Ítem
Acceso Abierto

Functional studies of the deubiquitinating enzymes USP19, USP4 and UCH-L1

dc.contributor.advisorLindsten, Kristina
dc.contributor.advisorMasucci, Maria Grazia
dc.contributor.advisorCamacho Navarro, María Marcela
dc.creatorVelasco Pinto, Kelly Marcela
dc.creator.degreeDoctor en Ciencias Biomédicas
dc.date.accessioned2014-04-28T21:12:52Z
dc.date.available2014-04-28T21:12:52Z
dc.date.created2013-12-02
dc.date.issued2013
dc.descriptionEl marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.spa
dc.description.abstractThe conjugation of ubiquitin to proteins, known as ubiquitination, has different cellular functions; they include targeting proteins for degradation by the proteasome, regulation of DNA damage repair signaling, membrane receptor signaling and endocytosis (1). The ubiquitin moieties can be de-conjugated from their substrates or other ubiquitin moieties by a large group of proteases named deubiquitinating enzymes (DUBs) (2). DUBs are essential for the maintenance of the ubiquitin homeostasis in the cell and regulation of the ubiquitination status of the different substrates. The diversity of these proteases hints on their specificity for certain targets and participation in particular cellular pathways. Although several DUBs have been thoroughly studied, at present the targets and physiological roles of most of them remain unknown. Here, we studied the functional roles of the ubiquitin specific protease 19 (USP19), USP4 and the ubiquitin C-terminal hydrolase (UCH-L1), using several cellular and molecular techniques. We found that, i) USP19 can be regulated by SIAH ubiquitin ligases, ii) USP19 is important for controlling the key regulator of response to hypoxia, HIF-1α, iii) USP4 is a proteasome-interacting DUB, iv) an mCherry-UCH-L1 chimera reproduces only partially previous phenotypes described for UCH-L1, and v) UCH-L1 promotes Yersinia pseudotuberculosis internalization.eng
dc.description.sponsorshipERACOLspa
dc.description.sponsorshipUniversidad del Rosariospa
dc.description.sponsorshipKarolinska Institutetspa
dc.format.mimetypeapplication/pdf
dc.format.tipoDocumentospa
dc.identifier.doihttps://doi.org/10.48713/10336_5113
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/5113
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programDoctorado en Ciencias Biomédicasspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto completo)spa
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARÁGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationPickart CM. Back to the future with ubiquitin. Cell. January 23, 2004;116(2):181-190
dc.source.bibliographicCitationKomander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. August 2009;10(8):550-563
dc.source.bibliographicCitationSimoni R, Hill R, Vaughan M. The use of isotope tracers to study intermediary metabolism: Rudolf Schoenheimer. Journal of Biological Chemistry. January 1, 2002
dc.source.bibliographicCitationTurk V. Special issue: Proteolysis 50 years after the discovery of lysosome in honor of Christian de Duve. Biochim. Biophys. Acta. January 1, 2012;1824(1):1-2
dc.source.bibliographicCitationCiechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Cell Death Differ. September 2005;12(9):1178-1190
dc.source.bibliographicCitationCiechanover A, Elias S, Heller H, Ferber S, Hershko A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. August 25, 1980;255(16):7525-7528
dc.source.bibliographicCitationHershko A, Ciechanover A, Heller H, Haas AL, Rose IA. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. U.S.A. April 1980;77(4):1783-1786
dc.source.bibliographicCitationHershko A, Ciechanover A, Rose IA. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP. Proc. Natl. Acad. Sci. U.S.A. July 1979;76(7):3107-3110
dc.source.bibliographicCitationInternational Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. October 21, 2004;431(7011):931-945
dc.source.bibliographicCitationJensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol. February 2004;8(1):33-41
dc.source.bibliographicCitationHochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biology. August 2000;2(8):E153-7
dc.source.bibliographicCitationJentsch S, Pyrowolakis G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. August 2000;10(8):335-342
dc.source.bibliographicCitationPickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta. November 29, 2004;1695(1-3):55-72
dc.source.bibliographicCitationKerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual review of cell and developmental biology. January 1, 2006;22:159-80
dc.source.bibliographicCitationHershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. July 10, 1983;258(13):8206-8214
dc.source.bibliographicCitationPickart CM. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001;70:503-533
dc.source.bibliographicCitationSchulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. May 2009;10(5):319-331
dc.source.bibliographicCitationvan Wijk SJL, Timmers HTM. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. April 2010;24(4):981-993
dc.source.bibliographicCitationLi W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE. 2008;3(1):e1487
dc.source.bibliographicCitationGlickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. April 2002;82(2):373-428
dc.source.bibliographicCitationWelchman RL, Gordon C, Mayer RJ. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. August 2005;6(8):599-609
dc.source.bibliographicCitationHunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell. December 14, 2007;28(5):730-738
dc.source.bibliographicCitationDeshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 2009;78:399-434
dc.source.bibliographicCitationMetzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell. Sci. February 1, 2012;125(Pt 3):531-537
dc.source.bibliographicCitationDye BT, Schulman BA. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct. 2007;36:131-150
dc.source.bibliographicCitationDikic I, Robertson M. Ubiquitin ligases and beyond. BMC Biol. 2012;10(1):22
dc.source.bibliographicCitationHusnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem. 2012;81:291-322
dc.source.bibliographicCitationPeng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, et al A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. August 2003;21(8):921-926
dc.source.bibliographicCitationRieser E, Cordier SM, Walczak H. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends in Biochemical Sciences. February 2013;38(2):94-102
dc.source.bibliographicCitationIkeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. “Protein Modifications: Beyond the Usual Suspects” review series. EMBO Rep. June 2008;9(6):536-542
dc.source.bibliographicCitationHicke L. Protein regulation by monoubiquitin. Nat. Rev. Mol. Cell Biol. March 2001;2(3):195-201
dc.source.bibliographicCitationPickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol. December 2004;8(6):610-616
dc.source.bibliographicCitationXu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. April 3, 2009;137(1):133-145
dc.source.bibliographicCitationGroll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, et al Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. April 3, 1997;386(6624):463-471
dc.source.bibliographicCitationFinley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009;78:477-513
dc.source.bibliographicCitationPickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell Biol. March 2004;5(3):177-187
dc.source.bibliographicCitationLasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, et al Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA. January 31, 2012;109(5):1380-1387
dc.source.bibliographicCitationSauer RT, Baker TA. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. June 7, 2011;80:587-612
dc.source.bibliographicCitationTomko RJ, Funakoshi M, Schneider K, Wang J, Hochstrasser M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell. May 14, 2010;38(3):393-403
dc.source.bibliographicCitationSmith DM, Chang S, Park S, Finley D, Cheng Y, Goldberg AL. Docking of the proteasomal ATPases“ carboxyl termini in the 20S proteasome”s alpha ring opens the gate for substrate entry. Mol. Cell. September 7, 2007;27(5):731-744
dc.source.bibliographicCitationLander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. Complete subunit architecture of the proteasome regulatory particle. Nature. February 9, 2012;482(7384):186-191
dc.source.bibliographicCitationYao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. September 26, 2002;419(6905):403-407
dc.source.bibliographicCitationAmerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta. November 29, 2004;1695(1-3):189-207
dc.source.bibliographicCitationReyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 2009;78:363-397
dc.source.bibliographicCitationFraile JM, Quesada V, Rodríguez D, Freije JMP, López-Otín C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. May 10, 2012;31(19):2373-2388
dc.source.bibliographicCitationSowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell. July 23, 2009;138(2):389-403
dc.source.bibliographicCitationVentii KH, Wilkinson KD. Protein partners of deubiquitinating enzymes. Biochem. J. September 1, 2008;414(2):161-175
dc.source.bibliographicCitationNijman SMB, Luna-Vargas MPA, Velds A, Brummelkamp TR, Dirac AMG, Sixma TK, et al A genomic and functional inventory of deubiquitinating enzymes. Cell. December 2, 2005;123(5):773-786
dc.source.bibliographicCitationHassink GC, Zhao B, Sompallae R, Altun M, Gastaldello S, Zinin NV, et al The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep. July 2009;10(7):755-761
dc.source.bibliographicCitationIphöfer A, Kummer A, Nimtz M, Ritter A, Arnold T, Frank R, et al Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. Chembiochem. July 9, 2012;13(10):1416-1420
dc.source.bibliographicCitationCombaret L, Adegoke OAJ, Bedard N, Baracos V, Attaix D, Wing SS. USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. Am. J. Physiol. Endocrinol. Metab. April 2005;288(4):E693-700
dc.source.bibliographicCitationLu Y, Adegoke OAJ, Nepveu A, Nakayama KI, Bedard N, Cheng D, et al USP19 deubiquitinating enzyme supports cell proliferation by stabilizing KPC1, a ubiquitin ligase for p27Kip1. Mol. Cell. Biol. January 2009;29(2):547-558
dc.source.bibliographicCitationPichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, et al Viral immune modulators perturb the human molecular network by common and unique strategies. Nature. July 26, 2012;487(7408):486-490
dc.source.bibliographicCitationMei Y, Hahn AA, Hu S, Yang X. The USP19 deubiquitinase regulates the stability of c-IAP1 and c-IAP2. J. Biol. Chem. October 14, 2011;286(41):35380-35387
dc.source.bibliographicCitationMatsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, et al ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. May 25, 2007;316(5828):1160-1166
dc.source.bibliographicCitationLuna-Vargas MPA, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. Nature Publishing Group; March 18, 2011;12(4):365-372
dc.source.bibliographicCitationZhao B, Schlesiger C, Masucci MG, Lindsten K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. August 2009;13:1886-1895
dc.source.bibliographicCitationFan Y, Yu Y, Mao R, Tan X, Xu G, Zhang H, et al USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation. October 1, 2011;18(10):1547-60
dc.source.bibliographicCitationXiao N, Li H, Luo J, Wang R, Chen H, Chen J, et al Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. January 16, 2012;441(3):979-986
dc.source.bibliographicCitationZhou F, Zhang X, van Dam H, Dijke ten P, Huang H, Zhang L. Ubiquitin-specific protease 4 mitigates Toll-like/interleukin-1 receptor signaling and regulates innate immune activation. J. Biol. Chem. March 30, 2012;287(14):11002-10
dc.source.bibliographicCitationZhang X, Berger FG, Yang J, Lu X. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. The EMBO Journal. Nature Publishing Group; April 26, 2011;30(11):2177-2189
dc.source.bibliographicCitationZhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, et al USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nature Cell Biology. Nature Publishing Group; June 17, 2012;14(7):717-726
dc.source.bibliographicCitationGray DA, Inazawa J, Gupta K, Wong A, Ueda R, Takahashi T. Elevated expression of Unph, a proto-oncogene at 3p21.3, in human lung tumors. Oncogene. June 1, 1995;10(11):2179-83
dc.source.bibliographicCitationFrederick A, Rolfe M, Chiu MI. The human UNP locus at 3p21.31 encodes two tissue-selective, cytoplasmic isoforms with deubiquitinating activity that have reduced expression in small cell lung carcinoma cell lines. Oncogene. January 15, 1998;16(2):153-65
dc.source.bibliographicCitationWilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. November 3, 1989;246(4930):670-673
dc.source.bibliographicCitationLarsen CN, Price JS, Wilkinson KD. Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues. Biochemistry. May 28, 1996;35(21):6735-6744
dc.source.bibliographicCitationWalters BJ, Campbell SL, Chen PC, Taylor AP, Schroeder DG, Dobrunz LE, et al Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity. Mol Cell Neurosci. December 2008;39(4):539-548
dc.source.bibliographicCitationOsaka H. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics. July 1, 2003;12(16):1945-1958
dc.source.bibliographicCitationDas C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, et al Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc. Natl. Acad. Sci. U.S.A. March 21, 2006;103(12):4675-4680
dc.source.bibliographicCitationLiu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell. October 18, 2002;111(2):209-218
dc.source.bibliographicCitationBradbury JM, Thompson RJ. Immunoassay of the neuronal and neuroendocrine marker PGP 9.5 in human tissues. J. Neurochem. February 1985;44(2):651-653
dc.source.bibliographicCitationSakurai M, Sekiguchi M, Zushida K, Yamada K, Nagamine S, Kabuta T, et al Reduction in memory in passive avoidance learning, exploratory behaviour and synaptic plasticity in mice with a spontaneous deletion in the ubiquitin C-terminal hydrolase L1 gene. Eur. J. Neurosci. February 2008;27(3):691-701
dc.source.bibliographicCitationSaigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, et al Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet. September 1999;23(1):47-51
dc.source.bibliographicCitationLeroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al The ubiquitin pathway in Parkinson's disease. Nature. October 1, 1998;395(6701):451-452.
dc.source.bibliographicCitationMaraganore DM, Farrer MJ, Hardy JA, Lincoln SJ, McDonnell SK, Rocca WA. Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson's disease. Neurology. November 10, 1999;53(8):1858-1860
dc.source.bibliographicCitationLöwe J, McDermott H, Landon M, Mayer RJ, Wilkinson KD. Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. J. Pathol. June 1990;161(2):153-160
dc.source.bibliographicCitationKarim R, Tummers B, Meyers C, Biryukov JL, Alam S, Backendorf C, et al Human Papillomavirus (HPV) Upregulates the Cellular Deubiquitinase UCHL1 to Suppress the Keratinocyte's Innate Immune Response. PLoS Pathog. May 2013;9(5):e1003384
dc.source.bibliographicCitationHurst-Kennedy J, Chin L, Li L. Ubiquitin C-terminal hydrolase l1 in tumorigenesis. Biochem Res Int. 2012;2012:123706
dc.source.bibliographicCitationJang MJ, Baek SH, Kim JH. UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Lett. March 28, 2011;302(2):128-135
dc.source.bibliographicCitationKim HJ, Kim YM, Lim S, Nam YK, Jeong J, Kim HJ, et al Ubiquitin C-terminal hydrolase-L1 is a key regulator of tumor cell invasion and metastasis. Oncogene. January 8, 2009;28(1):117-127
dc.source.bibliographicCitationLi L, Tao Q, Jin H, van Hasselt A, Poon FF, Wang X, et al The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. June 1, 2010;16(11):2949-58
dc.source.bibliographicCitationXiang T, Li L, Yin X, Yuan C, Tan C, Su X, et al The ubiquitin peptidase UCHL1 induces G0/G1 cell cycle arrest and apoptosis through stabilizing p53 and is frequently silenced in breast cancer. PLoS ONE. January 1, 2012;7(1):e29783
dc.source.bibliographicCitationYoung KH. Yeast two-hybrid: so many interactions, (in) so little time... Biol. Reprod. February 1998;58(2):302-311
dc.source.bibliographicCitationBerggård T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. August 2007;7(16):2833-2842
dc.source.bibliographicCitationShoemaker BA, Panchenko AR. Deciphering Protein–Protein Interactions. Part I. Experimental Techniques and Databases. PLoS Comput Biol. 2007;3(3):e42
dc.source.bibliographicCitationPhizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol. Rev. March 1995;59(1):94-123
dc.source.bibliographicCitationKlockenbusch C, Kast J. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin beta-1. Journal of Biomedicine and Biotechnology. January 1, 2010;2010:1-13
dc.source.bibliographicCitationSutherland B, Toews J, Kast J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. Journal of mass spectrometry : JMS. June 1, 2008;43(6):699-715
dc.source.bibliographicCitationEinarson M, Pugacheva E. Identification of protein-protein interactions with glutathione-S-transferase (GST) fusion proteins. Cold Spring Harbor. January 1, 2007
dc.source.bibliographicCitationKim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. June 13, 2010;397(8):3173-3178
dc.source.bibliographicCitationLichtman JW, Conchello J. Fluorescence microscopy. Nature Methods. December 1, 2005;2(12):910-919
dc.source.bibliographicCitationNwaneshiudu A, Kuschal C, Sakamoto FH, Anderson RR, Schwarzenberger K, Young RC. Introduction to Confocal Microscopy. Journal of Investigative Dermatology. December 1, 2012;132(12):e3
dc.source.bibliographicCitationHouse CM, Frew IJ, Huang H, Wiche G, Traficante N, Nice E, et al A binding motif for Siah ubiquitin ligase. Proc. Natl. Acad. Sci. U.S.A. March 18, 2003;100(6):3101-3106
dc.source.bibliographicCitationNakayama K, Ronai Z. Siah: new players in the cellular response to hypoxia. Cell Cycle. November 2004;3(11):1345-1347
dc.source.bibliographicCitationLahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR. Oxygen sensing in the body. Prog. Biophys. Mol. Biol. July 2006;91(3):249-286
dc.source.bibliographicCitationChen F, Sugiura Y, Myers KG, Liu Y, Lin W. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A. January 26, 2010;107(4):1636-1641
dc.source.bibliographicCitationFrisan T, Coppotelli G, Dryselius R, Masucci MG. Ubiquitin C-terminal hydrolase-L1 interacts with adhesion complexes and promotes cell migration, survival, and anchorage independent growth. FASEB J. December 2012;26(12):5060-5070
dc.source.bibliographicCitationBuus R, Faronato M, Hammond DE, Urbé S, Clague MJ. Deubiquitinase activities required for hepatocyte growth factor-induced scattering of epithelial cells. Current biology : CB. September 15, 2009;19(17):1463-6
dc.source.bibliographicCitationKim JH, Jung EJ, Lee HS, Kim MA, Kim WH. Comparative analysis of DNA methylation between primary and metastatic gastric carcinoma. Oncology reports. May 1, 2009;21(5):1251-9
dc.source.bibliographicCitationRolén U, Freda E, Xie J, Pfirrmann T, Frisan T, Masucci MG. The ubiquitin C-terminal hydrolase UCH-L1 regulates B-cell proliferation and integrin activation. Journal of Cellular and Molecular Medicine. August 1, 2009;13(8B):1666-78
dc.source.bibliographicCitationBassères E, Coppotelli G, Pfirrmann T, Andersen JB, Masucci M, Frisan T. The ubiquitin C-terminal hydrolase UCH-L1 promotes bacterial invasion by altering the dynamics of the actin cytoskeleton. Cellular Microbiology. November 1, 2010;12(11):1622-33
dc.source.bibliographicCitationArnaout MA, Mahalingam B, Xiong J. Integrin structure, allostery, and bidirectional signaling. Annual review of cell and developmental biology. January 1, 2005;21:381-410
dc.source.bibliographicCitationBuckley CD, Rainger GE, Bradfield PF, Nash GB, Simmons DL. Cell adhesion: more than just glue (review). Molecular membrane biology. January 1, 1998;15(4):167-76
dc.source.bibliographicCitationHarburger DS, Calderwood DA. Integrin signalling at a glance. J. Cell. Sci. January 15, 2009;122(Pt 2):159-63
dc.source.bibliographicCitationCarragher NO, Frame MC. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. May 2004;14(5):241-249
dc.source.bibliographicCitationZaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nature Cell Biology. August 1, 2007;9(8):858-67
dc.source.bibliographicCitationParsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell Biology. September 1, 2010;11(9):633-643
dc.source.bibliographicCitationHuttenlocher A, Horwitz AR. Integrins in Cell Migration. Cold Spring Harbor Perspectives in Biology. September 1, 2011;3(9):a005074-a005074
dc.source.bibliographicCitationGuan JL. Role of focal adhesion kinase in integrin signaling. The international journal of biochemistry & cell biology. August 1, 1997;29(8-9):1085-96
dc.source.bibliographicCitationReynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene. October 18, 2004;23(48):7947-56
dc.source.bibliographicCitationPeng X, Nelson ES, Maiers JL, DeMali KA. New insights into vinculin function and regulation. International review of cell and molecular biology. January 1, 2011;287:191-231
dc.source.bibliographicCitationBerens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. Eur J Biochem. August 2003;270(15):3109-3121
dc.source.bibliographicCitationPizarro-Cerdá J, Cossart P. Bacterial Adhesion and Entry into Host Cells. Cell. February 1, 2006;124(4):715-727
dc.source.bibliographicCitationVeiga E, Cossart P. The role of clathrin-dependent endocytosis in bacterial internalization. Trends Cell Biol. October 1, 2006;16(10):499-504
dc.source.bibliographicCitationCossart P, Sansonetti PJ. Bacterial invasion: the paradigms of enteroinvasive pathogens. Science. April 9, 2004;304(5668):242-8
dc.source.bibliographicCitationBurrows JF, Johnston JA. Regulation of cellular responses by deubiquitinating enzymes: an update. Frontiers in bioscience (Landmark edition). January 1, 2012;17:1184-200
dc.source.bibliographicCitationGlittenberg M, Ligoxygakis P. CYLD: a multifunctional deubiquitinase. Fly. January 1, 2007;1(6):330-2
dc.source.bibliographicCitationBaek K. Cytokine-regulated protein degradation by the ubiquitination system. Current protein & peptide science. April 1, 2006;7(2):171-7
dc.source.bibliographicCitationYoshida H, Jono H, Kai H, Li J. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J. Biol. Chem. December 9, 2005;280(49):41111-21
dc.source.bibliographicCitationNakamura N, Hirose S. Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. Molecular biology of the cell. May 1, 2008;19(5):1903-11
dc.source.bibliographicCitationEndo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N, et al Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J. Cell. Sci. March 1, 2009;122(Pt 5):678-86
dc.source.bibliographicCitationKessler BM, Edelmann MJ. PTMs in conversation: activity and function of deubiquitinating enzymes regulated via post-translational modifications. Cell Biochem. Biophys. June 2011;60(1-2):21-38
dc.source.bibliographicCitationde Jong RN, Ab E, Diercks T, Truffault V, Daniëls M, Kaptein R, et al Solution structure of the human ubiquitin-specific protease 15 DUSP domain. J. Biol. Chem. February 24, 2006;281(8):5026-31
dc.source.bibliographicCitationLuna-Vargas MPA, Faesen AC, van Dijk WJ, Rape M, Fish A, Sixma TK. Ubiquitin-specific protease 4 is inhibited by its ubiquitin-like domain. EMBO Rep. Nature Publishing Group; March 18, 2011;12(4):365-372
dc.source.bibliographicCitationHanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, et al Deubiquitinating Enzyme Ubp6 Functions Noncatalytically to Delay Proteasomal Degradation. Cell. October 6, 2006;127(1):99-111
dc.source.bibliographicCitationSkaug B, Chen J, Fenghe du, He J, Ma A, Chen Z. Direct, Noncatalytic Mechanism of IKK Inhibition by A20. Mol. Cell. November 1, 2011;44(4):559-571
dc.source.bibliographicCitationTurk B. Targeting proteases: successes, failures and future prospects. Nature reviews. Drug discovery. September 1, 2006;5(9):785-99
dc.source.bibliographicCitationLove KR, Catic A, Schlieker C, Ploegh HL. Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol. November 2007;3(11):697-705
dc.source.bibliographicCitationLim K, Baek K. Deubiquitinating enzymes as therapeutic targets in cancer. Current pharmaceutical design. January 1, 2013;19(22):4039-52
dc.source.bibliographicCitationD'Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, de Cesare M, et al Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nature medicine. December 1, 2011;17(12):1636-40
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectUbiquitinaspa
dc.subjectEnzimas deubiquitinizantesspa
dc.subjectUSP19spa
dc.subjectUSP4spa
dc.subjectUCH-L1spa
dc.subject.ddcBiología
dc.subject.decsEnzimasspa
dc.subject.decsProteinasspa
dc.subject.decsUbiquitinaspa
dc.subject.decsEnzimas deubiquitinizantesspa
dc.subject.keywordUbiquitineng
dc.subject.keywordDeubiquitinating enzymeseng
dc.subject.keywordUCH-L1eng
dc.subject.keywordUSP19eng
dc.subject.keywordUSP4eng
dc.titleFunctional studies of the deubiquitinating enzymes USP19, USP4 and UCH-L1spa
dc.typedoctoralThesiseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de doctoradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
PhDThesis_KellyVelasco2.pdf
Tamaño:
4.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Documento tesis doctoral