risk premium in each coalition as any individual shares risk with

more individuals belonging to his coalition. In the limit, replication allows to diversify completely

risk leading individuals to bear only the cost of the uninsurable shock, as lima−→∞ π(S∗
j ) =

α
2σ

2
ν for

any S∗
j in the core partition.

Let us now turn to the case where society is enlarged by the introduction of agents characterized

by new exposures to risk, that is the introduction of new types of agents. This amounts to change

both the size of the population N and the distribution of risks. We start with the set of individual

risk aversions −→σ I = {σ21, σ22, . . . σ2N} which generates the core partition P∗ =
{
S∗
1 , ..., S

∗
j , ..., S

∗
J

}
.

For simplicity, let us add an individual î characterized by a new risk σ̂2 /∈ −→σ I and such that

σ2pj−1 < σ̂2 < σ2pj . We have the following

Proposition 8 Consider the addition to society of one individual î characterized by a risk σ̂2 /∈ −→σ I

and such that σ2pj−1 < σ̂2 < σ2pj . Then , the individual with σ2pj may not belong to the coalition to

which î belongs.

The introduction of a new risk modi�es inequalities (7) and (8) characterizing pivotal agents and

thus may modify the set of pivotal agents, in contrast with what was obtained when agents were
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added to society without changing the set of types. Hence, individual î belongs to the j coalition

which new pivotal agent denoted by p′j can di�er from the previous one, i.e. p′j ≤ pj . Further,

this change in the boundary of the j coalition can potentially lead to a change of the whole pattern

of risk coalitions comprising individuals with risks such that σ2 > σ2p′j
. Take for instance the risk-

sharing coalition Sj+1. If the less risky individual of Sj+1 has a lower risk than individual pj + 1

then the trade-o� between heterogeneity and size determining the membership in Sj+1 is modi�ed.

Potentially, this can lead to a pivotal agent p′j+1 ≤ pj+1.

An intriguing consequence of both propositions is that an increase of population (either an

increase of N without changing the risk distribution or an increase of N with an increase in the

risk type) does not necessarily reduce the number of risk-sharing coalitions nor modify the set of

pivotal risks.13 Therefore none of these ways of increasing the size of society which could be viewed

as a way to diversify risk actually lead to the grand coalition.

4 Empirical Implications of Risk-Sharing Group Formation.

Let us comment on the empirical consequences of the segmentation of society into multiple risk-

sharing groups on the extent of risk sharing.

4.1 Partial Risk-Sharing.

Partial risk sharing within society corresponds to the simultaneous rejection of perfect risk sharing

and autarky (cf. Dercon and Krishnan, 2003).

Most empirical studies test for e�cient risk-sharing by considering that the conditional expec-

tation of individual consumption equals:

E(cit|
Y I
t

N
, yit) = κi + βi

Y I
t

N
+ ζiyit (14)

with Y I
t ≡

N∑
i=1
yit, and where βi and ζi obtain using properties of conditional expectations of multi-

variate normal distributions (Ramanathan, 1993):

βi =
cov

(
Y I
t
N , cit

)
var (yit)− cov (yit, cit) cov

(
Y I
t
N , yit

)
var

(
Y I
t
N

)
var (yit)−

[
cov

(
Y I
t
N , yit

)]2 (15a)

ζi =
cov (yit, cit) var

(
Y I
t
N

)
− cov

(
Y I
t
N , cit

)
cov

(
Y I
t
N , yit

)
var (yit) var

(
Y I
t
N

)
−
[
cov

(
Y I
t
N , yit

)]2 . (15b)

13Excluding the case of N tending to in�nity.
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Equation (14) builds on the well known result that with CARA utility function, individual

consumption at the optimum is a linear function of both global resources and individual income

(see for instance Townsend, 1994).

Denoting by βI ≡
∑

i∈I βi

N and ζI ≡
∑

i∈I ζi
N , we then o�er the following

Lemma 2 Given a partition of the society, if we assume that individuals share risk optimally within

coalitions, whatever the Pareto-optimal risk-sharing rule, we get

lim
N−→+∞

βI = 1− 1

nJ

lim
N−→+∞

ζI =
1

nJ

with nJ the average size of risk-sharing groups.

It turns out that risk-sharing group membership is a crucial determinant of the value of βi and

ζi. If the grand coalition is formed, nJ = N implying that lim
N−→+∞

βI = 1 and lim
N−→+∞

ζI = 0. On

the opposite, if individuals decide to pool risk in smaller groups than the whole society I, nJ < N

implying that lim
N−→+∞

βI 6= 1 and lim
N−→+∞

ζI 6= 0. Most empirical studies assume that the relevant

unit to test for e�cient risk sharing is the grand coalition. This assumption may be inaccurate and

may explain why the null hypothesis ζI = 0 is rejected.

We will thus consider that ζI measures the extent of risk sharing in this society. A higher ζI

means that an individual on average bene�ts from lower risk sharing. This is congruent with the

interpretation of the estimated value of ζ as a measure of the extent of risk sharing (see for instance

Jalan and Ravallion, 1999, and Suri, 2009).

Characterizing the relationship between heterogeneity in risk exposure and the size of risk-

sharing coalitions, our setup helps to understand the impact of heterogeneity on the extent of risk

sharing. Lemma 1 allows us to prove the following

Proposition 9 For two societies I and I′, I being characterized by Λ = {λ2, λ3, ..., λN} and I′

being characterized by Λ′ = {λ′2, λ′3, ..., λ′N}, if λi < λ′i , ∀i = 2, ..., N , then the extent of risk sharing

is higher in society I than in society I′.

This proposition highlights the crucial impact of risk heterogeneity on the allocation of risk in

any society. In the more heterogenous society I′, individuals share risk in smaller coalitions, thus

diminishing the extent of risk sharing.

Let us provide an intuition for the proof of Proposition 9 by taking the special case where

λi = λi+1 = λ, λ′i = λ′i+1 = λ′ and λ < λ′ whatever i = 2, ..., N . Consider agent 1 in society I.
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Taking into account that membership only depends on the risk-ratio schedule, and pondering the

trade-o� between the bene�t of size and the cost of higher marginal relative risk, agent 1 prefers

being included in a (weakly) larger risk-sharing coalition in society I than in society I′. From

Proposition 5, the agent following the �rst pivotal agent faces the same trade-o� as agent 1. Hence

the second club is of the same size than the �rst club, and consequently is of a larger size in society

I than in society I′. Repeating the argument, we �nd that the number of non-residual clubs is

(weakly) reduced in the core partition of society I compared to the core partition of society I′. The

case of decreasing and increasing λis can similarly be dealt with.

Propositions 6 and 9 highlight that the aggregate risk premium index and the extent of risk

sharing must be considered for the assessment of risk sharing when risk-sharing coalitions are en-

dogenous. Take two societies I and I′ with any εi SS-Dominating ε′i and the risk-ratio schedule in

I being characterized by higher risk ratios than the one in I′ such that the aggregate risk premium

and the extent of risk sharing may both be higher in society I′. A larger extent of risk sharing

is commonly considered as desirable when it is assumed that agents are risk averse. However, a

higher aggregate risk premium is viewed as worse insurance outcome as it would lead to a lower

certainty-equivalent income. Hence, reasoning on the variation of the aggregate risk premium or

the extent of risk sharing separately would draw contradictory conclusions about the impact of an

increase in risk on risk sharing performances, at the society level.

4.2 Discussion.

Our results suggest that risk heterogeneity rather than the level of risk is the crucial dimension

to understand the allocation of risk in a society. A possible empirical investigation of our model

would be to examine the impact of risk heterogeneity on the extent of risk sharing. In particular,

our model predicts that an increase in λi for some i may lead to smaller risk-sharing coalitions

diminishing the extent of risk sharing.

As in Dubois (2006), a �rst potential test of this result would be to see whether the null hy-

pothesis ζi = 0 or ζI = 0 is more likely rejected for societies characterized by larger ratios between

two individuals' attributes. The evidence obtained by Dubois (2006, p.25), studying the impact on

risk sharing of heterogeneity as measured by the variance of risk aversion, gives some support to

our analysis as he writes�Also the higher is average risk aversion, and the more heterogenous it is,

the more likely full risk sharing is rejected�.

Recent works use disaggregated data and apply dyadic regression analysis to estimate the proba-

bility of a link between a pair of individuals in a network (see Fafchamps and Lund, 2003, Fafchamps

and Gubert, 2007, Arcand and Fafchamps, 2012). Typically, dyadic regressions estimate the impact
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of a di�erence in attributes as well as of the sum of attributes on the likelihood of a link. The

di�erence in attributes allows to identify the type of matching (positive or negative) while the sum

of attributes captures the propensity of an individual to join a group conditional on characteristics.

These works �nd evidence of assortative mating.

Building on their approach, one can envision testing the formation of risk-sharing coalitions.

Our theory of the endogenous formation of coalitions when the mutual insurance rule is applied,

suggests that consecutivity property be exploited. Namely, on the basis of equations (9) and (10)

de�ning a pivotal agent, the probability of a link between two individuals i and i′, i < i′, depends

not only on the risk-ratio between individuals i and i′ but on the whole series of risk-ratios λz, for

z = i + 1, ...., i′. For a given risk ratio σ2i′/σ
2
i , the higher is the risk-ratio between any individual

z = i, i+ 1, ..., i′ − 1 and i′ the lower the probability to create a link between i and i′. Introducing

the whole series of risk-ratios in between two individuals as explanatory variables of the probability

to create a link between them would be a way to test for endogenous formation of coalitions.

A further test of the consecutivity property would be to check whether, between three individuals

such that σ2i < σ2i′ < σ2i′′ , the probability of a link between i and i′ is signi�cantly higher than the

probability of a link between i and i′′.

As a whole, our theoretical approach suggests that an empirical investigation of risk-sharing

coalitions formation should take into account the whole risk-ratio schedule in society.

5 Heterogenous Risk Aversion.

Recent advances in the empirical literature support the evidence of heterogenous risk preferences

(see for instance Ogaki and Zhang, 2001, Mazzocco, 2004, Dubois, 2006, Mazzocco and Saini, 2010,

Chiappori et alii, 2011). In this section, we study the impact of heterogenous risk aversion on the

formation of risk-sharing groups and show how the properties of the partition previously found

remain valid.

The model we study is similar to the above setting with two modi�cations: First, individuals face

the same exposure to risk σ2ε ; second, individuals di�er with respect to risk aversion. Without loss

of generality, we index individuals as follows: for i and i′ = 1, .., N with i > i′ then 1
αi
> 1

αi′
. The

inverse of risk aversion 1
α being de�ned as risk tolerance, a lower indexed individual is characterized

by a lower risk tolerance.

Considering the consumption function given by equation (2), under these assumptions, the
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indirect utility function for individual i in Sj obtains:

Vi(Sj) = − 1

αi
e
−αi[wi− 1

2
1
αi

n2
j

(
∑

k∈S
1
αk

)2

(
σ2
ν+

σ2
ε

nj

)
]

.

We denote by πi(Sj) the risk premium evaluated by individual i when belonging to Sj :

πi(Sj) =
αi

2

 1
αi

1
nj

∑
z∈Sj

1
αz


2(

σ2ν +
σ2ε
nj

)
. (16)

The risk premium paid by agent i in her risk-sharing group expresses the trade-o� on which the

partition of society is based. Accepting a new member in a group pools risk among more individuals

and therefore reduces the risk associated with the group (which is equal to σ2ν +
σ2
ε

nj
in equation 16).

However accepting a new member a�ects the coalition average risk tolerance: if this new member is

less tolerant to risk than the average agent in the group, it will decrease the average risk tolerance

and thus increase the transfer in order to be insured against risk. This is captured by the ratio

1
1
nj

∑
z∈Sj

1
αz

in equation (16).

De�ning the risk tolerance ratio between agent i and agent i−1 as χi =
1/αi

1/αi−1
for any i = 2, ..., N ,

the following proposition characterizes the core partition:

Proposition 10 A core partition P∗ =
{
S∗
1 , ..., S

∗
j , ..., S

∗
J

}
exists and is characterized as follows:

i/ It is unique if

∀z = 2, ..., N − 1,
χz+1 − χz

χz+1 − 1
≥ − 1

(z + 1)
. (17)

ii/ It is consecutive, that is, if i and ĩ both belong to S∗
j then ∀i′, i > i′ > ĩ, i′ ∈ S∗

j .

iii/ For any two individuals i ∈ S∗
j and i′ ∈ S∗

j′ such that 1
αi
> 1

αi′
, then πi(S

∗
j ) 5 πi′(S∗

j′).

This proposition is quite similar to Proposition 3. The su�cient condition for uniqueness par-

allels equation (6). Consecutivity is a characteristic of the core partition: two individuals are more

likely to congregate the closer they are in terms of risk tolerance. Finally, the less risk tolerant an

individual, the higher the risk premium that this individual is ready to pay. In other words, we can

index coalitions according to the ordering of risk premia.

Notice however that the rationale behind the formation of coalitions and therefore of the core

partition is di�erent than in the case of heterogeneity with respect to risk. In the case of risk

aversion heterogeneity, each agent wants to join a coalition formed by the most risk tolerant agents:

This decreases her risk premium. But the most risk tolerant agents deny membership to agents
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with su�ciently high risk aversion who would demand a too high transfer. Hence the formation of

the core partition is obtained by clustering the most risk tolerant agents into the �rst coalition, and

proceeding sequentially for the other coalitions.

The core partition can be characterized by a set of pivotal agents de�ned as follows:14

∑
k∈Sj\{pj}

1

αk

−1 +
1

(nj − 1)

√√√√√n2j

(
σ2ν +

σ2
ε

nj

)
(
σ2ν +

σ2
ε

nj−1

)
 ≤ 1

αpj

and ∑
k∈Sj

1

αk

−1 +
1

nj

√√√√√(nj + 1)2

(
σ2ν +

σ2
ε

nj+1

)
(
σ2ν +

σ2
ε

nj

)
 >

1

αpj+1
.

As inequalities de�ning pivotal agents are homogenous of degree 0 with respect to 1
αi
, we also

derive a relationship between the heterogeneity of risk tolerance and coalition's size:

Proposition 11 If the risk-tolerance ratio χ = {χ2, χ3, ..., χN} is such that:

i) χi = χ, ∀i = 2, ..., N, then n∗j = n,∀j = 1, ..., J − 1.

ii) χi ≤ χi+1, ∀i = 2, ..., N, then n∗j ≤ n∗j+1,∀j = 1, ..., J − 1.

iii) χi ≥ χi+1, ∀i = 2, ..., N, then n∗j ≥ n∗j+1,∀j = 1, ..., J − 1.

This proposition is similar to Proposition 5 and can be explained along the same line. What

matters for the shaping of the partition is the heterogeneity with respect to risk aversion, captured

by the risk tolerance ratios, which plays the same role as the risk ratios.15

In brief, our various propositions are robust to the nature of heterogeneity. This heterogeneity

may apply to the utility functions of agents or to the stochastic environment they face, yet it will

trigger identical behaviors which will lead agents to sort themselves into distinct risk-sharing groups

(even though it may happen that the grand coalition forms). Importantly, segmentation of society

into di�erent risk-sharing coalitions does not depend on the levels of idiosyncratic characteristics

such as the exposures to risk or risk aversion coe�cients, but on heterogeneity as expressed by the

risk ratios or the risk-tolerance ratios.

14Let us consider Ω(σ2
ν) =

−1 + 1
nj

√√√√(nj + 1)2

(
σ2
ν+

σ2
ε

nj+1

)
(
σ2
ν+

σ2
ε

nj

)
 . It is easy to check that it monotonously increases

with σ2
ν , ∀nj ≥ 1 and 0 < Ω(0) =

(
−1 + 1

nj

√
(nj + 1)nj

)
< 1 and limσ2

ν−→+∞ Ω(σ2
ν) =

1
nj

.
15It is irrelevant to search for a proposition equivalent to Proposition 4. Comparing aggregate risk premia obtained

in societies which are not similar in risk aversion and thus value di�erently the protection with respect to risk has no

economic meaning.
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6 Conclusion.

Non-�nancial risk-sharing arrangements are widely used in developing economies. In the absence

of proper and well-functioning �nancial markets, agents rely on informal insurance schemes, often

based on social or geographical (a �village�) proximity. Hence it is legitimate to ask how risk-sharing

mechanisms are designed in a society and what are their properties and consequences.

Considering a society without �nancial markets and relying on a particular insurance rule, we

study the endogenous formation of risk-sharing coalitions. Agents can form any possible group but

commit to remaining in their chosen group whatever the realization of idiosyncratic shocks.

We show that when heterogenous individuals can freely choose their risk-sharing coalitions then

commitment to a Pareto-optimal allocation of resources does not inevitably imply perfect risk

sharing as the grand coalition does not always form.

Then considering the mutual insurance rule, we successively study the cases where individuals

are heterogeneous with respect to the variances of the idiosyncratic shocks, and their risk aversion.

First we obtain a characterization of the core partition of society with respect to risk, depending on

the di�erentiated idiosyncratic risks born by individuals. It is unique (under some mild assumption),

and consecutive: a coalition integrates agents of relatively similar risks. There is perfect risk-sharing

within a coalition. However, there is no full insurance across society. In other words, the amplitude of

risk sharing cannot be studied without precisely taking into account the memberships of risk-sharing

groups and their di�erences.

Turning to a discussion of the role of risk heterogeneity on the segmentation of society and

focusing on three special cases, we characterize the relationship between the characteristics (i.e.

number, sizes and memberships) of risk-sharing coalitions and the distribution of risk across society.

When the partitions into risk-sharing coalitions of two societies di�ering in their risk hetero-

geneity are compared, we prove that the extent of risk sharing captured by the average size of

coalitions decreases with this heterogeneity. The link between partial risk sharing and risk hetero-

geneity comes from the partition of society into di�erent risk-sharing coalitions shaped by relative

risk heterogeneity. A more risky society (in the sense of second-order stochastic dominance) may

devote less resources to risk sharing than a less risky one as it may be less heterogenous, thus less

segmented, and therefore better able to pool individual risks. This illustrates a tension between the

levels of individual variances and their ratios (which express relative risk heterogeneity). Finally,

we examine two ways of increasing the size of society and show that even though conducive to risk

diversi�cation they do not lead to perfect risk sharing. When heterogeneity with respect to risk

aversion is considered, similar propositions obtain.
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The present research proves how coalition theory tools can be applied to study the functioning

of an economy in the presence of uncertainty when agents are risk-averse. It can be extended along

several lines, where these tools are also of potential interest.

First, the assumption of full commitment could be relaxed so as to assess the impact of defection

on the number and size of risk-sharing coalitions forming the core partition.

Second, our results on segmentation and partial risk sharing rely on the assumption that in-

dividuals form groups expecting the the sharing rule to be applied, possibly through bargaining.

It would be worthwhile to study the impact of bargaining simultanously on both coalitions and

transfers on the core partition.

Third, our paper shows that sorting individuals into risk-sharing coalitions a�ects the extent of

risk sharing over the whole society. This suggests to empirically search for boundaries of groups as

an explanatory link between society's heterogeneity and the degree of partial risk sharing.
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7 Appendix.

7.1 Proof of Proposition 1.

Let us consider, for any S ⊆ I, the Pareto-optimal consumptions obtained in the optimal program:

ci (S) =
1

αi

[
lnµi (S)−

∑
k∈S

lnµk(S)
αk∑

k∈S
1
αk

]
+

1
αi∑

k∈S
1
αk

∑
k∈S

(wk + εk + ν), ∀i ∈ S

Given that E [εk] = 0 and letting n ≡ card(S) we have

E [ci (S)] =
1

αi

[
lnµi (S)−

∑
k∈S

lnµk(S)
αk∑

k∈S
1
αk

]
+

1
αi∑

k∈S
1
αk

∑
k∈S

wk

and

V ar [ci(S)] =

(
1
αi∑

k∈S
1
αk

)2(∑
k∈S

σ2k + nσ2ν

)
Hence, the certainty-equivalent income for any individual i in S writes as follows:

ωi(S) =
1

αi

(
lnµi (S)−

∑
k∈S ηk (S)∑
k∈S

1
αk

)
,

where

ηk (S) ≡
lnµk (S)

αk
−

(
wk −

1

2

σ2k + σ2ν∑
m∈S

1
αm

)
.

We have for any S and S′ ⊆ I, S 6= S′, any i in S and S′,

Vi(S) R Vi(S′)

which is equivalent to

lnµi (S)− lnµi
(
S′) R ∑k∈S ηk (S)∑

k∈S
1
αk

−
∑

k∈S′ ηk (S
′)∑

k∈S′
1
αk

. (18)

Following Banerjee, Konishi and Sönmez (2001), the common ranking property is de�ned as

follows:

De�nition 6 A coalition formation game G satis�es the common ranking property if and only if

there exists an ordering � over the set of all possible coalitions in I such that for any i ∈ I and

any coalition S, S′ in the set of all coalitions containing i we have S �i S
′ ⇔ S � S′, with �i a

preference relation of i in the set of all coalitions containing i.
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We deduce that the common ranking condition is satis�ed when

lnµi (S)− lnµi
(
S′) = lnµj (S)− lnµj

(
S′) ,∀i, j in S and S′.

It is immediate to see that this equation is satis�ed under Assumption 1.

The Baton-Lemaire Rule. Under Assumption 2, we have

ηk (S) = 0, ∀k ∈ S

which implies that (18) can be written as follows

αi

2

(
− σ2i + σ2ν∑

m∈S
1

αm

)
+
αi

2

(
σ2i + σ2ν∑
m∈S′

1
αm

)
R 0

which is equivalent to
1∑

m∈S′
1

αm

R 1∑
m∈S

1
αm

(19)

which does not depend on any characteristics of individual i. Hence, the result. Remark that when

αi = α for any i ∈ I (19) can be written as follows

1

n′
R 1

n

implying that S is preferred to S′ when it is larger than S′. Hence, the grand coalition belongs to

the core of the coalition formation game.

A risk-sharing rule obtained by Nash Bargaining. Assumption 1 allows us to consider

the case where lnµi(S)
αi

= wi − αi
2 σ

2
i for any i ∈ I leading to the following

ci (S) = wi −
αi

2
σ2i +

1
αi

2
∑

k∈S
1
αk

∑
k∈S

(
αkσ

2
k

)
+

1
αi∑

k∈S
1
αk

∑
k∈S

(εk + ν) , ∀i ∈ S. (20a)

Let us consider that individuals in a given coalition S bargain over the allocation of resources

available in S. Denoting by ε the state of nature which belongs to a set A, f(.) the density function,

ci (ε) the level of consumption of individual i under ε and ci(d) consumption under disagreement,

the Nash bargaining problem writes (see Thomson, 1994)

max
ci(ε)

∏
i∈S

(∫
A
u(ci(a))f (ε) dε−

∫
A
u(ci(d))f (ε) dε

)

subject to the following resource constraint∑
i∈S

ci(ε) =
∑
i∈S

yi (ε) , ∀ε ∈ A.
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We know that the Nash bargaining solution is Pareto optimal, hence risk sharing is optimal

between individuals belonging to coalition S.

Applying the log function and assuming that utility is CARA we have

max
ci(ε)

∑
i∈S

ln

(∫
A

1

α
e−αci(d)f (ε) dε−

∫
A

1

α
e−αci(ε)f (ε) dε

)

subject to the following resource constraint∑
i∈S

ci(ε) =
∑
i∈S

yi (ε) , ∀ε ∈ A.

Denoting by Ψ(ε) the Lagrange multiplier associated to the resource constraint, the �rst order

condition is written as follows:

e−αici(ε)(∫
A

1
αi
e−αici(d)f (ε) dε−

∫
A

1
αi
e−αici(ε)f (ε) dε

) = Ψ(ε) , ∀ε ∈ A,∀i ∈ S. (21)

Integrating both sides of (21) we �nd that∫
A e

−αici(ε)f (ε) dε(∫
A e

−αci(d)f (ε) dε−
∫
A e

−αci(ε)f (ε) dε
) =

1

αi

∫
A
f (ε)Ψ (ε) dε

which is equivalent to
e−αiωi(S)

e−αiωi(d) − e−αiωi(S)
=

1

αi

∫
A
f (ε)Ψ (ε) dε

leading to
αi

eαi(ωi(S)−ωi(d)) − 1
=

∫
A
f (ε)Ψ (ε) dε.

We thus deduce that for any i, z in S

αi

eαi(ωi(S)−ωi(d)) − 1
=

αz

eαz(ωz(S)−ωz(d)) − 1
(22)

From (21) and (22) we have

e−(αici(ε)−αzcz(ε)) =
e−αiωi(S)

e−αzωz(S)

which yields

cz (ε) =
αi

αz
ci (ε) + ωz(S)−

αi

αz
ωi(S).

Summing over all individuals z in coalition S and taking the feasibility constraint for coalition

S leads to

ci (S) = ωi(S)−
1
αi∑

z∈S

1
αz

∑
z∈S

ωz(S) +
1
αi∑

z∈S

1
αz

∑
z∈S

(wz + εz + ν) (23)
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Assuming αi = α, ∀i ∈ I, (22) implies that

ωi(S)− ωi(d) = ωz(S)− ωz(d). (24)

Assuming also that under disagreement the individual consumes is income wi + εi leading to the

following certainty-equivalent income under disagreement

ωi(d) = wi −
1

2
α
(
σ2i + σ2ν

)
,

(24) becomes

ωz(S) = ωi(S)−
(
wi −

1

2
ασ2i

)
+ wz −

1

2
ασ2z

Introducing this equation in (23) and letting n ≡ card(S) we have

ci (S) = ωi(S)−
1

nj

∑
z∈S

(
ωi(S)−

(
wi −

1

2
ασ2i

)
+ wz −

1

2
ασ2z

)
+

1

nj

∑
z∈S

(wz + εz + ν)

which leads to

ci (S) = wi −
1

2
ασ2i +

1

2

α
∑

z∈S σ
2
z

n
+

∑
z∈S (εz + ν)

n
.

It is immediate to check that the solution of the Nash Bargaining Problem equals optimal consump-

tion under the Baton and Lemaire given in (20a) when αi = α, ∀i ∈ I.

7.2 Proposition 2.

It is always possible to �nd µz and Γi = (σ2i , wi, αi) for any i such that we have

lnµi (S)−
∑

k∈S ηk (S)∑
k∈S

1
αk

> lnµi (I)−
∑

k∈I ηk (I)∑
k∈I

1
αk

for S ⊂ I.

For instance let us consider that Γi = (σ2i , w, α) for any i and lnµz = lnµ for any i. Let us consider

that S = I\{z}. It is easy to �nd σ2i such that

σ2i >
(2N − 1)

N(N − 1)2

∑
k∈I\{z}

σ2k

7.3 Proof of Proposition 3.

Proof of (ii): Consecutivity.

By contradiction, let us consider a core-partition P∗ characterized by some non consecutive

groups, that is, there exist individuals i, ĩ ∈ S∗
j and i′ ∈ S∗

j′ with i < i′ < ĩ.

Suppose �rst that π(S∗
j ) ≥ π(S∗

j′). As i < i′ < ĩ ⇐⇒ σ2i < σ2i′ < σ2
ĩ
, we have π(S∗

j′) >

π((S∗
j′\{i′}) ∪ {i}), which leads to

∀z ∈ (S∗
j′\{i′}) ∪ {i}, Vz((S∗

j′\{i′}) ∪ {i}) > Vz(P∗).
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Second, assume that π(S∗
j′) ≥ π(S∗

j ). We have π(S∗
j ) > π((S∗

j \{̃i}) ∪ {i′}), which leads to

∀z ∈ (S∗
j \{̃i}) ∪ {i′}, Vz((S∗

j \{̃i}) ∪ {i′}) > Vz(P∗).

Hence a contradiction with the fact that P∗ is assumed to be a core-partition.

Proof of (i): Uniqueness.

Let us de�ne pj the most risky agent of the consecutive group Sj\{pj} with size ñj = nj − 1

satisfying the two following inequalities:

σ2pj ≤ [2ñj + 1]
∑

k∈Sj\{pj}

σ2k
ñ2j

and

σ2pj+1 > [2ñj + 3]
∑
k∈Sj

σ2k
(ñj + 1)2

.

Let us consider the consecutive group Sj whose lowest-individual-risk agent is i. Given the de�nition

of the most risky agent, we can introduce the two following functions: Γ(ñ) = ñ
2ñ+1 and Θ(i, ñ) =

1
ñ

i+ñ−1∑
k=i

σ2
k

σ2
i+n

with ñ = 1, ..., N − i+ 1. Let us denote by ñ∗(i) + 1 the size of group Sj such that:

Γ(ñ∗(i)) ≤ Θ(i, ñ∗(i))

and

Γ(ñ∗(i) + 1) > Θ(i, ñ∗(i) + 1).

It is easy to check that Γ(ñ) is an increasing function of ñ and Γ(1) = 1
3 . Given Θ(i, 1) = 1 > Γ(1),

if Θ(i, ñ) is decreasing with respect to ñ whatever i ∈ I and ñ ≤ N − i, then ñ∗(i) is unique as

Γ(ñ) ≤ Θ(i, ñ) for ñ ≤ ñ∗(i) and Γ(ñ) > Θ(i, ñ) for ñ > ñ∗(i).

The function Θ(i, ñ(i)) is decreasing if and only if:

∆Θ(i, ñ) ≡ Θ(i, ñ(i) + 1)−Θ(i, ñ(i)) =
1

ñ+ 1

σ2i+ñ +
i+ñ−1∑
k=i

σ2k

σ2i+ñ+1

− 1

ñ

i+ñ−1∑
k=i

σ2k

σ2i+ñ

< 0 ⇐⇒

ψ (i, ñ) = ñσ2i+ñ −

(
(ñ+ 1)

σ2i+ñ+1

σ2i+ñ

− ñ

)(
i+ñ−1∑
k=i

σ2k

)
< 0.

Let us consider the function ψ (i, ñ). It is negative for all i, ñ ≤ N − i if

ψ (i, 1) = σ2i+1 −
(
2
σ2i+2

σ2i+1

− 1

)(
σ2i
)
≤ 0 and ∆ψ (i, ñ) ≡ ψ (i, ñ+ 1)− ψ (i, ñ) ≤ 0.

De�ning λi+1 =
σ2
i+1

σ2
i
, the inequality ψ (i, 1) ≤ 0 is equivalent to(

σ2
i+1−σ2

i

σ2
i

)
−
(
σ2
i+2−σ2

i+1

σ2
i+1

)
(
σ2
i+2−σ2

i+1

σ2
i+1

) =
λi+1 − λi+2

λi+2 − 1
≤ 1. (25)
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Moreover, ∀ñ ≥ 1, ∆ψ (i, ñ) ≤ 0 is equivalent to

∆ψ (i, ñ) = ((ñ+ 1)λi+ñ+1 − (ñ+ 2)λi+ñ+2 + 1)(σ2i+ñ +

(
i+ñ−1∑
k=i

σ2k

)
) ≤ 0 ⇔

λi+ñ+1 − λi+ñ+2

λi+ñ+2 − 1
(ñ+ 1) ≤ 1.

De�ning z ≡ i+ ñ+ 1, we can rewrite this inequality as follows:

λz − λz+1

λz+1 − 1
(z + 1)(

z − i

z + 1
) ≤ 1.

As 0 ≤ (z−i)
(z+1) ≤ 1, we deduce that if for all z = 3, ..., N−1, λz−λz+1

λz+1−1 (z+1) ≤ 1, then4ψ (i, ñ) ≤ 0.

Given equation (25), we deduce that if for all z = 2, ..., N − 1, λz−λz+1

λz+1−1 (z + 1) ≤ 1 then

4ψ (i, ñ) ≤ 0 and ψ (i, 1) ≤ 0, ∀i = 1, ..., N.

Hence, when for all z = 2, ..., N − 1, λz−λz+1

λz+1−1 (z + 1) ≤ 1, we deduce that there is a unique size

nj for the club Sj .

Proof of (iii): Risk premium ordering.

Consider the �rst group S∗
1 . Let us de�ne the group £j =

{
1, ...., n∗j

}
which is consecutive,

comprised of the lowest-individual-risk agents and has the same size as group S∗
j . From the de�nition

of the core-partition, we know that, ∀£ ⊂ I, ∀z ∈ S∗
1 and £, Vz(S

∗
1) ≥ Vz(£) and in particular ∀z ∈

S∗
1 and £j , ∀j = 2, ..., J , Vz(S

∗
1) > Vz(£j ) which means that ∀£j , π(S∗

1) < π(£j ). Moreover, given

the consecutivity property, it is easy to show that π(£j ) < π(S∗
j ), ∀j > 1. Hence, π(S∗

1) < π(S∗
j ).

Considering the subset I\(S∗
1 ∪S∗

2 ∪ ...∪S∗
j ), the same argument can be applied for S∗

j+1 leading to

the result π(S∗
1) < π(S∗

2) < π(S∗
3) < ... < π(S∗

j ) < ... < π(S∗
J−1).

7.4 Proof of Proposition 5.

Let us �rst denote by Sc(i) any consecutive group whose less risky individual is i. We will denote

by n̂(i) the size of Sc(i) such that n̂(i) = argmaxVi(S
c(i)) in the subset I\{1, 2, ..., i− 1}, for a risk

ratio schedule Λ. Hence, n̂(i) satis�es inequalities characterizing a pivotal agent:

Γ(n̂(i)− 1) ≤ Θ(i, n̂(i)− 1) (26)

and

Γ(n̂(i)) > Θ(i, n̂(i)). (27)

From Proof of Proposition 3, we know that Γ(n) is an increasing function of n and, under some

condition, Θ(i, n) decreases with respect to n. We can rewrite Θ(i, n) as follows:

Θ(i, n) =
1

n

i+n−1∑
v=i

i+n∏
z=v+1

1

λz
.
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Θ(i, n) is a function of i such that:

(i) When λz = λ, ∀z = 2, ..., N, then Θ(i, n) = Θ(i′, n) ∀i, i′.

(ii) When λz ≤ λz+1, ∀z = 2, ..., N, then Θ(i, n) ≥ Θ(i′, n) for i < i′.

(iii) When λz ≥ λz+1, ∀z = 2, ..., N, then Θ(i, n) ≤ Θ(i′, n) for i < i′.

Hence (i), (ii), (iii) and inequalities (26) and (27) lead to Proposition 5.

7.5 Proof of Proposition 6.

Let us consider the two following societies. In society I′, there are N individuals characterized with

σ′2i = 1. Hence, P ′ = {I ′}. In society I, n1 individuals are characterized with σ21 and n2 individuals

are characterized with σ22 such that 1 > σ22 > σ21. Let us choose σ
2
1 and σ22 such that P = {S∗

1 , S
∗
2}

with S∗
1 (respectively S∗

2) comprised of the n1 (respectively n2) individuals with σ21 (respectively

σ22). Hence, σ
2
1, σ

2
2, n1, n2 and x are such that

n1σ
2
1 + xσ22

(n1 + x)2
>
n1σ

2
1

(n1)2
for all x ∈ {1, ..., n2}

which is equivalent to

σ22 > σ21
2n1 + x

n1
.

As the RHS is an increasing function of x, a su�cient condition for this inequality to hold is

σ22 > σ21
2n1 + n2

n1
.

Thus, given both core partitions, we deduce that

π(P) =
α

2

1

N

(
n1
n1σ

2
1

(n1)2
+ n2

n2σ
2
2

(n2)2

)
+
α

2
σ2ν and π(P ′) =

α

2

1

N
+
α

2
σ2ν .

In order to have π(P) > π(P ′), σ21 and σ22 must be such that:

σ21 + σ22 > 1.

Clearly there exist σ21 and σ22 that satisfy the following inequalities:

1 > σ21; 1 > σ22; σ
2
1 + σ22 > 1; σ22 > σ21

2n1 + n2
n1

.

For example, take σ21 <
n1

3n1+n2
which satis�es 1 > σ21. As σ

2
1 > 0, we have 1 > 1− σ21. Notice that

σ21 <
n1

3n1+n2
is equivalent to 1− σ21 > σ21

2n1+n2
n1

. So that for any σ22 such that 1 > σ22 > 1− σ21, the

four inequalities are satis�ed.
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7.6 Proof of Lemma 1.

By contradiction, let us assume that two individuals i and j with σ2i = σ2j = σ2(z) are such that

i ∈ S and j /∈ S. From (7), if i ∈ S, then

σ2i ≤ [2n− 1]
∑

k∈S\{i}

σ2k
(n− 1)2

(28)

with n being the size of S. But, from (8) if j /∈ S, then

σ2j > [2n+ 1]
σ2i +

∑
k∈Sj\{i} σ

2
k

n2
(29)

As by assumption σ2i = σ2j , this inequality implies that

(
n2 − 2n− 1

)
σ2i > [2n+ 1]

∑
k∈Sj\{i}

σ2k (30)

When n ≤ 2, n2 − 2n − 1 < 0, then the LHS of (30) is negative while the RHS of (30) is positive.

This leads to a contradiction. When n > 2, n2 − 2n− 1 > 0, equations (28) and (30) imply

[2nj − 1]

(nj − 1)2
>

[2nj + 1]

n2j − 2n− 1

leading to

1 >
2nj − 1

2nj + 1
>
n2j − 2n+ 1

n2j − 2n− 1
> 1

which is a contradiction. Hence the result.

7.7 Proof of Proposition 8.

We look for a condition such that the introduction of îmodi�es the set of pivotal agents. For simplic-

ity, we focus on S1 characterized by σ2p1 satisfying (7) and assume that an individual characterized

by σ2p1 + ε, ε arbitrarily small, would not have been accepted in S1

σ2p1 + ε >

(
2nj + 1

n2j

) ∑
k∈S1\{p1}

σ2k + σ2p1

 (31)

Let L ≡ σ2p1 − σ2p1−1 > 0 and σ̂2 ≡ σ2p1−1 + δ, L > δ > 0. Obviously, î is accepted in S1\{p1}.

Let us show that for given values of L and δ, we can �nd ε such that î is accepted in S1\{p1}

and p1 is rejected by S1\{p1} ∪ {̂i}. Formally, the rejection of p1 is written as

σ2p1 >

(
2nj + 1

n2j

) ∑
k∈S1\{p1}

σ2k + σ̂2

 . (32)
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A su�cient condition for (32) given (31) writes

2nj + 1

n2j
(L− δ) > ε.

As the LHS of the above inequality is strictly positive, it is always possible to �nd a distribution of

risks with a value of ε su�ciently small such that this inequality is satis�ed.

7.8 Proof of Lemma 2.

Let us �rst consider that the grand coalition is formed and individuals allocate Pareto-optimally

the grand coalition resources. Given (1), we have for any i in I:

ci (I) =
1

αi

[
lnµi (I)−

∑
k∈I

lnµk(I)
αk∑

k∈I
1
αk

]
+

1
αi∑

k∈I
1
αk

∑
k∈I

(wk + εk + ν), ∀i ∈ I. (33)

Given (33) the conditional expectation of individual consumption is used by econometricians

when testing for the perfect risk sharing hypothesis:

E(cit|
Y I
t (ε

I
t)

N
, yit) = κi + βi

Y I
t

N
+ ζiyit (34)

where the formulas of βi and ζi are obtained by using properties of conditional expectations of

multivariate normal distributions (Ramanathan, 1993):

βi =
cov

(
Y I
t
N , cit

)
var (yit)− cov (yit, cit) cov

(
Y I
t
N , yit

)
var

(
Y I
t
N

)
var (yit)−

[
cov

(
Y I
t
N , yit

)]2 (35a)

ζi =
cov (yit, cit) var

(
Y I
t
N

)
− cov

(
Y I
t
N , cit

)
cov

(
Y I
t
N , yit

)
var (yit) var

(
Y I
t
N

)
−
[
cov

(
Y I
t
N , yit

)]2 . (35b)

Given (33), some straightforward computations lead to the following

βi =
1
αi∑

k∈I
1
αk

(Nσ2ν +
∑

m∈I σ
2
m

N )
(
σ2ν + σ2i

)
−
(
Nσ2ν + σ2i

) (
σ2ν +

σ2
i

N

)
(
σ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
−
(
σ2ν +

σ2
i

N

)2
ζi =

1
αi∑

k∈I
1
αk

(
Nσ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
− (Nσ2ν +

∑
m∈I σ

2
m

N )
(
σ2ν +

σ2
i

N

)
(
σ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
−
(
σ2ν +

σ2
i

N

)2 .

Hence,

βi =
1
αi∑

k∈I
1
αk

N

and

ζi = 0.
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Second, let us now assume that optimal risk sharing takes place in subset S ⊂ I, with n ≡

card(S) < N. It turns out that Pareto-optimal consumptions can now be written as follows

cit =
1

αi

[
lnµi −

∑
k∈S

lnµk
αk∑

k∈S
1
αk

]
+

1
αi
n∑

k∈S
1
αk

∑
k∈S(wkt + εkt + νt)

n
, for i ∈ S. (36)

If we still consider (34) and use the latter expression of cit to compute (35a) and (35b), it turns out

that coe�cients βi and ζi are equal to:

βi =
1
αi∑

k∈S
1
αk

(nσ2ν +
∑

k∈S σ2
k

N )
(
σ2ν + σ2i

)
−
(
nσ2ν + σ2i

) (
σ2ν +

σ2
i

N

)
(
σ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
−
(
σ2ν +

σ2
i
N

)2 (37)

ζi =
1
αi∑

k∈S
1
αk

(
nσ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
− (nσ2ν +

∑
k∈S σ2

k
N )

(
σ2ν +

σ2
i

N

)
(
σ2ν + σ2i

) (
σ2ν +

∑
m∈I σ

2
m

N2

)
−
(
σ2ν +

σ2
i
N

)2 (38)

Dividing by (σ2i )
2 both the numerator and denominator in (37) and (38) leads to:

βi =
1
αi∑

k∈S
1
αk

(nσ2
ν

σ2
i
+

∑
k∈S σ2

k

σ2
i N

)
(
σ2
ν

σ2
i
+ 1
)
−
(
nσ2

ν

σ2
i
+ 1
)(

σ2
ν

σ2
i
+ 1

N

)
(
σ2
ν

σ2
i
+ 1
)(

σ2
ν

σ2
i
+

∑
m∈I σ

2
m

σ2
i N

2

)
−
(
σ2
ν

σ2
i
+ 1

N

)2 (39)

ζi =
1
αi∑

k∈S
1
αk

(
nσ2

ν

σ2
i
+ 1
)(

σ2
ν

σ2
i
+

∑
m∈I σ

2
m

σ2
i N

2

)
− (nσ2

ν

σ2
i
+

∑
k∈Sj

σ2
k

σ2
i N

)
(
σ2
ν

σ2
i
+ 1

N

)
(
σ2
ν

σ2
i
+ 1
)(

σ2
ν

σ2
i
+

∑
m∈I σ

2
m

σ2
i N

2

)
−
(
σ2
ν

σ2
i
+ 1

N

)2 . (40)

If we assume that limN→∞
σ2
N

σ2
1
<∞, this implies that

lim
N→∞

σ2N
Nσ21

= 0.

Further, as
∑

m∈I σ
2
m

N2σ2
i

≤ σ2
N

σ2
1N

∀i = 1, ..., N, we thus easily deduce that when limN→∞
σ2
N

σ2
1
<∞, then

lim
N→∞

∑
m∈I σ

2
m

N2σ2i
= 0,∀i = 1, ..., N.

If N tends to in�nity, the following equalities obtain:

βi '
1
αi∑

k∈S
1
αk

(nσ2
ν

σ2
i
+

∑
k∈S σ2

k

σ2
i N

)
(
σ2
ν

σ2
i
+ 1
)
−
(
nσ2

ν

σ2
i
+ 1
)(

σ2
ν

σ2
i

)
(
σ2
ν

σ2
i
+ 1
)(

σ2
ν

σ2
i

)
−
(
σ2
ν

σ2
i

)2 (41)

ζi '
1
αi∑

k∈S
1
αk

(
nσ2

ν

σ2
i
+ 1
)(

σ2
ν

σ2
i

)
− (nσ2

ν

σ2
i
+

∑
k∈S σ2

k

σ2
i N

)
(
σ2
ν

σ2
i

)
(
σ2
ν

σ2
i
+ 1
)(

σ2
ν

σ2
i

)
−
(
σ2
ν

σ2
i

)2 . (42)
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As limN→∞
σ2
N

σ2
1
<∞ implying that limN→∞

∑
m∈I σ

2
m

N2σ2
i

= 0 and limN→∞

∑
k∈S σ2

k

σ2
i Nn

= 0 ∀i = 1, ..., N,

we get:

βi '
1
αi∑

k∈S
1
αk

(n− 1) (43)

ζi '
1
αi∑

k∈S
1
αk

. (44)

If we assume that each individual belongs to one risk-sharing coalition only, and society I is

organized into J risk-sharing coalitions, denoting by βI ≡
∑

i∈I βi

N and ζI ≡
∑

i∈I ζi
N we immediately

get:

lim
N→+∞

βI = 1− 1

nJ
(45)

and

lim
N→+∞

ζI =
1

nJ
(46)

with nJ ≡ N
J .

7.9 Proof of Proposition 9.

We will denote by Sc(i) the consecutive club whose lowest risky agent is individual i. Let us denote

by n̂( i|Λ) the size of Sc(i) such that n̂( i|Λ) = argmaxVi(S
c(i)), for a risk ratio schedule Λ.

We �rst o�er the following Lemma

Lemma 3 For two societies I and I′ characterized respectively by Λ = {λ2, λ3, ..., λN} and Λ′ =

{λ′2, λ′3, ..., λ′N} with λz < λ′z for z = 2, ..., N, we have n̂( i|Λ) ≥ n̂( i|Λ′).

Proof. Let us denote by Θ(
−→
λ i,n) ≡ Θ(i, n) = 1

n

i+n−1∑
v=i

i+n∏
z=v+1

1
λz

with
−→
λ i,n = (λi+1, λi+2, ..., λi+n−1).

Hence for two vectors
−→
λ i,n and

−→
λ′ i,n where λ′z > λz, ∀z = i + 1, ..., i + n − 1, we have Θ(

−→
λ i,n) >

Θ(
−→
λ′ i,n), ∀i ∈ I and ∀n = 1, ..., N − i + 1. Given inequalities (26) and (27) and that Θ(

−→
λ i,n) >

Θ(
−→
λ′ i,n), it is thus easy to deduce that the optimal size of the consecutive group beginning with

agent i is larger under Λ = {λ2, λ3, ..., λN} than under Λ′ = {λ′2, λ′3, ..., λ′N}. Hence, Lemma 1.

Lemma 4 Let us denote by pSc(i) the pivotal agent of any consecutive club Sc(i). For any society

I, any i′ < i we have pSc(i) > pSc(i′).

Proof. We know that σ2pSc(i)
satis�es

σ2pSc(i)
≤
[
2ncj − 1

] pSc(i)−1∑
k=i

σ2k
(ncj − 1)2

(47)
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and

σ2pSc(i)+1 >
[
2ncj + 1

] pSc(i)∑
k=i

σ2k
ncj

2
. (48)

Let us consider the consecutive club Sc(i′) = {i′, ..., pSc(i)+1}. By assumption on the individuals

ordering, we have
pSc(i)∑
k=i

σ2k
ncj

>

pSc(i)∑
k=i′

σ2k
n′cj

for any i′ < i.

Hence as 2n′+1
n′ < 2n+1

n for any n′ > n, we thus have

σ2pSc(i)+1 >
[
2ncj + 1

] pSc(i)∑
k=i

σ2k
ncj

2
>
[
2n′cj + 1

] pSc(i)∑
k=i′

σ2k
n′cj

2
, for any i′ < i.

We easily deduce that pSc(i) > pSc(i′) for any i
′ < i.

Let us now de�ne p∗j (Λ) the pivotal agent of club Sj in the core partition associated to Λ.

Let us consider individual 1. Using Lemma 3, for Λ = {λ2, λ3, ..., λN} and Λ′ = {λ′2, λ′3, ..., λ′N}

with λz < λ′z for z = 2, ..., N, we deduce that p∗1(Λ) ≥ p∗1 (Λ
′) . Using Lemma 4, we thus deduce

that p∗2(Λ) ≡ p∗Sc(p1(Λ)+1)(Λ) > pSc(p1(Λ′)+1)(Λ). Using again Lemma 3 allows us to say that

pSc(p1(Λ′)+1)(Λ) ≥ p∗Sc(p1(Λ′)+1)(Λ
′) ≡ p∗2(Λ

′). Hence p∗2(Λ) ≥ p∗2(Λ
′). Iterating this reasoning until

j = J allows us to say that p∗j (Λ) ≥ p∗j (Λ
′) for any j = 1, ..., J. Hence for any i = 1, ..., N we thus

deduce that the number of pivotal agents associated with Λ such that p∗j (Λ) ≤ i compared to the

number of pivotal agents associated with Λ′ such pj (Λ
′) ≤ i is higher for Λ than Λ′. This ends proof

of Proposition 9.

7.10 Proof of Proposition 10.

Existence. It is easy to see that in our case the common ranking property is also satis�ed. Hence,

a core partition exists.

Proof of (ii): Consecutivity. By contradiction, let us consider a core-partition P∗ charac-

terized by some non consecutive groups, that is, there exist individual i, ĩ ∈ S∗
j and i′ ∈ S∗

j′ with

i < i′ < ĩ.

Suppose �rst that πz(S∗
j ) ≥ πz(S∗

j′) for any z = 1, ..., N . As i < i′ < ĩ ⇐⇒ 1
αi
> 1

αi′
> 1

αĩ
, we

have

∀z ∈ (S∗
j′\{i′}) ∪ {i}, Vz((S∗

j′\{i′}) ∪ {i}) > Vz(P∗).

Second, assume that πz(S∗
j′) ≥ πz(S∗

j ) for any z = 1, ..., N . We have

∀z ∈ (S∗
j \{̃i}) ∪ {i′}, Vz((S∗

j \{̃i}) ∪ {i′}) > Vz(P∗).

Hence a contradiction with the fact that P∗ is assumed to be a core-partition.
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Proof of (i): Uniqueness.

Knowing that core partition satis�es the consecutivity property, an individual z is accepted if

and only if

−
n2j

(
∑

k∈S
1
αk

)2

(
σ2ν +

σ2ε
nj

)
≥ − (nj + 1)2

(
∑

k∈S
1
αk

+ 1
αz

)2

(
σ2ν +

σ2ε
(nj + 1)

)
which amounts to

−
(

1

αz

)2

n2j

(
σ2ν +

σ2ε
nj

)
−
(

1

αz

)
2n2j (

∑
k∈S

1

αk
)

(
σ2ν +

σ2ε
nj

)
+ (
∑
k∈S

1

αk
)2
(
(2nj + 1)σ2ν + σ2ε

)
≥ 0.

For positive αz, the LHS of the above inequality is positive if and only if

∑
k∈Sj

1
αk

1
αz
nj

−nj +

√√√√√(nj + 1)2

(
σ2ν +

σ2
ε

(nj+1)

)
(
σ2ν +

σ2
ε

nj

)
 ≤ 1.

The aim is to show that the LHS of this inequality is monotonously increasing with the size of

the coalition.

First, the expression

−nj +

√√√√√(nj + 1)2

(
σ2
ν+

σ2
ε

(nj+1)

)
(
σ2
ν+

σ2
ε

nj

)
 is increasing with respect to n (we omit

j for convenience) if and only if:

2

[
n(n+ 1) +

σ2ε
σ2ν
n

] [
n+

σ2ε
σ2ν

]
+

[
2n+ 1 +

σ2ε
σ2ν

]
σ2ε
σ2ν

(49)

> 2

[
n+

σ2ε
σ2ν

]√[
n(n+ 1) +

σ2ε
σ2ν
n

] [
n(n+ 1) +

σ2ε
σ2ν

(n+ 1)

]
.

Using the fact that[
n(n+ 1) +

σ2ε
σ2ν

(n+
1

2
)

]2
>

[
n(n+ 1) +

σ2ε
σ2ν
n

] [
n(n+ 1) +

σ2ε
σ2ν

(n+ 1)

]
we can show that inequality (49) is satis�ed whatever σ2

ε
σ2
ν
and n.

Second, we o�er a su�cient condition such that the ratio

∑
k∈Sj

1
αk

1
αz

nj
increases with respect to the

size of the coalition Sj , i.e. ∑
k∈Sj

1
αk

+ 1
αz

1
αz+1

(nj + 1)
−
∑

k∈Sj

1
αk

1
αz
nj

≥ 0

which is equivalent to (
nj −

1
αz+1

1
αz

(nj + 1)

)∑
k∈Sj

1

αk

+ nj
1

αz
≥ 0.
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Let us de�ne Φ(i, n) =

(
n−

1
αi+n+1

1
αi+n

(n+ 1)

)(
i+n−1∑
k=i

1
αk

)
+ n 1

αi+n
and show that Φ(i, n) ≥ 0,

∀n ≥ 1.

We have Φ(i, 1) = (1−
1

αi+2
1

αi+1

(2))
(

1
αi

)
+ 1

αi+1
.With χi =

1/αi

1/αi−1
< 1 whatever i, Φ(i, 1) is positive

if and only if

1 ≥ χi+2 − χi+1

1− χi+2
, whatever i = 1, ..., N.

Let us show that Φ(i, n) is monotonously increasing with respect to n, that is,

Φ(i, n+ 1)− Φ(i, n) =

(
n+ 1−

1
αi+n+2

1
αi+n+1

(n+ 2)

)(
i+n−1∑
k=i

1

αk
+

1

αi+n

)

+ (n+ 1)
1

αi+n+1
−

(
n−

1
αi+n+1

1
αi+n

(n+ 1)

)(
i+n−1∑
k=i

1

αk

)
− n

1

αi+n

which is equivalent to

Φ(i, n+ 1)− Φ(i, n) =

(
i+n−1∑
k=i

1

αk

)(
1−

1
αi+n+2

1
αi+n+1

(n+ 2) +

1
αi+n+1

1
αi+n

(n+ 1)

)

+

(
1−

1
αi+n+2

1
αi+n+1

(n+ 2)

)
1

αi+n
+ (n+ 1)

1

αi+n+1

⇔

Φ(i, n+ 1)− Φ(i, n) =

(
i+n−1∑
k=i

1

αk

)
(1− χi+n+2(n+ 2) + χi+n+1(n+ 1))

+ (1− λi+n+2(n+ 2))
1

αi+n
+ (n+ 1)

1

αi+n+1
.

With χi+n+1 ≡ αi+n

αi+n+1
, we have

Φ(i, n+ 1)− Φ(i, n) =

((
i+n−1∑
k=i

1

αk

)
+

1

αi+n

)
(1− χi+n+2(n+ 2) + χi+n+1(n+ 1)) .

Hence,

Φ(i, n+ 1)− Φ(i, n) ≥ 0 ⇔ 1 ≥ (n+ 1)
(χi+n+2 − χi+n+1)

(1− χi+n+2)
.

With z ≡ i+ n+ 1, we can rewrite this inequality as follows

1 ≥ (
z − i

z + 1
)(z + 1)

(χz+1 − χz)

(1− χz+1)

As 0 ≤ (z−i)
(z+1) ≤ 1, we deduce that if for all z = 3, ..., N−1, χz−χz+1

χz+1−1 (z+1) ≤ 1, then4Φ(i, n) ≥ 0.

We deduce that if for all z = 2, ..., N − 1, χz−χz+1

χz+1−1 (z + 1) ≤ 1 then 4Φ(i, n) ≥ 0 and Φ(i, 1) ≥ 0,

∀i = 1, ..., N.

Proof of (iii): The proof is identical to Proof of (iii) of Proposition 5 except with the fact that

the risk premium π(Sj) must now be replaced by πz(Sj).
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7.11 Proposition 11.

Let us de�ne Γ̃(n) =

−n+

√√√√√(n+ 1)2

(
σ2
ν+

σ2
ε

n+1

)
(
σ2
ν+

σ2
ε
n

)


−1

and Θ̃(i, n) = 1
n

i+n−1∑
k=i

1
αk

1
αi+n

. We will denote by

n̂(i) the size of Sc(i) such that n̂(i) = argmaxVi(S
c(i)) in the subset I\{1, 2, ..., i − 1}, for a risk

ratio schedule Λ. Hence, n̂(i) satis�es inequalities characterizing a pivotal agent:

Γ̃(n̂(i)− 1) ≥ Θ̃(i, n̂(i)− 1) (50)

and

Γ̃(n̂(i)) < Θ̃(i, n̂(i)). (51)

From Proof of Proposition 10, we deduce that Γ̃(n) is a decreasing function of n and, under

some condition, Θ(i, n) increases with respect to n. We can rewrite Θ(i, n) as follows: 1
n

i+n−1∑
k=i

1
αk

1
αi+n

Θ(i, n) =
1

n

i+n−1∑
v=i

i+n∏
z=v+1

1

χz
.

Θ(i, n) is a function of i such that:

(i) When χz = χ, ∀z = 2, ..., N, then Θ(i, n) = Θ(i′, n) ∀i, i′.

(ii) When χz ≤ χz+1, ∀z = 2, ..., N, then Θ(i, n) ≥ Θ(i′, n) for i < i′.

(iii) When χz ≥ χz+1, ∀z = 2, ..., N, then Θ(i, n) ≤ Θ(i′, n) for i < i′.

Hence, (i), (ii), (iii) and inequalities (50) and (51) lead to Proposition 11.
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