Ítem
Acceso Abierto

Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)

dc.contributorBallesteros Chitiva, Nathalia
dc.contributorRueda, Nicol
dc.contributorOliveira, Jader
dc.contributorAristeu da Rosa, Joao
dc.contributorUrbano, Plutarco
dc.contributor.advisorRamírez, Juan David
dc.contributor.advisorSalazar, Camilo
dc.contributor.advisorSalgado-Roa, Fabian Camilo
dc.contributor.advisorHernandez, Diana Carolina
dc.creatorAlvarado Lopez, Mateo Andrés
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-02-03T16:09:11Z
dc.date.available2021-02-03T16:09:11Z
dc.date.created2021-01-25
dc.descriptionLa familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanosoma cruzi, el parásito que causa la enfermedad de Chagas. Rhodniini está compuesto por los géneros Rhodnius y Psammolestes, donde queda por estudiar la diversidad genética del segundo en comparación con Rhodnius, principal vector de T. cruzi. Por lo tanto, reunimos 92 muestras en total, 38 de Psammolestes arthuri en Colombia, 24 de Psammolestes tertius y 30 de coreodas de Psammolestes en Brasil. Usamos cinco nuevos loci nucleares: tRNA guanina (37) -N (1) metil transferasa (TRNA), proteína inducible por hormona juvenil putativa (PJH), proteína de ensamblaje de proteína de azufre de hierro citosólico probable Ciao 1 (CISP), lipoil sintasa, mitocondrial ( LSM) y proteína no caracterizada para la adhesión celular (UPCA), junto con dos loci previamente informados: 28S y CYTB, para representar las relaciones filogenéticas y los patrones evolutivos del género Psammolestes. Cuatro de las siete topologías de genes no eran consistentes con la topología concatenada, mientras que las otras tres eran concordantes, pero el patrón general es claro: Psammolestes es un grupo monofilético, corroborando hipótesis previamente sugeridas para el género. El análisis de agrupamiento junto con las estadísticas resumidas de genética de poblaciones dio como resultado la delimitación de tres poblaciones diferentes. Estos tres clusters corresponden a cada una de las especies de Psammolestes conocidas a priori -definidas por morfología, ecología y métodos citogenéticos- lo que sugiere que las poblaciones de cada una de las especies tienen una estructura genética bien sustentada. En general, nuestros resultados corroboraron la existencia de las tres especies de Psammolestes descritas anteriormente, 4 mostrando que probablemente divergieron en alopatría, bajo la influencia del escudo de Guyana y la cuenca del Amazonas como barreras para la dispersión.spa
dc.description.abstractThe family Reduviidae (Hemiptera: Heteroptera) is among the most diverse families of the true bugs. The evolution and phylogenetic relationships of Rhodniini and Triatomini tribes (Triatominae) are well studied due to their epidemiological relevance as vectors of Trypanosoma cruzi, the parasite that causes the Chagas disease. Rhodniini is composed by the genera Rhodnius and Psammolestes, where the genetic diversity of the second one remains to be studied in comparison with Rhodnius, the main vector of T. cruzi. Therefore, we gathered 92 samples in total, 38 for Psammolestes arthuri in Colombia, 24 for Psammolestes tertius and 30 for Psammolestes coreodes in Brazil. We used five novel nuclear loci: tRNA Guanine (37) -N (1) methyl transferase (TRNA), Putative juvenile hormone inducible protein (PJH), Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), Lipoyl synthase, mitochondrial (LSM) and Uncharacterized protein for cell adhesion (UPCA), along with two previously reported loci: 28S and CYTB, to depict the phylogenetic relationships and the evolutionary patterns of the genus Psammolestes. Four of the seven gene topologies were not consistent with the concatenated topology, while the other three were concordant, but the general pattern is clear: Psammolestes is a monophyletic group, corroborating hypotheses previously suggested for the genus. Clustering analysis along with population genetics summary statistics resulted in the delimitation of three different populations. These three clusters corresponded to each one of the Psammolestes species known a priori -defined by morphology, ecology and cytogenetic methods- which suggests that populations for each one of the species has a well-supported genetic structure. Overall, our results corroborated the existence of the three previously described Psammolestes species, 4 showing that they probably diverged in allopatry, under the influence of the Guyana shield and the Amazon basin as barriers to dispersalspa
dc.description.sponsorshipDirección de Investigación e Innovación (Big Grant) de la Universidad del Rosario.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_30865
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/30865
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.source.bibliographicCitationAbad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005spa
dc.source.bibliographicCitationAbad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108spa
dc.source.bibliographicCitationAbad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005spa
dc.source.bibliographicCitationAnisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041spa
dc.source.bibliographicCitationAsin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997spa
dc.source.bibliographicCitationBarbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.xspa
dc.source.bibliographicCitationBargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6spa
dc.source.bibliographicCitationBern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150spa
dc.source.bibliographicCitationBobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021spa
dc.source.bibliographicCitationBrown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography.spa
dc.source.bibliographicCitationCaicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963spa
dc.source.bibliographicCitationCarstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413spa
dc.source.bibliographicCitationCastillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433spa
dc.source.bibliographicCitationCeccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71spa
dc.source.bibliographicCitationChagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008spa
dc.source.bibliographicCitationChefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010spa
dc.source.bibliographicCitationClement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7.spa
dc.source.bibliographicCitationCruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14.spa
dc.source.bibliographicCitationde Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.xspa
dc.source.bibliographicCitationde Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8.spa
dc.source.bibliographicCitationDegnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068spa
dc.source.bibliographicCitationDias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002spa
dc.source.bibliographicCitationDixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.xspa
dc.source.bibliographicCitationDujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653spa
dc.source.bibliographicCitationDujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005spa
dc.source.bibliographicCitationEarl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7spa
dc.source.bibliographicCitationEdwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106spa
dc.source.bibliographicCitationElith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.xspa
dc.source.bibliographicCitationEnce, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.xspa
dc.source.bibliographicCitationEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xspa
dc.source.bibliographicCitationFriedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197.spa
dc.source.bibliographicCitationFu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709.spa
dc.source.bibliographicCitationFunk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421spa
dc.source.bibliographicCitationGadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026spa
dc.source.bibliographicCitationGalvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1spa
dc.source.bibliographicCitationGolding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4spa
dc.source.bibliographicCitationGorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040spa
dc.source.bibliographicCitationGraham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006spa
dc.source.bibliographicCitationGuindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010spa
dc.source.bibliographicCitationHijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7.spa
dc.source.bibliographicCitationHoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281spa
dc.source.bibliographicCitationHudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703spa
dc.source.bibliographicCitationHwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523spa
dc.source.bibliographicCitationHypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4spa
dc.source.bibliographicCitationJakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233spa
dc.source.bibliographicCitationJombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521spa
dc.source.bibliographicCitationJusti, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002spa
dc.source.bibliographicCitationJusti, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527spa
dc.source.bibliographicCitationKalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285spa
dc.source.bibliographicCitationKapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025spa
dc.source.bibliographicCitationKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122spa
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410spa
dc.source.bibliographicCitationLemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017spa
dc.source.bibliographicCitationLent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520.spa
dc.source.bibliographicCitationLischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642spa
dc.source.bibliographicCitationLobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39.spa
dc.source.bibliographicCitationLyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377spa
dc.source.bibliographicCitationMaddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018.spa
dc.source.bibliographicCitationMaddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523spa
dc.source.bibliographicCitationManni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18.spa
dc.source.bibliographicCitationMantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220.spa
dc.source.bibliographicCitationMcCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York.spa
dc.source.bibliographicCitationMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015spa
dc.source.bibliographicCitationMonteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460spa
dc.source.bibliographicCitationMonteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002spa
dc.source.bibliographicCitationNascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285spa
dc.source.bibliographicCitationOliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109spa
dc.source.bibliographicCitationPatterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038spa
dc.source.bibliographicCitationPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026spa
dc.source.bibliographicCitationPollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357spa
dc.source.bibliographicCitationPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.spa
dc.source.bibliographicCitationRamos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034spa
dc.source.bibliographicCitationReuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899spa
dc.source.bibliographicCitationRipley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206.spa
dc.source.bibliographicCitationRödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.xspa
dc.source.bibliographicCitationRosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.xspa
dc.source.bibliographicCitationRoux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234spa
dc.source.bibliographicCitationRozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248spa
dc.source.bibliographicCitationSanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155spa
dc.source.bibliographicCitationSandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004spa
dc.source.bibliographicCitationSchofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010spa
dc.source.bibliographicCitationSchofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011spa
dc.source.bibliographicCitationSchwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136spa
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.spa
dc.source.bibliographicCitationThuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.xspa
dc.source.bibliographicCitationThuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.xspa
dc.source.bibliographicCitationTorre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764spa
dc.source.bibliographicCitationTownsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008spa
dc.source.bibliographicCitationTownson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017spa
dc.source.bibliographicCitationVelásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-yspa
dc.source.bibliographicCitationWaleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409spa
dc.source.bibliographicCitationWei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24.spa
dc.source.bibliographicCitationWeirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.xspa
dc.source.bibliographicCitationWilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831spa
dc.source.bibliographicCitationWisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8spa
dc.source.bibliographicCitationYang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854spa
dc.source.bibliographicCitationYang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279spa
dc.source.bibliographicCitationZwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectEvolución geográficaspa
dc.subjectNicho de desarrollo y proliferación de los Psammolestesspa
dc.subjectGenética de poblaciones del insectospa
dc.subjectVariables ambientalesspa
dc.subjectAnálisis filogenético molecularspa
dc.subject.ddcInvertebradosspa
dc.subject.ddcEvolución & genéticaspa
dc.subject.keywordGeographical evolutionspa
dc.subject.keywordDevelopment and proliferation niche of the Psammolestesspa
dc.subject.keywordGenetics of insect populationsspa
dc.subject.keywordEnvironmental variablesspa
dc.subject.keywordMolecular phylogenetic analysisspa
dc.titlePhylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)spa
dc.title.TranslatedTitleRelaciones filogenéticas y patrones evolutivos del género Psammolestes (Hemiptera: Reduviidae).spa
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
AlvaradoLopez-MateoAndres-2021.pdf
Tamaño:
2.91 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento principal.