Ítem
Acceso Abierto

Evaluación de la respuesta inmune frente a los potenciales candidatos a vacuna contra Plasmodium vivax PvRON2, Pv12, PvDBP y PvMSP1

dc.contributor.advisorPatarroyo Gutierrez, Manuel Alfonso
dc.creatorLópez Santana, Sonia Carolina
dc.creator.degreeDoctor en Ciencias Biomédicas y Biológicas
dc.creator.degreeLevelDoctorado
dc.creator.degreetypeFull time
dc.date.accessioned2023-08-16T15:09:15Z
dc.date.available2023-08-16T15:09:15Z
dc.date.created2022-06-13
dc.descriptionLa malaria es una enfermedad infecciosa con altos índices de mortalidad alrededor del mundo. Ésta es causada por parásitos del género Plasmodium, siendo Plasmodium vivax la especie prevalente en el continente americano. En Colombia, para el año 2019 se reportaron 80.415 casos de malaria, de los cuales el 48.7% fueron causados por P. vivax, siendo los departamentos de Chocó, Antioquia, Nariño y Córdoba los de mayor incidencia. El control de esta enfermedad no se ha logrado, debido a la resistencia del parásito a los medicamentos empleados, a la resistencia a los insecticidas adquirida por el vector y a las políticas de salud deficientes. Ante esta situación, la vacunación es considerada como la mejor alternativa de prevención y con mayor potencial para reducir la morbilidad y mortalidad en las poblaciones afectadas. Dada la dificultad para realizar cultivos continuos in vitro de P. vivax, la mayor parte de la investigación en malaria se ha enfocado en P. falciparum. A pesar de esto, en los últimos años, la Fundación Instituto de Inmunología de Colombia (FIDIC) ha logrado caracterizar varias proteínas de P. vivax como posibles candidatos a vacuna; sin embargo, aún se desconoce la capacidad de la mayoría de estas proteínas, y de los epítopes derivados de ellas, para ser reconocidos por componentes de la respuesta inmune humoral y celular. Con el fin de profundizar en la caracterización de proteínas y/o péptidos como potenciales candidatos, la primera fase del estudio planteó la realización de ensayos de antigenicidad in vitro con muestras de individuos expuestos a la infección natural en áreas endémicas de Colombia. Para esto, los epítopes B y T fueron seleccionados in silico y la elección de epítopes T fue definida con ensayos de unión in vitro a moléculas HLA-DRβ, obtenidas a partir de líneas celulares linfoblastoides B humanas. Los individuos fueron elegidos de acuerdo con la expresión de alelos HLA-DRβ1* de frecuencia intermedia en las poblaciones blanco para una vacuna contra la malaria (HLA-DRβ1*04, *07, *11 y *13). Durante la segunda fase de este estudio, se evaluó la inmunogenicidad in vitro de péptidos nativos y modificados derivados de las proteínas. Para esto, se emplearon linfocitos T CD4+ vírgenes de individuos sanos con restricción a los alelos HLA-DRβ1* antes mencionados, estimulados con células dendríticas como células presentadoras de antígeno profesionales. Finalmente, se estableció que existe una correlación entre la capacidad de unión a moléculas HLA-DR y la inmunogenicidad de los péptidos modificados derivados de proteínas de P. vivax. Los resultados de este estudio generaron datos relevantes para futuros estudios de inmunogenicidad y protección en modelos experimentales, encaminados a la comprensión de los mecanismos de la respuesta inmune frente a P. vivax y a la generación de una vacuna efectiva contra la malaria.
dc.description.abstractMalaria is an infectious disease with high mortality rates around the world. This is caused by parasites of the genus Plasmodium, Plasmodium vivax being the prevalent species in the American continent. In Colombia, for the year 2019, 80,415 cases of malaria were reported, of which 48.7% were caused by P. vivax, with the departments of Chocó, Antioquia, Nariño, and Córdoba having the highest incidence. Control of this disease has not been achieved due to resistance of the parasite to the drugs used, resistance to insecticides acquired by the vector, and poor health policies. Given this situation, vaccination is considered the best prevention alternative and with the greatest potential to reduce morbidity and mortality in affected populations. Given the difficulty in performing continuously in vitro cultures of P. vivax, most malaria research has focused on P. falciparum. Despite this, in recent years, the Fundación Instituto de Inmunología de Colombia (FIDIC) has succeeded in characterizing several P. vivax proteins as potential vaccine candidates; however, the ability of most of these proteins, and of the epitopes derived from them, to be recognized by components of the humoral and cellular immune response is still unknown. In order to deepen the characterization of proteins and/or peptides as potential candidates, the first phase of the study proposed carrying out in vitro antigenicity assays with samples from individuals exposed to natural infection in endemic areas of Colombia. For this, the B and T epitopes were selected in silico and the choice of T epitopes was defined with in vitro binding assays to HLA-DRβ molecules, obtained from human B lymphoblastoid cell lines. Individuals were chosen according to the expression of intermediate frequency HLA-DRβ1* alleles in the target populations for a malaria vaccine (HLA-DRβ1*04, *07, *11, and *13). During the second phase of this study, the in vitro immunogenicity of native and modified peptides derived from the proteins was evaluated. For this, naïve CD4+ T lymphocytes from healthy individuals with restriction to the aforementioned HLA-DRβ1* alleles, stimulated with dendritic cells as professional antigen-presenting cells, were used. Finally, it was established that there is a correlation between the ability to bind to HLA-DR molecules and the immunogenicity of the modified peptides derived from P. vivax proteins. The results of this study generated relevant data for future immunogenicity and protection studies in experimental models, aimed at understanding the mechanisms of the immune response against P. vivax and generating an effective vaccine against malaria.
dc.description.sponsorshipColciencias
dc.format.extent195
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_40688
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/40688
dc.language.isospa
dc.publisherUniversidad del Rosario
dc.publisher.departmentEscuela de Medicina y Ciencias de la Salud
dc.publisher.programDoctorado en Ciencias Biomédicas y Biológicas
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)
dc.rights.licenciaPARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitationAdams, J H; Blair, P L; Kaneko, O; Peterson, D S (2001) An expanding ebl family of Plasmodium falciparum. En: Trends Parasitol. Vol. 17; No. 6; pp. 297 - 299; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11378038.
dc.source.bibliographicCitationAdams, J H; Sim, B K; Dolan, S A; Fang, X; Kaslow, D C; Miller, L H (1992) A family of erythrocyte binding proteins of malaria parasites. En: Proc Natl Acad Sci U S A. Vol. 89; No. 15; pp. 7085 - 7089; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1496004.
dc.source.bibliographicCitationAkira, S; Taga, T; Kishimoto, T (1993) Interleukin-6 in biology and medicine. En: Adv Immunol. Vol. 54; pp. 1 - 78; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8379461. Disponible en: 10.1016/s0065-2776(08)60532-5.
dc.source.bibliographicCitationAikawa, M; Miller, L H; Johnson, J; Rabbege, J (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. En: J Cell Biol. Vol. 77; No. 1; pp. 72 - 82; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/96121.
dc.source.bibliographicCitationAlam, M T; Bora, H; Mittra, P; Singh, N; Sharma, Y D (2008) Cellular immune responses to recombinant Plasmodium vivax tryptophan-rich antigen (PvTRAg) among individuals exposed to vivax malaria. En: Parasite Immunol. Vol. 30; No. 6-7; pp. 379 - 383; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18435687. Disponible en: 10.1111/j.1365-3024.2008.01033.x.
dc.source.bibliographicCitationAly, A S; Vaughan, A M; Kappe, S H (2009) Malaria parasite development in the mosquito and infection of the mammalian host. En: Annu Rev Microbiol. Vol. 63; pp. 195 - 221; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19575563.
dc.source.bibliographicCitationAmorim, K N; Chagas, D C; Sulczewski, F B; Boscardin, S B (2016) Dendritic Cells and Their Multiple Roles during Malaria Infection. En: J Immunol Res. Vol. 2016; pp. 2926436 - 2926436; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27110574. Disponible en: 10.1155/2016/2926436.
dc.source.bibliographicCitationAndrade, B B; Reis-Filho, A; Souza-Neto, S M; Clarencio, J; Camargo, L M; Barral, A; Barral-Netto, M (2010) Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. En: Malar J. Vol. 9; pp. 13 - 13; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20070895. Disponible en: 10.1186/1475-2875-9-13.
dc.source.bibliographicCitationAndreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten (2015) Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. En: Immunogenetics. Vol. 67; No. 11-12; pp. 641 - 650;
dc.source.bibliographicCitationAndreatta, Massimo; Karosiene, Edita; Rasmussen, Michael; Stryhn, Anette; Buus, Søren; Nielsen, Morten %J Immunogenetics (2015) Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Vol. 67; No. 11; pp. 641 - 650;
dc.source.bibliographicCitationArévalo-Herrera, Myriam; Soto, Liliana; Perlaza, Blanca Liliana; Céspedes, Nora; Vera, Omaira; Lenis, Ana Milena; Bonelo, Anilza; Corradin, Giampietro; Herrera, Sócrates (2011) Antibody-mediated and cellular immune responses induced in naive volunteers by vaccination with long synthetic peptides derived from the Plasmodium vivax circumsporozoite protein. En: Am J Trop Med Hyg. Vol. 84; No. 2 Suppl; pp. 35 - 42;
dc.source.bibliographicCitationArevalo-Pinzon, G; Bermudez, M; Curtidor, H; Patarroyo, M A (2015) The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. En: Malar J. Vol. 14; pp. 106 - 106; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25888962. Disponible en: 10.1186/s12936-015-0619-1.
dc.source.bibliographicCitationArévalo-Pinzón, Gabriela; Bermúdez, Maritza; Hernández, Diana; Curtidor, Hernando; Patarroyo, Manuel Alfonso %J Scientific reports (2017) Plasmodium vivax ligand-receptor interaction: Pv AMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Vol. 7; No. 1; pp. 1 - 13;
dc.source.bibliographicCitationArevalo-Pinzon, G; Curtidor, H; Abril, J; Patarroyo, M A (2013) Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). En: Malar J. Vol. 12; pp. 356 - 356; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24093777. Disponible en: 10.1186/1475-2875-12-356.
dc.source.bibliographicCitationArevalo-Pinzon, G; Curtidor, H; Patino, L C; Patarroyo, M A (2011) PvRON2, a new Plasmodium vivax rhoptry neck antigen. En: Malar J. Vol. 10; pp. 60 - 60; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21401956. Disponible en: 10.1186/1475-2875-10-60.
dc.source.bibliographicCitationArévalo-Pinzón, Gabriela; Curtidor, Hernando; Patiño, Liliana C; Patarroyo, Manuel A (2011) Pv RON2, a new Plasmodium vivax rhoptry neck antigen. En: Malar J. Vol. 10; No. 1; pp. 1 - 1;
dc.source.bibliographicCitationArtavanis-Tsakonas, K; Riley, E M (2002) Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. En: J Immunol. Vol. 169; No. 6; pp. 2956 - 2963; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12218109. Disponible en: 10.4049/jimmunol.169.6.2956.
dc.source.bibliographicCitationArtis, D; Spits, H (2015) The biology of innate lymphoid cells. En: Nature. Vol. 517; No. 7534; pp. 293 - 301; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25592534. Disponible en: 10.1038/nature14189.
dc.source.bibliographicCitationAucan, C; Traore, Y; Tall, F; Nacro, B; Traore-Leroux, T; Fumoux, F; Rihet, P (2000) High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria. En: Infect Immun. Vol. 68; No. 3; pp. 1252 - 1258; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/10678934.
dc.source.bibliographicCitationBabon, J J; Morgan, W D; Kelly, G; Eccleston, J F; Feeney, J; Holder, A A (2007) Structural studies on Plasmodium vivax merozoite surface protein-1. En: Mol Biochem Parasitol. Vol. 153; No. 1; pp. 31 - 40; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17343930. Disponible en: 10.1016/j.molbiopara.2007.01.015.
dc.source.bibliographicCitationBaird, J K (2004) Chloroquine resistance in Plasmodium vivax. En: Antimicrob Agents Chemother. Vol. 48; No. 11; pp. 4075 - 4083; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15504824. Disponible en: 10.1128/AAC.48.11.4075-4083.2004.
dc.source.bibliographicCitationBaird, J K (2013) Evidence and implications of mortality associated with acute Plasmodium vivax malaria. En: Clin Microbiol Rev. Vol. 26; No. 1; pp. 36 - 57; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23297258. Disponible en: 10.1128/CMR.00074-12.
dc.source.bibliographicCitationBanchereau, J; Briere, F; Caux, C; Davoust, J; Lebecque, S; Liu, Y J; Pulendran, B; Palucka, K (2000) Immunobiology of dendritic cells. En: Annu Rev Immunol. Vol. 18; pp. 767 - 811; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10837075. Disponible en: 10.1146/annurev.immunol.18.1.767.
dc.source.bibliographicCitationBaquero, L A; Moreno-Perez, D A; Garzon-Ospina, D; Forero-Rodriguez, J; Ortiz-Suarez, H D; Patarroyo, M A (2017) PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. En: Parasit Vectors. Vol. 10; No. 1; pp. 251 - 251; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28526096. Disponible en: 10.1186/s13071-017-2183-8.
dc.source.bibliographicCitationBarrero, C A; Delgado, G; Sierra, A Y; Silva, Y; Parra-Lopez, C; Patarroyo, M A (2005) Gamma interferon levels and antibody production induced by two PvMSP-1 recombinant polypeptides are associated with protective immunity against P.vivax in Aotus monkeys. En: Vaccine. Vol. 23; No. 31; pp. 4048 - 4053; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15893858. Disponible en: 10.1016/j.vaccine.2005.02.012.
dc.source.bibliographicCitationBatchelor, J D; Malpede, B M; Omattage, N S; DeKoster, G T; Henzler-Wildman, K A; Tolia, N H (2014) Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. En: PLoS pathog. Vol. 10; No. 1; pp. e1003869 - e1003869; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24415938. Disponible en: 10.1371/journal.ppat.1003869.
dc.source.bibliographicCitationBatchelor, J D; Zahm, J A; Tolia, N H (2011) Dimerization of Plasmodium vivax DBP is induced upon receptor binding and drives recognition of DARC. En: Nat Struct Mol Biol. Vol. 18; No. 8; pp. 908 - 914; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21743458. Disponible en: 10.1038/nsmb.2088.
dc.source.bibliographicCitationBatista, F D; Harwood, N E (2009) The who, how and where of antigen presentation to B cells. En: Nat Rev Immunol. Vol. 9; No. 1; pp. 15 - 27; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19079135. Disponible en: 10.1038/nri2454.
dc.source.bibliographicCitationBentebibel, S E; Lopez, S; Obermoser, G; Schmitt, N; Mueller, C; Harrod, C; Flano, E; Mejias, A; Albrecht, R A; Blankenship, D; Xu, H; Pascual, V; Banchereau, J; Garcia-Sastre, A; Palucka, A K; Ramilo, O; Ueno, H (2013) Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. En: Sci Transl Med. Vol. 5; No. 176; pp. 176ra32 - 176ra32; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23486778. Disponible en: 10.1126/scitranslmed.3005191.
dc.source.bibliographicCitationBergmann-Leitner, E S; Chaudhury, S; Steers, N J; Sabato, M; Delvecchio, V; Wallqvist, A S; Ockenhouse, C F; Angov, E (2013) Computational and experimental validation of B and T-cell epitopes of the in vivo immune response to a novel malarial antigen. En: PLoS One. Vol. 8; No. 8; pp. e71610 - e71610; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23977087. Disponible en: 10.1371/journal.pone.0071610.
dc.source.bibliographicCitationBharadwaj, A; Sharma, P; Joshi, S K; Singh, B; Chauhan, V S (1998) Induction of protective immune responses by immunization with linear multiepitope peptides based on conserved sequences from Plasmodium falciparum antigens. En: Infect Immun. Vol. 66; No. 7; pp. 3232 - 3241; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/9632590. Disponible en: 10.1128/IAI.66.7.3232-3241.1998.
dc.source.bibliographicCitationBlum, J S; Wearsch, P A; Cresswell, P (2013) Pathways of antigen processing. En: Annu Rev Immunol. Vol. 31; pp. 443 - 473; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23298205. Disponible en: 10.1146/annurev-immunol-032712-095910.
dc.source.bibliographicCitationBouharoun-Tayoun, H; Attanath, P; Sabchareon, A; Chongsuphajaisiddhi, T; Druilhe, P (1990) Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. En: J Exp Med. Vol. 172; No. 6; pp. 1633 - 1641; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/2258697.
dc.source.bibliographicCitationBouharoun-Tayoun, H; Oeuvray, C; Lunel, F; Druilhe, P (1995) Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. En: J Exp Med. Vol. 182; No. 2; pp. 409 - 418; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/7629503.
dc.source.bibliographicCitationBozdech, Zbynek; Llinás, Manuel; Pulliam, Brian Lee; Wong, Edith D; Zhu, Jingchun; DeRisi, Joseph L (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. En: PLoS Biol. Vol. 1; No. 1; pp. e5 - e5;
dc.source.bibliographicCitationBruggner, R V; Bodenmiller, B; Dill, D L; Tibshirani, R J; Nolan, G P (2014) Automated identification of stratifying signatures in cellular subpopulations. En: Proc Natl Acad Sci U S A. Vol. 111; No. 26; pp. E2770 - 7; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24979804. Disponible en: 10.1073/pnas.1408792111.
dc.source.bibliographicCitationCao, Jun; Kaneko, Osamu; Thongkukiatkul, Amporn; Tachibana, Mayumi; Otsuki, Hitoshi; Gao, Qi; Tsuboi, Takafumi; Torii, Motomi (2009) Rhoptry neck protein RON2 forms a complex with microneme protein AMA1 in Plasmodium falciparum merozoites. En: Parasitology international. Vol. 58; No. 1; pp. 29 - 35;
dc.source.bibliographicCitationCeravolo, I P; Souza-Silva, F A; Fontes, C J; Braga, E M; Madureira, A P; Krettli, A U; Souza, J M; Brito, C F; Adams, J H; Carvalho, L H (2008) Inhibitory properties of the antibody response to Plasmodium vivax Duffy binding protein in an area with unstable malaria transmission. En: Scand J Immunol. Vol. 67; No. 3; pp. 270 - 278; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18226014.
dc.source.bibliographicCitationChamucero-Millares, J A; Bernal-Estevez, D A; Parra-Lopez, C A (2021) Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. En: Cell Immunol. Vol. 360; pp. 104257 - 104257; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/33387685. Disponible en: 10.1016/j.cellimm.2020.104257.
dc.source.bibliographicCitationChangrob, S; Han, J H; Ha, K S; Park, W S; Hong, S H; Chootong, P; Han, E T (2017) Immunogenicity of glycosylphosphatidylinositol-anchored micronemal antigen in natural Plasmodium vivax exposure. En: Malar J. Vol. 16; No. 1; pp. 348 - 348; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28830553. Disponible en: 10.1186/s12936-017-1967-9.
dc.source.bibliographicCitationChelimo, K; Embury, P B; Sumba, P O; Vulule, J; Ofulla, A V; Long, C; Kazura, J W; Moormann, A M (2011) Age-related differences in naturally acquired T cell memory to Plasmodium falciparum merozoite surface protein 1. En: PLoS One. Vol. 6; No. 9; pp. e24852 - e24852; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21935482. Disponible en: 10.1371/journal.pone.0024852.
dc.source.bibliographicCitationChen, J; Liu, H; Yang, J; Chou, K-C (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. En: Amino acids. Vol. 33; No. 3; pp. 423 - 428;
dc.source.bibliographicCitationChen, J H; Jung, J W; Wang, Y; Ha, K S; Lu, F; Lim, C S; Takeo, S; Tsuboi, T; Han, E T (2010) Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. En: J Proteome Res. Vol. 9; No. 12; pp. 6479 - 6489; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/20949973. Disponible en: 10.1021/pr100705g.
dc.source.bibliographicCitationChen, Jun-Hu; Wang, Yue; Ha, Kwon-Soo; Lu, Feng; Suh, In-Bum; Lim, Chae Seung; Park, Jeong Hyun; Takeo, Satoru; Tsuboi, Takafumi; Han, Eun-Taek (2011) Measurement of naturally acquired humoral immune responses against the C-terminal region of the Plasmodium vivax MSP1 protein using protein arrays. En: Parasitology research. Vol. 109; No. 5; pp. 1259 - 1266;
dc.source.bibliographicCitationCheng, Y; Shin, E H; Lu, F; Wang, B; Choe, J; Tsuboi, T; Han, E T (2014) Antigenicity studies in humans and immunogenicity studies in mice: an MSP1P subdomain as a candidate for malaria vaccine development. En: Microbes Infect. Vol. 16; No. 5; pp. 419 - 428; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24560875. Disponible en: 10.1016/j.micinf.2014.02.002.
dc.source.bibliographicCitationCheng, Y; Wang, B; Changrob, S; Han, J H; Sattabongkot, J; Ha, K S; Chootong, P; Lu, F; Cao, J; Nyunt, M H; Park, W S; Hong, S H; Lim, C S; Tsuboi, T; Han, E T (2017) Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 8 in patients with P. vivax infection. En: Malar J. Vol. 16; No. 1; pp. 211 - 211; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28532483. Disponible en: 10.1186/s12936-017-1837-5.
dc.source.bibliographicCitationChootong, P; McHenry, A M; Ntumngia, F B; Sattabongkot, J; Adams, J H (2014) The association of Duffy binding protein region II polymorphisms and its antigenicity in Plasmodium vivax isolates from Thailand. En: Parasitol Int. Vol. 63; No. 6; pp. 858 - 864; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25108177. Disponible en: 10.1016/j.parint.2014.07.014.
dc.source.bibliographicCitationCifuentes, G; Bermudez, A; Rodriguez, R; Patarroyo, M A; Patarroyo, M E (2008) Shifting the polarity of some critical residues in malarial peptides' binding to host cells is a key factor in breaking conserved antigens' code of silence. En: Med Chem. Vol. 4; No. 3; pp. 278 - 292; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18473921. Disponible en: 10.2174/157340608784325160.
dc.source.bibliographicCitationCohen, S; Mc, Gregor Ia; Carrington, S (1961) Gamma-globulin and acquired immunity to human malaria. En: Nature. Vol. 192; pp. 733 - 737; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/13880318.
dc.source.bibliographicCitationCollin, M; McGovern, N; Haniffa, M (2013) Human dendritic cell subsets. En: Immunology. Vol. 140; No. 1; pp. 22 - 30; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23621371. Disponible en: 10.1111/imm.12117.
dc.source.bibliographicCitationCollins, Christine R; Withers-Martinez, Chrislaine; Hackett, Fiona; Blackman, Michael J (2009) An inhibitory antibody blocks interactions between components of the malarial invasion machinery. En: PLoS pathog. Vol. 5; No. 1; pp. e1000273 - e1000273;
dc.source.bibliographicCitationCowman, Alan F; Crabb, Brendan S (2006) Invasion of red blood cells by malaria parasites. En: Cell. Vol. 124; No. 4; pp. 755 - 766;
dc.source.bibliographicCitationCorti, D; Sallusto, F; Lanzavecchia, A (2011) High throughput cellular screens to interrogate the human T and B cell repertoires. En: Curr Opin Immunol. Vol. 23; No. 3; pp. 430 - 435; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21600751. Disponible en: 10.1016/j.coi.2011.04.006.
dc.source.bibliographicCitationCowman, A F; Healer, J; Marapana, D; Marsh, K (2016) Malaria: Biology and Disease. En: Cell. Vol. 167; No. 3; pp. 610 - 624; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27768886. Disponible en: 10.1016/j.cell.2016.07.055.
dc.source.bibliographicCitationCrotty, S (2014) T follicular helper cell differentiation, function, and roles in disease. En: Immunity. Vol. 41; No. 4; pp. 529 - 542; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25367570. Disponible en: 10.1016/j.immuni.2014.10.004.
dc.source.bibliographicCitationDauer, M; Obermaier, B; Herten, J; Haerle, C; Pohl, K; Rothenfusser, S; Schnurr, M; Endres, S; Eigler, A (2003) Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. En: J Immunol. Vol. 170; No. 8; pp. 4069 - 4076; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12682236. Disponible en: 10.4049/jimmunol.170.8.4069.
dc.source.bibliographicCitationDeleage, G; Combet, C; Blanchet, C; Geourjon, C (2001) ANTHEPROT: an integrated protein sequence analysis software with client/server capabilities. En: Comput Biol Med. Vol. 31; No. 4; pp. 259 - 267; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/11334635.
dc.source.bibliographicCitationDelport, W; Poon, A F; Frost, S D; Kosakovsky Pond, S L (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. En: Bioinformatics. Vol. 26; No. 19; pp. 2455 - 2457; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20671151. Disponible en: 10.1093/bioinformatics/btq429.
dc.source.bibliographicCitationDhanda, Sandeep Kumar; Mahajan, Swapnil; Paul, Sinu; Yan, Zhen; Kim, Haeuk; Jespersen, Martin Closter; Jurtz, Vanessa; Andreatta, Massimo; Greenbaum, Jason A; Marcatili, Paolo (2019) IEDB-AR: immune epitope database—analysis resource in 2019. En: Nucleic acids research. Vol. 47; No. W1; pp. W502 - W506;
dc.source.bibliographicCitationDoolan, D L; Southwood, S; Chesnut, R; Appella, E; Gomez, E; Richards, A; Higashimoto, Y I; Maewal, A; Sidney, J; Gramzinski, R A; Mason, C; Koech, D; Hoffman, S L; Sette, A (2000) HLA-DR-promiscuous T cell epitopes from Plasmodium falciparum pre-erythrocytic-stage antigens restricted by multiple HLA class II alleles. En: J Immunol. Vol. 165; No. 2; pp. 1123 - 1137; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/10878392.
dc.source.bibliographicCitationDruilhe, P; Perignon, J L (1994) Mechanisms of defense against P. falciparum asexual blood stages in humans. En: Immunol Lett. Vol. 41; No. 2-3; pp. 115 - 120; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8002025. Disponible en: 10.1016/0165-2478(94)90118-x.
dc.source.bibliographicCitationDutta, Sheetij; Ware, Lisa A; Barbosa, Arnoldo; Ockenhouse, Christian F; Lanar, David E (2001) Purification, characterization, and immunogenicity of a disulfide cross-linked Plasmodium vivax vaccine candidate antigen, merozoite surface protein 1, expressed in Escherichia coli. En: Infection and immunity. Vol. 69; No. 9; pp. 5464 - 5470;
dc.source.bibliographicCitationEdgar, R C (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. En: Nucleic Acids Res. Vol. 32; No. 5; pp. 1792 - 1797; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15034147. Disponible en: 10.1093/nar/gkh340.
dc.source.bibliographicCitationEl-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant (2008) Predicting flexible length linear B-cell epitopes. En: Computational Systems Bioinformatics: (Volume 7). pp. 121 - 132; World Scientific;
dc.source.bibliographicCitationEL‐Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant (2008) Predicting linear B‐cell epitopes using string kernels. En: Journal of Molecular Recognition: An Interdisciplinary Journal. Vol. 21; No. 4; pp. 243 - 255;
dc.source.bibliographicCitationFernandez-Becerra, Carmen; Sanz, Sergi; Brucet, Marina; Stanisic, Danielle I; Alves, Fabiana P; Camargo, Erney P; Alonso, Pedro L; Mueller, Ivo; del Portillo, Hernando A (2010) Naturally-acquired humoral immune responses against the N-and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay. En: Malar J. Vol. 9; No. 1; pp. 1 - 1;
dc.source.bibliographicCitationFerreira, A R; Singh, B; Cabrera-Mora, M; Magri De Souza, A C; Queiroz Marques, M T; Porto, L C; Santos, F; Banic, D M; Calvo-Calle, J M; Oliveira-Ferreira, J; Moreno, A; Lima-Junior, J C (2014) Evaluation of naturally acquired IgG antibodies to a chimeric and non-chimeric recombinant species of Plasmodium vivax reticulocyte binding protein-1: lack of association with HLA-DRB1*/DQB1* in malaria exposed individuals from the Brazilian Amazon. En: PLoS One. Vol. 9; No. 8; pp. e105828 - e105828; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25148251. Disponible en: 10.1371/journal.pone.0105828.
dc.source.bibliographicCitationFigueiredo, M M; Costa, P A C; Diniz, S Q; Henriques, P M; Kano, F S; Tada, M S; Pereira, D B; Soares, I S; Martins-Filho, O A; Jankovic, D; Gazzinelli, R T; Antonelli, Lrdv (2017) T follicular helper cells regulate the activation of B lymphocytes and antibody production during Plasmodium vivax infection. En: PLoS pathog. Vol. 13; No. 7; pp. e1006484 - e1006484; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28700710. Disponible en: 10.1371/journal.ppat.1006484.
dc.source.bibliographicCitationForero-Rodriguez, J; Garzon-Ospina, D; Patarroyo, M A (2014) Low genetic diversity and functional constraint in loci encoding Plasmodium vivax P12 and P38 proteins in the Colombian population. En: Malar J. Vol. 13; pp. 58 - 58; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24533461. Disponible en: 10.1186/1475-2875-13-58.
dc.source.bibliographicCitationFraczkiewicz, Robert; Braun, Werner (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. En: Journal of computational chemistry. Vol. 19; No. 3; pp. 319 - 333;
dc.source.bibliographicCitationFreeman, ROBERT R; Holder, ANTHONY A (1983) Surface antigens of malaria merozoites. A high molecular weight precursor is processed to an 83,000 mol wt form expressed on the surface of Plasmodium falciparum merozoites. En: J Exp Med. Vol. 158; No. 5; pp. 1647 - 1653;
dc.source.bibliographicCitationGarcia, J; Curtidor, H; Pinzon, C G; Vanegas, M; Moreno, A; Patarroyo, M E (2009) Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. En: Vaccine. Vol. 27; No. 30; pp. 3953 - 3962; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19389446. Disponible en: 10.1016/j.vaccine.2009.04.039.
dc.source.bibliographicCitationGarzon-Ospina, D; Forero-Rodriguez, J; Patarroyo, M A (2015) Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. En: Infect Genet Evol. Vol. 33; pp. 182 - 188; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/25943417. Disponible en: 10.1016/j.meegid.2015.05.001.
dc.source.bibliographicCitationGeiger, R; Duhen, T; Lanzavecchia, A; Sallusto, F (2009) Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. En: J Exp Med. Vol. 206; No. 7; pp. 1525 - 1534; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19564353. Disponible en: 10.1084/jem.20090504.
dc.source.bibliographicCitationGething, P W; Elyazar, I R; Moyes, C L; Smith, D L; Battle, K E; Guerra, C A; Patil, A P; Tatem, A J; Howes, R E; Myers, M F; George, D B; Horby, P; Wertheim, H F; Price, R N; Mueller, I; Baird, J K; Hay, S I (2012) A long neglected world malaria map: Plasmodium vivax endemicity in 2010. En: PLoS Negl Trop Dis. Vol. 6; No. 9; pp. e1814 - e1814; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22970336. Disponible en: 10.1371/journal.pntd.0001814.
dc.source.bibliographicCitationGething, P W; Patil, A P; Smith, D L; Guerra, C A; Elyazar, I R; Johnston, G L; Tatem, A J; Hay, S I (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. En: Malar J. Vol. 10; pp. 378 - 378; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22185615. Disponible en: 10.1186/1475-2875-10-378.
dc.source.bibliographicCitationGoncalves, R M; Salmazi, K C; Santos, B A; Bastos, M S; Rocha, S C; Boscardin, S B; Silber, A M; Kallas, E G; Ferreira, M U; Scopel, K K (2010) CD4+ CD25+ Foxp3+ regulatory T cells, dendritic cells, and circulating cytokines in uncomplicated malaria: do different parasite species elicit similar host responses?. En: Infect Immun. Vol. 78; No. 11; pp. 4763 - 4772; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20713627. Disponible en: 10.1128/IAI.00578-10.
dc.source.bibliographicCitationGoncalves, R M; Scopel, K K; Bastos, M S; Ferreira, M U (2012) Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?. En: PLoS One. Vol. 7; No. 9; pp. e44394 - e44394; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22973442. Disponible en: 10.1371/journal.pone.0044394.
dc.source.bibliographicCitationGood, M F; Doolan, D L (1999) Immune effector mechanisms in malaria. En: Curr Opin Immunol. Vol. 11; No. 4; pp. 412 - 419; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10448141. Disponible en: 10.1016/S0952-7915(99)80069-7.
dc.source.bibliographicCitationGood, M F; Doolan, D L (2010) Malaria vaccine design: immunological considerations. En: Immunity. Vol. 33; No. 4; pp. 555 - 566; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21029965. Disponible en: 10.1016/j.immuni.2010.10.005.
dc.source.bibliographicCitationHamari, S; Kirveskoski, T; Glumoff, V; Kulmala, P; Simell, O; Knip, M; Ilonen, J; Veijola, R (2015) CD4(+) T-cell proliferation responses to wheat polypeptide stimulation in children at different stages of type 1 diabetes autoimmunity. En: Pediatr Diabetes. Vol. 16; No. 3; pp. 177 - 188; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25643742. Disponible en: 10.1111/pedi.12256.
dc.source.bibliographicCitationHammer, J; Bono, E; Gallazzi, F; Belunis, C; Nagy, Z; Sinigaglia, F (1994) Precise prediction of major histocompatibility complex class II-peptide interaction based on peptide side chain scanning. En: J Exp Med. Vol. 180; No. 6; pp. 2353 - 2358; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/7964508.
dc.source.bibliographicCitationHemmer, C J; Holst, F G; Kern, P; Chiwakata, C B; Dietrich, M; Reisinger, E C (2006) Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. En: Trop Med Int Health. Vol. 11; No. 6; pp. 817 - 823; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16772003. Disponible en: 10.1111/j.1365-3156.2006.01635.x.
dc.source.bibliographicCitationHill, A V; Allsopp, C E; Kwiatkowski, D; Anstey, N M; Twumasi, P; Rowe, P A; Bennett, S; Brewster, D; McMichael, A J; Greenwood, B M (1991) Common west African HLA antigens are associated with protection from severe malaria. En: Nature. Vol. 352; No. 6336; pp. 595 - 600; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/1865923. Disponible en: 10.1038/352595a0.
dc.source.bibliographicCitationHollingdale, M R; Nardin, E H; Tharavanij, S; Schwartz, A L; Nussenzweig, R S (1984) Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. En: J Immunol. Vol. 132; No. 2; pp. 909 - 913; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/6317752.
dc.source.bibliographicCitationHowes, R E; Battle, K E; Mendis, K N; Smith, D L; Cibulskis, R E; Baird, J K; Hay, S I (2016) Global Epidemiology of Plasmodium vivax. En: Am J Trop Med Hyg. Vol. 95; No. 6 Suppl; pp. 15 - 34; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27402513. Disponible en: 10.4269/ajtmh.16-0141.
dc.source.bibliographicCitationJacobs, P; Radzioch, D; Stevenson, M M (1996) In vivo regulation of nitric oxide production by tumor necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage malaria in mice. En: Infect Immun. Vol. 64; No. 1; pp. 44 - 49; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8557372. Disponible en: 10.1128/iai.64.1.44-49.1996.
dc.source.bibliographicCitationIoannidis, L J; Pietrzak, H M; Ly, A; Utami, R A; Eriksson, E M; Studniberg, S I; Abeysekera, W; Li-Wai-Suen, C S; Sheerin, D; Healer, J; Puspitasari, A M; Apriyanti, D; Coutrier, F N; Poespoprodjo, J R; Kenangalem, E; Andries, B; Prayoga, P; Sariyanti, N; Smyth, G K; Trianty, L; Cowman, A F; Price, R N; Noviyanti, R; Hansen, D S (2021) High-dimensional mass cytometry identifies T cell and B cell signatures predicting reduced risk of Plasmodium vivax malaria. En: JCI Insight. Vol. 6; No. 14; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/34128836. Disponible en: 10.1172/jci.insight.148086.
dc.source.bibliographicCitationJangpatarapongsa, K; Sirichaisinthop, J; Sattabongkot, J; Cui, L; Montgomery, S M; Looareesuwan, S; Troye-Blomberg, M; Udomsangpetch, R (2006) Memory T cells protect against Plasmodium vivax infection. En: Microbes Infect. Vol. 8; No. 3; pp. 680 - 686; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16469520. Disponible en: 10.1016/j.micinf.2005.09.003.
dc.source.bibliographicCitationJespersen, Martin Closter; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. En: Nucleic acids research. Vol. 45; No. W1; pp. W24 - W29;
dc.source.bibliographicCitationKanampalliwar, Amol M; Soni, Rajkumar; Girdhar, Amandeep; Tiwari, A %J J Vaccines Vaccin (2013) Reverse vaccinology: basics and applications. Vol. 4; No. 194; pp. 2 - 2;
dc.source.bibliographicCitationKaslow, David C; Kumar, Sanjai (1996) Expression and immunogenicity of the C-terminus of a major blood-stage surface protein of Plasmodium vivax, Pv200 19, secreted from Saccharomyces cerevisiae. En: Immunology letters. Vol. 51; No. 3; pp. 187 - 189;
dc.source.bibliographicCitationKho, S; Marfurt, J; Noviyanti, R; Kusuma, A; Piera, K A; Burdam, F H; Kenangalem, E; Lampah, D A; Engwerda, C R; Poespoprodjo, J R; Price, R N; Anstey, N M; Minigo, G; Woodberry, T (2015) Preserved dendritic cell HLA-DR expression and reduced regulatory T cell activation in asymptomatic Plasmodium falciparum and P. vivax infection. En: Infect Immun. Vol. 83; No. 8; pp. 3224 - 3232; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26034211. Disponible en: 10.1128/IAI.00226-15.
dc.source.bibliographicCitationKing, C L; Michon, P; Shakri, A R; Marcotty, A; Stanisic, D; Zimmerman, P A; Cole-Tobian, J L; Mueller, I; Chitnis, C E (2008) Naturally acquired Duffy-binding protein-specific binding inhibitory antibodies confer protection from blood-stage Plasmodium vivax infection. En: Proc Natl Acad Sci U S A. Vol. 105; No. 24; pp. 8363 - 8368; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18523022.
dc.source.bibliographicCitationKosakovsky Pond, Sergei L; Frost, Simon D W %J Molecular biology; evolution (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Vol. 22; No. 5; pp. 1208 - 1222;
dc.source.bibliographicCitationKosakovsky Pond, Sergei L; Murrell, Ben; Fourment, Mathieu; Frost, Simon D W; Delport, Wayne; Scheffler, Konrad %J Molecular biology; evolution (2011) A random effects branch-site model for detecting episodic diversifying selection. Vol. 28; No. 11; pp. 3033 - 3043;
dc.source.bibliographicCitationKosakovsky Pond, Sergei L; Posada, David; Gravenor, Michael B; Woelk, Christopher H; Frost, Simon D W %J Molecular biology; evolution (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Vol. 23; No. 10; pp. 1891 - 1901;
dc.source.bibliographicCitationKumar, R; Loughland, J R; Ng, S S; Boyle, M J; Engwerda, C R (2020) The regulation of CD4(+) T cells during malaria. En: Immunol Rev. Vol. 293; No. 1; pp. 70 - 87; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31674682. Disponible en: 10.1111/imr.12804.
dc.source.bibliographicCitationKumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. En: Molecular biology and evolution. Vol. 35; No. 6; pp. 1547 - 1547;
dc.source.bibliographicCitationLamarque, M; Besteiro, S; Papoin, J; Roques, M; Vulliez-Le Normand, B; Morlon-Guyot, J; Dubremetz, J F; Fauquenoy, S; Tomavo, S; Faber, B W; Kocken, C H; Thomas, A W; Boulanger, M J; Bentley, G A; Lebrun, M (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. En: PLoS pathog. Vol. 7; No. 2; pp. e1001276 - e1001276; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21347343. Disponible en: 10.1371/journal.ppat.1001276.
dc.source.bibliographicCitationLamarque, Mauld; Besteiro, Sébastien; Papoin, Julien; Roques, Magali; Vulliez-Le Normand, Brigitte; Morlon-Guyot, Juliette; Dubremetz, Jean-François; Fauquenoy, Sylvain; Tomavo, Stanislas; Faber, Bart W (2011) The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. En: PLoS pathogens. Vol. 7; No. 2; pp. e1001276 - e1001276;
dc.source.bibliographicCitationLanghorne, J; Ndungu, F M; Sponaas, A M; Marsh, K (2008) Immunity to malaria: more questions than answers. En: Nat Immunol. Vol. 9; No. 7; pp. 725 - 732; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18563083. Disponible en: 10.1038/ni.f.205.
dc.source.bibliographicCitationLarsen, J E; Lund, O; Nielsen, M (2006) Improved method for predicting linear B-cell epitopes. En: Immunome Res. Vol. 2; pp. 2 - 2; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16635264. Disponible en: 10.1186/1745-7580-2-2.
dc.source.bibliographicCitationLarsen, Jens Erik Pontoppidan; Lund, Ole; Nielsen, Morten (2006) Improved method for predicting linear B-cell epitopes. En: Immunome Res. Vol. 2; No. 1; pp. 1 - 7;
dc.source.bibliographicCitationLi, Haipeng (2011) A new test for detecting recent positive selection that is free from the confounding impacts of demography. En: Molecular biology and evolution. Vol. 28; No. 1; pp. 365 - 375;
dc.source.bibliographicCitationLi, J; Ito, D; Chen, J H; Lu, F; Cheng, Y; Wang, B; Ha, K S; Cao, J; Torii, M; Sattabongkot, J; Tsuboi, T; Han, E T (2012) Pv12, a 6-Cys antigen of Plasmodium vivax, is localized to the merozoite rhoptry. En: Parasitol Int. Vol. 61; No. 3; pp. 443 - 449; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22394409. Disponible en: 10.1016/j.parint.2012.02.008.
dc.source.bibliographicCitationLima-Junior, J C; Jiang, J; Rodrigues-da-Silva, R N; Banic, D M; Tran, T M; Ribeiro, R Y; Meyer, V S; De-Simone, S G; Santos, F; Moreno, A; Barnwell, J W; Galinski, M R; Oliveira-Ferreira, J (2011) B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3alpha (PvMSP-3alpha) in malaria exposed individuals from Brazilian Amazon. En: Vaccine. Vol. 29; No. 9; pp. 1801 - 1811; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21215342. Disponible en: 10.1016/j.vaccine.2010.12.099.
dc.source.bibliographicCitationLima-Junior, J C; Rodrigues-da-Silva, R N; Banic, D M; Jiang, J; Singh, B; Fabricio-Silva, G M; Porto, L C; Meyer, E V; Moreno, A; Rodrigues, M M; Barnwell, J W; Galinski, M R; de Oliveira-Ferreira, J (2012) Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3alpha and MSP-9 in individuals from Brazilian endemic area. En: PLoS One. Vol. 7; No. 5; pp. e36419 - e36419; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22649493. Disponible en: 10.1371/journal.pone.0036419.
dc.source.bibliographicCitationLima-Junior, J C; Tran, T M; Meyer, E V; Singh, B; De-Simone, S G; Santos, F; Daniel-Ribeiro, C T; Moreno, A; Barnwell, J W; Galinski, M R; Oliveira-Ferreira, J (2008) Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 9 in Northwestern Amazon individuals. En: Vaccine. Vol. 26; No. 51; pp. 6645 - 6654; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18832003. Disponible en: 10.1016/j.vaccine.2008.09.029.
dc.source.bibliographicCitationLima-Junior Jda, C; Pratt-Riccio, L R (2016) Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection. En: Front Immunol. Vol. 7; pp. 13 - 13; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26858717. Disponible en: 10.3389/fimmu.2016.00013.
dc.source.bibliographicCitationLocci, M; Havenar-Daughton, C; Landais, E; Wu, J; Kroenke, M A; Arlehamn, C L; Su, L F; Cubas, R; Davis, M M; Sette, A; Haddad, E K; International, Aids Vaccine Initiative Protocol C Principal Investigators; Poignard, P; Crotty, S (2013) Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. En: Immunity. Vol. 39; No. 4; pp. 758 - 769; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24035365. Disponible en: 10.1016/j.immuni.2013.08.031.
dc.source.bibliographicCitationLumsden, J M; Schwenk, R J; Rein, L E; Moris, P; Janssens, M; Ofori-Anyinam, O; Cohen, J; Kester, K E; Heppner, D G; Krzych, U (2011) Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-alpha producing effector and central memory CD4 T cells. En: PLoS One. Vol. 6; No. 7; pp. e20775 - e20775; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21779319. Disponible en: 10.1371/journal.pone.0020775.
dc.source.bibliographicCitationMailliard, R B; Wankowicz-Kalinska, A; Cai, Q; Wesa, A; Hilkens, C M; Kapsenberg, M L; Kirkwood, J M; Storkus, W J; Kalinski, P (2004) alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. En: Cancer Res. Vol. 64; No. 17; pp. 5934 - 5937; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15342370. Disponible en: 10.1158/0008-5472.CAN-04-1261.
dc.source.bibliographicCitationMallone, R; Nepom, G T (2004) MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. En: Clin Immunol. Vol. 110; No. 3; pp. 232 - 242; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15047201. Disponible en: 10.1016/j.clim.2003.11.004.
dc.source.bibliographicCitationMalonis, R J; Lai, J R; Vergnolle, O (2020) Peptide-Based Vaccines: Current Progress and Future Challenges. En: Chem Rev. Vol. 120; No. 6; pp. 3210 - 3229; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/31804810. Disponible en: 10.1021/acs.chemrev.9b00472.
dc.source.bibliographicCitationMarsh, Steven G E; Parham, Peter; Barber, Linda D (1999) The HLA factsbook. : Academic Press; 0080542506;
dc.source.bibliographicCitationMartinez, P; Lopez, C; Saravia, C; Vanegas, M; Patarroyo, M A (2010) Evaluation of the antigenicity of universal epitopes from PvDBPII in individuals exposed to Plasmodium vivax malaria. En: Microbes Infect. Vol. 12; No. 14-15; pp. 1188 - 1197; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20804855. Disponible en: 10.1016/j.micinf.2010.08.007.
dc.source.bibliographicCitationMartinuzzi, E; Afonso, G; Gagnerault, M C; Naselli, G; Mittag, D; Combadiere, B; Boitard, C; Chaput, N; Zitvogel, L; Harrison, L C; Mallone, R (2011) acDCs enhance human antigen-specific T-cell responses. En: Blood. Vol. 118; No. 8; pp. 2128 - 2137; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21715316. Disponible en: 10.1182/blood-2010-12-326231.
dc.source.bibliographicCitationMasignani, V; Rappuoli, R; Pizza, M (2002) Reverse vaccinology: a genome-based approach for vaccine development. En: Expert Opin Biol Ther. Vol. 2; No. 8; pp. 895 - 905; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12517268. Disponible en: 10.1517/14712598.2.8.895.
dc.source.bibliographicCitationMatsuda, T; Hirano, T; Kishimoto, T (1988) Establishment of an interleukin 6 (IL 6)/B cell stimulatory factor 2-dependent cell line and preparation of anti-IL 6 monoclonal antibodies. En: Eur J Immunol. Vol. 18; No. 6; pp. 951 - 956; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/3260187. Disponible en: 10.1002/eji.1830180618.
dc.source.bibliographicCitationMazza, C; Malissen, B (2007) What guides MHC-restricted TCR recognition?. En: Semin Immunol. Vol. 19; No. 4; pp. 225 - 235; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17521918. Disponible en: 10.1016/j.smim.2007.03.003.
dc.source.bibliographicCitationMedina, T S; Costa, S P; Oliveira, M D; Ventura, A M; Souza, J M; Gomes, T F; Vallinoto, A C; Povoa, M M; Silva, J S; Cunha, M G (2011) Increased interleukin-10 and interferon-gamma levels in Plasmodium vivax malaria suggest a reciprocal regulation which is not altered by IL-10 gene promoter polymorphism. En: Malar J. Vol. 10; pp. 264 - 264; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21917128. Disponible en: 10.1186/1475-2875-10-264.
dc.source.bibliographicCitationMichon, P; Fraser, T; Adams, J H (2000) Naturally acquired and vaccine-elicited antibodies block erythrocyte cytoadherence of the Plasmodium vivax Duffy binding protein. En: Infect Immun. Vol. 68; No. 6; pp. 3164 - 3171; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10816459.
dc.source.bibliographicCitationMiller, L H; Baruch, D I; Marsh, K; Doumbo, O K (2002) The pathogenic basis of malaria. En: Nature. Vol. 415; No. 6872; pp. 673 - 679; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11832955.
dc.source.bibliographicCitationMojibian, M; Chakir, H; Lefebvre, D E; Crookshank, J A; Sonier, B; Keely, E; Scott, F W (2009) Diabetes-specific HLA-DR-restricted proinflammatory T-cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. En: Diabetes. Vol. 58; No. 8; pp. 1789 - 1796; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19401421. Disponible en: 10.2337/db08-1579.
dc.source.bibliographicCitationMoreno-Perez, D A; Areiza-Rojas, R; Florez-Buitrago, X; Silva, Y; Patarroyo, M E; Patarroyo, M A (2013) The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. En: Protist. Vol. 164; No. 1; pp. 37 - 48; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22554829. Disponible en: 10.1016/j.protis.2012.03.001.
dc.source.bibliographicCitationMoris, P; Jongert, E; van der Most, R G (2018) Characterization of T-cell immune responses in clinical trials of the candidate RTS,S malaria vaccine. En: Hum Vaccin Immunother. Vol. 14; No. 1; pp. 17 - 27; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28934066. Disponible en: 10.1080/21645515.2017.1381809.
dc.source.bibliographicCitationMorita, R; Schmitt, N; Bentebibel, S E; Ranganathan, R; Bourdery, L; Zurawski, G; Foucat, E; Dullaers, M; Oh, S; Sabzghabaei, N; Lavecchio, E M; Punaro, M; Pascual, V; Banchereau, J; Ueno, H (2011) Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. En: Immunity. Vol. 34; No. 1; pp. 108 - 121; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21215658. Disponible en: 10.1016/j.immuni.2010.12.012.
dc.source.bibliographicCitationMoser, J M; Sassano, E R; Leistritz del, C; Eatrides, J M; Phogat, S; Koff, W; Drake 3rd, D R (2010) Optimization of a dendritic cell-based assay for the in vitro priming of naive human CD4+ T cells. En: J Immunol Methods. Vol. 353; No. 1-2; pp. 8 - 19; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19925804. Disponible en: 10.1016/j.jim.2009.11.006.
dc.source.bibliographicCitationMueller, I; Galinski, M R; Baird, J K; Carlton, J M; Kochar, D K; Alonso, P L; del Portillo, H A (2009) Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. En: Lancet Infect Dis. Vol. 9; No. 9; pp. 555 - 566; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19695492. Disponible en: 10.1016/S1473-3099(09)70177-X.
dc.source.bibliographicCitationMueller, I; Galinski, M R; Tsuboi, T; Arevalo-Herrera, M; Collins, W E; King, C L (2013) Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. En: Adv Parasitol. Vol. 81; pp. 77 - 131; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23384622. Disponible en: 10.1016/B978-0-12-407826-0.00003-5.
dc.source.bibliographicCitationMueller, I; Shakri, A R; Chitnis, C E (2015) Development of vaccines for Plasmodium vivax malaria. En: Vaccine. Vol. 33; No. 52; pp. 7489 - 7495; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26428453. Disponible en: 10.1016/j.vaccine.2015.09.060.
dc.source.bibliographicCitationMurrell, B; Moola, S; Mabona, A; Weighill, T; Sheward, D; Kosakovsky Pond, S L; Scheffler, K (2013) FUBAR: a fast, unconstrained bayesian approximation for inferring selection. En: Mol Biol Evol. Vol. 30; No. 5; pp. 1196 - 1205; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23420840. Disponible en: 10.1093/molbev/mst030.
dc.source.bibliographicCitationMurrell, B; Wertheim, J O; Moola, S; Weighill, T; Scheffler, K; Kosakovsky Pond, S L (2012) Detecting individual sites subject to episodic diversifying selection. En: PLoS Genet. Vol. 8; No. 7; pp. e1002764 - e1002764; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22807683. Disponible en: 10.1371/journal.pgen.1002764.
dc.source.bibliographicCitationNaik, R S; Branch, O H; Woods, A S; Vijaykumar, M; Perkins, D J; Nahlen, B L; Lal, A A; Cotter, R J; Costello, C E; Ockenhouse, C F; Davidson, E A; Gowda, D C (2000) Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. En: J Exp Med. Vol. 192; No. 11; pp. 1563 - 1576; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11104799. Disponible en: 10.1084/jem.192.11.1563.
dc.source.bibliographicCitationNanda Kumar, Y; Jeyakodi, G; Gunasekaran, K; Jambulingam, P %J Journal of Biomolecular Structure; Dynamics (2016) Computational screening and characterization of putative vaccine candidates of Plasmodium vivax. Vol. 34; No. 8; pp. 1736 - 1750;
dc.source.bibliographicCitationNardin, E; Zavala, F; Nussenzweig, V; Nussenzweig, R S (1999) Pre-erythrocytic malaria vaccine: mechanisms of protective immunity and human vaccine trials. En: Parassitologia. Vol. 41; No. 1-3; pp. 397 - 402; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/10697892.
dc.source.bibliographicCitationNeafsey, D E; Galinsky, K; Jiang, R H; Young, L; Sykes, S M; Saif, S; Gujja, S; Goldberg, J M; Young, S; Zeng, Q; Chapman, S B; Dash, A P; Anvikar, A R; Sutton, P L; Birren, B W; Escalante, A A; Barnwell, J W; Carlton, J M (2012) The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. En: Nat Genet. Vol. 44; No. 9; pp. 1046 - 1050; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22863733. Disponible en: 10.1038/ng.2373.
dc.source.bibliographicCitationNeefjes, J; Jongsma, M L; Paul, P; Bakke, O (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. En: Nat Rev Immunol. Vol. 11; No. 12; pp. 823 - 836; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22076556. Disponible en: 10.1038/nri3084.
dc.source.bibliographicCitationNielsen, Morten; Lund, Ole (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. En: BMC bioinformatics. Vol. 10; No. 1; pp. 1 - 1;
dc.source.bibliographicCitationNogueira, Paulo Afonso; Alves, Fabiana Piovesan; Fernandez-Becerra, Carmen; Pein, Oliver; Santos, Neida Rodrigues; da Silva, Luiz Hildebrando Pereira; Camargo, Erney Plessman; del Portillo, Hernando A (2006) A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. En: Infection and immunity. Vol. 74; No. 5; pp. 2726 - 2733;
dc.source.bibliographicCitationNogueira, P A; Alves, F P; Fernandez-Becerra, C; Pein, O; Santos, N R; Pereira da Silva, L H; Camargo, E P; del Portillo, H A (2006) A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. En: Infect Immun. Vol. 74; No. 5; pp. 2726 - 2733; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16622209. Disponible en: 10.1128/IAI.74.5.2726-2733.2006.
dc.source.bibliographicCitationNtumngia, F B; Adams, J H (2012) Design and immunogenicity of a novel synthetic antigen based on the ligand domain of the Plasmodium vivax duffy binding protein. En: Clin Vaccine Immunol. Vol. 19; No. 1; pp. 30 - 36; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22116684. Disponible en: 10.1128/CVI.05466-11.
dc.source.bibliographicCitationObeng-Adjei, N; Portugal, S; Tran, T M; Yazew, T B; Skinner, J; Li, S; Jain, A; Felgner, P L; Doumbo, O K; Kayentao, K; Ongoiba, A; Traore, B; Crompton, P D (2015) Circulating Th1-Cell-type Tfh Cells that Exhibit Impaired B Cell Help Are Preferentially Activated during Acute Malaria in Children. En: Cell Rep. Vol. 13; No. 2; pp. 425 - 439; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26440897. Disponible en: 10.1016/j.celrep.2015.09.004.
dc.source.bibliographicCitationOcampo, M; Urquiza, M; Guzman, F; Rodriguez, L E; Suarez, J; Curtidor, H; Rosas, J; Diaz, M; Patarroyo, M E (2000) Two MSA 2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion. En: J Pept Res. Vol. 55; No. 3; pp. 216 - 223; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10727103.
dc.source.bibliographicCitationOcampo, M; Vera, R; Eduardo Rodriguez, L; Curtidor, H; Urquiza, M; Suarez, J; Garcia, J; Puentes, A; Lopez, R; Trujillo, M; Torres, E; Patarroyo, M E (2002) Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. En: Peptides. Vol. 23; No. 1; pp. 13 - 22; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/11814613.
dc.source.bibliographicCitationOliveira-Ferreira, J; Pratt-Riccio, L R; Arruda, M; Santos, F; Ribeiro, C T; Goldberg, A C; Banic, D M (2004) HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247 and P. vivax-like) in individuals naturally exposed to malaria. En: Acta Trop. Vol. 92; No. 1; pp. 63 - 69; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15301976. Disponible en: 10.1016/j.actatropica.2004.02.011.
dc.source.bibliographicCitationOrganization, World Health (2021) World malaria report 2021.
dc.source.bibliographicCitationPark, Chae Gyu; Chwae, Yong-Joon; Kim, Jong-Il; Lee, Ji-Ho; Hur, Gang Min; Jeon, Byeong Hwa; Koh, Jae Soo; Han, Jae-Hee; Lee, Shin-Je; Park, Jae-Won (2000) Serologic responses of Korean soldiers serving in malaria-endemic areas during a recent outbreak of Plasmodium vivax. En: Am J Trop Med Hyg. Vol. 62; No. 6; pp. 720 - 725;
dc.source.bibliographicCitationPark, Jae-Won; Moon, Seung-Hwan; Yeom, Joon-Sup; Lim, Kook-Jin; Sohn, Mi-Jin; Jung, Woo-Chul; Cho, Young-Jung; Jeon, Ki-Won; Ju, Woong; Ki, Chang-Seok (2001) Naturally acquired antibody responses to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in Korea. En: Clinical and diagnostic laboratory immunology. Vol. 8; No. 1; pp. 14 - 20;
dc.source.bibliographicCitationPatarroyo, M A; Bermudez, A; Lopez, C; Yepes, G; Patarroyo, M E (2010) 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria. En: PLoS One. Vol. 5; No. 3; pp. e9771 - e9771; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20333301. Disponible en: 10.1371/journal.pone.0009771.
dc.source.bibliographicCitationPatarroyo, M A; Calderon, D; Moreno-Perez, D A (2012) Vaccines against Plasmodium vivax: a research challenge. En: Expert Rev Vaccines. Vol. 11; No. 10; pp. 1249 - 1260; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23176656. Disponible en: 10.1586/erv.12.91.
dc.source.bibliographicCitationPatarroyo, Manuel Elkin; Bermúdez, Adriana; Alba, Martha Patricia; Vanegas, Magnolia; Moreno-Vranich, Armando; Poloche, Luis Antonio; Patarroyo, Manuel Alfonso (2015) IMPIPS: The Im mune P rotection-I nducing P rotein S tructure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. En: PLoS One. Vol. 10; No. 4; pp. e0123249 - e0123249;
dc.source.bibliographicCitationPatarroyo, M E; Cifuentes, G; Vargas, L E; Rosas, J (2004) Structural modifications enable conserved peptides to fit into MHC molecules thus inducing protection against malaria. En: Chembiochem. Vol. 5; No. 11; pp. 1588 - 1593; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/15515079. Disponible en: 10.1002/cbic.200400116.
dc.source.bibliographicCitationPatarroyo, M E; Patarroyo, M A (2008) Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. En: Acc Chem Res. Vol. 41; No. 3; pp. 377 - 386; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18266328. Disponible en: 10.1021/ar700120t.
dc.source.bibliographicCitationPepper, M; Jenkins, M K (2011) Origins of CD4(+) effector and central memory T cells. En: Nat Immunol. Vol. 12; No. 6; pp. 467 - 471; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21739668. Disponible en: 10.1038/ni.2038.
dc.source.bibliographicCitationPhillips, M A; Burrows, J N; Manyando, C; van Huijsduijnen, R H; Van Voorhis, W C; Wells, T N C (2017) Malaria. En: Nat Rev Dis Primers. Vol. 3; pp. 17050 - 17050; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/28770814. Disponible en: 10.1038/nrdp.2017.50.
dc.source.bibliographicCitationPinzon-Charry, A; Woodberry, T; Kienzle, V; McPhun, V; Minigo, G; Lampah, D A; Kenangalem, E; Engwerda, C; Lopez, J A; Anstey, N M; Good, M F (2013) Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. En: J Exp Med. Vol. 210; No. 8; pp. 1635 - 1646; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23835848. Disponible en: 10.1084/jem.20121972.
dc.source.bibliographicCitationPorollo, Aleksey A; Adamczak, Rafal; Meller, Jaroslaw (2004) POLYVIEW: a flexible visualization tool for structural and functional annotations of proteins. En: Bioinformatics. Vol. 20; No. 15; pp. 2460 - 2462;
dc.source.bibliographicCitationPraba-Egge, A D; Montenegro, S; Arevalo-Herrera, M; Hopper, T; Herrera, S; James, M A (2003) Human cytokine responses to meso-endemic malaria on the Pacific Coast of Colombia. En: Ann Trop Med Parasitol. Vol. 97; No. 4; pp. 327 - 337; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12831518. Disponible en: 10.1179/000349803235002399.
dc.source.bibliographicCitationPrice, R N; Commons, R J; Battle, K E; Thriemer, K; Mendis, K (2020) Plasmodium vivax in the Era of the Shrinking P. falciparum Map. En: Trends Parasitol. Vol. 36; No. 6; pp. 560 - 570; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/32407682. Disponible en: 10.1016/j.pt.2020.03.009.
dc.source.bibliographicCitationRadwan, J; Babik, W; Kaufman, J; Lenz, T L; Winternitz, J (2020) Advances in the Evolutionary Understanding of MHC Polymorphism. En: Trends Genet. Vol. 36; No. 4; pp. 298 - 311; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/32044115. Disponible en: 10.1016/j.tig.2020.01.008.
dc.source.bibliographicCitationRappuoli, R (2000) Reverse vaccinology. En: Curr Opin Microbiol. Vol. 3; No. 5; pp. 445 - 450; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11050440. Disponible en: 10.1016/s1369-5274(00)00119-3.
dc.source.bibliographicCitationRappuoli, R (2001) Reverse vaccinology, a genome-based approach to vaccine development. En: Vaccine. Vol. 19; No. 17-19; pp. 2688 - 2691; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11257410. Disponible en: 10.1016/s0264-410x(00)00554-5.
dc.source.bibliographicCitationRathore, D; Nagarkatti, R; Jani, D; Chattopadhyay, R; de la Vega, P; Kumar, S; McCutchan, T F (2005) An immunologically cryptic epitope of Plasmodium falciparum circumsporozoite protein facilitates liver cell recognition and induces protective antibodies that block liver cell invasion. En: J Biol Chem. Vol. 280; No. 21; pp. 20524 - 20529; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/15781464. Disponible en: 10.1074/jbc.M414254200.
dc.source.bibliographicCitationRaza, Afsheen; Khan, Muhammad Shahzeb; Ghanchi, Najia Karim; Raheem, Ahmed; Beg, Mohammad A %J Malaria journal (2014) Tumour necrosis factor, interleukin-6 and interleukin-10 are possibly involved in Plasmodium vivax-associated thrombocytopaenia in southern Pakistani population. Vol. 13; No. 1; pp. 1 - 7;
dc.source.bibliographicCitationRenia, L; Goh, Y S (2016) Malaria Parasites: The Great Escape. En: Front Immunol. Vol. 7; pp. 463 - 463; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27872623. Disponible en: 10.3389/fimmu.2016.00463.
dc.source.bibliographicCitationRénia, Laurent; Goh, Yun Shan %J Frontiers in immunology (2016) Malaria parasites: the great escape. Vol. 7; pp. 463 - 463;
dc.source.bibliographicCitationReynisson, Birkir; Alvarez, Bruno; Paul, Sinu; Peters, Bjoern; Nielsen, Morten (2020) NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. En: Nucleic acids research. Vol. 48; No. W1; pp. W449 - W454;
dc.source.bibliographicCitationRiley, Eleanor M; Stewart, V Ann (2013) Immune mechanisms in malaria: new insights in vaccine development. En: Nature medicine. Vol. 19; No. 2; pp. 168 - 178;
dc.source.bibliographicCitationRodrigues-da-Silva, R N; Soares, I F; Lopez-Camacho, C; Martins da Silva, J H; Perce-da-Silva, D S; Teva, A; Ramos Franco, A M; Pinheiro, F G; Chaves, L B; Pratt-Riccio, L R; Reyes-Sandoval, A; Banic, D M; Lima-Junior, J D (2017) Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. En: Front Immunol. Vol. 8; pp. 77 - 77; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28223984. Disponible en: 10.3389/fimmu.2017.00077.
dc.source.bibliographicCitationRodrı́guez, Luis Eduardo; Urquiza, Mauricio; Ocampo, Marisol; Curtidor, Hernando; Suárez, Jorge; Garcı́a, Javier; Vera, Ricardo; Puentes, Álvaro; López, Ramses; Pinto, Martha (2002) Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. En: Vaccine. Vol. 20; No. 9; pp. 1331 - 1339;
dc.source.bibliographicCitationRodriguez, L E; Urquiza, M; Ocampo, M; Curtidor, H; Suarez, J; Garcia, J; Vera, R; Puentes, A; Lopez, R; Pinto, M; Rivera, Z; Patarroyo, M E (2002) Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. En: Vaccine. Vol. 20; No. 9-10; pp. 1331 - 1339; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/11818151. Disponible en: 10.1016/s0264-410x(01)00472-8.
dc.source.bibliographicCitationRojas-Caraballo, J; Mongui, A; Giraldo, M A; Delgado, G; Granados, D; Millan-Cortes, D; Martinez, P; Rodriguez, R; Patarroyo, M A (2009) Immunogenicity and protection-inducing ability of recombinant Plasmodium vivax rhoptry-associated protein 2 in Aotus monkeys: a potential vaccine candidate. En: Vaccine. Vol. 27; No. 21; pp. 2870 - 2876; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19428897. Disponible en: 10.1016/j.vaccine.2009.02.083.
dc.source.bibliographicCitationRömer, Paula S; Berr, Susanne; Avota, Elita; Na, Shin-Young; Battaglia, Manuela; Ten Berge, Ineke; Einsele, Hermann; Hünig The Journal of the American Society of Hematology, Thomas %J Blood (2011) Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Vol. 118; No. 26; pp. 6772 - 6782;
dc.source.bibliographicCitationRosa, Daniela S; Iwai, Leo K; Tzelepis, Fanny; Bargieri, Daniel Y; Medeiros, Magda A; Soares, Irene S; Sidney, John; Sette, Alessandro; Kalil, Jorge; Mello, Luiz Eugênio (2006) Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1 19 and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). En: Microbes and Infection. Vol. 8; No. 8; pp. 2130 - 2137;
dc.source.bibliographicCitationSaha, Sudipto; Raghava, Gajendra Pal Singh (2006) Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. En: Proteins: Structure, Function, and Bioinformatics. Vol. 65; No. 1; pp. 40 - 48;
dc.source.bibliographicCitationSallusto, F (2016) Heterogeneity of Human CD4(+) T Cells Against Microbes. En: Annu Rev Immunol. Vol. 34; pp. 317 - 334; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27168241. Disponible en: 10.1146/annurev-immunol-032414-112056.
dc.source.bibliographicCitationSallusto, F; Lanzavecchia, A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. En: J Exp Med. Vol. 179; No. 4; pp. 1109 - 1118; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8145033. Disponible en: 10.1084/jem.179.4.1109.
dc.source.bibliographicCitationSanders, P R; Gilson, P R; Cantin, G T; Greenbaum, D C; Nebl, T; Carucci, D J; McConville, M J; Schofield, L; Hodder, A N; Yates 3rd, J R; Crabb, B S (2005) Distinct protein classes including novel merozoite surface antigens in Raft-like membranes of Plasmodium falciparum. En: J Biol Chem. Vol. 280; No. 48; pp. 40169 - 40176; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16203726. Disponible en: 10.1074/jbc.M509631200.
dc.source.bibliographicCitationSaravia, C; Martinez, P; Granados, D S; Lopez, C; Reyes, C; Patarroyo, M A (2008) Identification and evaluation of universal epitopes in Plasmodium vivax Duffy binding protein. En: Biochem Biophys Res Commun. Vol. 377; No. 4; pp. 1279 - 1283; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19000655. Disponible en: 10.1016/j.bbrc.2008.10.153.
dc.source.bibliographicCitationSchmitt, N; Bentebibel, S E; Ueno, H (2014) Phenotype and functions of memory Tfh cells in human blood. En: Trends Immunol. Vol. 35; No. 9; pp. 436 - 442; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24998903. Disponible en: 10.1016/j.it.2014.06.002.
dc.source.bibliographicCitationSchofield, L; Grau, G E (2005) Immunological processes in malaria pathogenesis. En: Nat Rev Immunol. Vol. 5; No. 9; pp. 722 - 735; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/16138104. Disponible en: 10.1038/nri1686.
dc.source.bibliographicCitationScragg, I G; Hensmann, M; Bate, C A; Kwiatkowski, D (1999) Early cytokine induction by Plasmodium falciparum is not a classical endotoxin-like process. En: Eur J Immunol. Vol. 29; No. 8; pp. 2636 - 2644; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10458778. Disponible en: 10.1002/(SICI)1521-4141(199908)29:08<2636::AID-IMMU2636>3.0.CO;2-Y.
dc.source.bibliographicCitationSeder, R A; Darrah, P A; Roederer, M (2008) T-cell quality in memory and protection: implications for vaccine design. En: Nat Rev Immunol. Vol. 8; No. 4; pp. 247 - 258; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18323851. Disponible en: 10.1038/nri2274.
dc.source.bibliographicCitationSette, A; Rappuoli, R (2010) Reverse vaccinology: developing vaccines in the era of genomics. En: Immunity. Vol. 33; No. 4; pp. 530 - 541; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/21029963. Disponible en: 10.1016/j.immuni.2010.09.017.
dc.source.bibliographicCitationSiddiqui, A A; Singh, N; Sharma, Y D (2007) Expression and purification of a Plasmodium vivax antigen. En: Vaccine. Vol. 26; No. 1; pp. 96 - 107; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/18054126. Disponible en: 10.1016/j.vaccine.2007.10.042.
dc.source.bibliographicCitationSierra, A Y; Barrero, C A; Rodriguez, R; Silva, Y; Moncada, C; Vanegas, M; Patarroyo, M A (2003) Splenectomised and spleen intact Aotus monkeys' immune response to Plasmodium vivax MSP-1 protein fragments and their high activity binding peptides. En: Vaccine. Vol. 21; No. 27-30; pp. 4133 - 4144; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/14505893.
dc.source.bibliographicCitationSilva, A L; Lacerda, M V; Fujiwara, R T; Bueno, L L; Braga, E M (2013) Plasmodium vivax infection induces expansion of activated naive/memory T cells and differentiation into a central memory profile. En: Microbes Infect. Vol. 15; No. 12; pp. 837 - 843; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23911843. Disponible en: 10.1016/j.micinf.2013.07.009.
dc.source.bibliographicCitationSilva-Flannery, L M; Cabrera-Mora, M; Dickherber, M; Moreno, A (2009) Polymeric linear Peptide chimeric vaccine-induced antimalaria immunity is associated with enhanced in vitro antigen loading. En: Infect Immun. Vol. 77; No. 5; pp. 1798 - 1806; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19237530. Disponible en: 10.1128/IAI.00470-08.
dc.source.bibliographicCitationSina, B (2002) Focus on Plasmodium vivax. En: Trends Parasitol. Vol. 18; No. 7; pp. 287 - 289; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12379943. Disponible en: 10.1016/s1471-4922(02)02329-2.
dc.source.bibliographicCitationSingh, Harinder; Singh, Sandeep; Raghava, Gajendra Pal Singh (2019) Peptide secondary structure prediction using evolutionary information. En: bioRxiv. pp. 558791 - 558791;
dc.source.bibliographicCitationSkwarczynski, M; Toth, I (2016) Peptide-based synthetic vaccines. En: Chem Sci. Vol. 7; No. 2; pp. 842 - 854; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28791117. Disponible en: 10.1039/c5sc03892h.
dc.source.bibliographicCitationSoares, I S; da Cunha, M G; Silva, M N; Souza, J M; Del Portillo, H A; Rodrigues, M M (1999) Longevity of naturally acquired antibody responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1. En: Am J Trop Med Hyg. Vol. 60; No. 3; pp. 357 - 363; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10466961. Disponible en: 10.4269/ajtmh.1999.60.357.
dc.source.bibliographicCitationSoares, I S; Levitus, G; Souza, J M; Del Portillo, H A; Rodrigues, M M (1997) Acquired immune responses to the N- and C-terminal regions of Plasmodium vivax merozoite surface protein 1 in individuals exposed to malaria. En: Infect Immun. Vol. 65; No. 5; pp. 1606 - 1614; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/9125537.
dc.source.bibliographicCitationSortica, V A; Cunha, M G; Ohnishi, M D; Souza, J M; Ribeiro-dos-Santos, A K; Santos, S E; Hutz, M H (2014) Role of IL6, IL12B and VDR gene polymorphisms in Plasmodium vivax malaria severity, parasitemia and gametocytemia levels in an Amazonian Brazilian population. En: Cytokine. Vol. 65; No. 1; pp. 42 - 47; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/24139871. Disponible en: 10.1016/j.cyto.2013.09.014.
dc.source.bibliographicCitationSrinivasan, Prakash; Beatty, Wandy L; Diouf, Ababacar; Herrera, Raul; Ambroggio, Xavier; Moch, J Kathleen; Tyler, Jessica S; Narum, David L; Pierce, Susan K; Boothroyd, John C (2011) Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. En: Proceedings of the National Academy of Sciences. Vol. 108; No. 32; pp. 13275 - 13280;
dc.source.bibliographicCitationSrinivasan, P; Baldeviano, G C; Miura, K; Diouf, A; Ventocilla, J A; Leiva, K P; Lugo-Roman, L; Lucas, C; Orr-Gonzalez, S; Zhu, D; Villasante, E; Soisson, L; Narum, D L; Pierce, S K; Long, C A; Diggs, C; Duffy, P E; Lescano, A G; Miller, L H (2017) A malaria vaccine protects Aotus monkeys against virulent Plasmodium falciparum infection. En: NPJ Vaccines. Vol. 2; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28804644. Disponible en: 10.1038/s41541-017-0015-7.
dc.source.bibliographicCitationStern, L J; Brown, J H; Jardetzky, T S; Gorga, J C; Urban, R G; Strominger, J L; Wiley, D C (1994) Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. En: Nature. Vol. 368; No. 6468; pp. 215 - 221; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8145819. Disponible en: 10.1038/368215a0.
dc.source.bibliographicCitationStern, L J; Calvo-Calle, J M (2009) HLA-DR: molecular insights and vaccine design. En: Curr Pharm Des. Vol. 15; No. 28; pp. 3249 - 3261; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/19860674. Disponible en: 10.2174/138161209789105171.
dc.source.bibliographicCitationStevenson, M M; Riley, E M (2004) Innate immunity to malaria. En: Nat Rev Immunol. Vol. 4; No. 3; pp. 169 - 180; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15039754.
dc.source.bibliographicCitationStevenson, M M; Urban, B C (2006) Antigen presentation and dendritic cell biology in malaria. En: Parasite Immunol. Vol. 28; No. 1-2; pp. 5 - 14; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/16438671. Disponible en: 10.1111/j.1365-3024.2006.00772.x.
dc.source.bibliographicCitationStorti-Melo, L M; da Costa, D R; Souza-Neiras, W C; Cassiano, G C; Couto, V S; Povoa, M M; Soares Ida, S; de Carvalho, L H; Arevalo-Herrera, M; Herrera, S; Rossit, A R; Cordeiro, J A; de Mattos, L C; Machado, R L (2012) Influence of HLA-DRB-1 alleles on the production of antibody against CSP, MSP-1, AMA-1, and DBP in Brazilian individuals naturally infected with Plasmodium vivax. En: Acta Trop. Vol. 121; No. 2; pp. 152 - 155; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22107686. Disponible en: 10.1016/j.actatropica.2011.10.009.
dc.source.bibliographicCitationSturniolo, Tiziana; Bono, Elisa; Ding, Jiayi; Raddrizzani, Laura; Tuereci, Oezlem; Sahin, Ugur; Braxenthaler, Michael; Gallazzi, Fabio; Protti, Maria Pia; Sinigaglia, Francesco (1999) Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. En: Nature biotechnology. Vol. 17; No. 6; pp. 555 - 561;
dc.source.bibliographicCitationSu, Z; Stevenson, M M (2000) Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. En: Infect Immun. Vol. 68; No. 8; pp. 4399 - 4406; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/10899836. Disponible en: 10.1128/IAI.68.8.4399-4406.2000.
dc.source.bibliographicCitationSuh, Kathryn N; Kain, Kevin C; Keystone, Jay S (2004) Malaria. En: Cmaj. Vol. 170; No. 11; pp. 1693 - 1702;
dc.source.bibliographicCitationTaechalertpaisarn, T; Crosnier, C; Bartholdson, S J; Hodder, A N; Thompson, J; Bustamante, L Y; Wilson, D W; Sanders, P R; Wright, G J; Rayner, J C; Cowman, A F; Gilson, P R; Crabb, B S (2012) Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41. En: PLoS One. Vol. 7; No. 7; pp. e41937 - e41937; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/22848665. Disponible en: 10.1371/journal.pone.0041937.
dc.source.bibliographicCitationTaylor-Robinson, A W; Phillips, R S; Severn, A; Moncada, S; Liew, F Y (1993) The role of TH1 and TH2 cells in a rodent malaria infection. En: Science. Vol. 260; No. 5116; pp. 1931 - 1934; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/8100366. Disponible en: 10.1126/science.8100366.
dc.source.bibliographicCitationTeam, R Core (2013) R: A language and environment for statistical computing.
dc.source.bibliographicCitationTham, W H; Beeson, J G; Rayner, J C (2017) Plasmodium vivax vaccine research. En: Int J Parasitol. Vol. 47; No. 2-3; pp. 111 - 118; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27899329. Disponible en: 10.1016/j.ijpara.2016.09.006.
dc.source.bibliographicCitationThévenet, Pierre; Shen, Yimin; Maupetit, Julien; Guyon, Frederic; Derreumaux, Philippe; Tuffery, Pierre (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. En: Nucleic acids research. Vol. 40; No. W1; pp. W288 - W293;
dc.source.bibliographicCitationTrachtenberg, E A; Keyeux, G; Bernal, J E; Rhodas, M C; Erlich, H A %J Tissue antigens (1996) Results of Expedition Humana: I. Analysis of HLA class II (DRB1–DQA1‐DQB1‐DPB1) alleles and DR‐DQ haplotypes in nine Amerindian populations from Colombia. Vol. 48; No. 3; pp. 174 - 181;
dc.source.bibliographicCitationTran, Tuan M; Oliveira-Ferreira, Joseli; Moreno, Alberto; Santos, Fatima; Yazdani, Syed S; Chitnis, Chetan E; Altman, John D; ESMERALDA, V S MEYER; Barnwell, John W; Galinski, Mary R (2005) Comparison of IgG reactivities to Plasmodium vivax merozoite invasion antigens in a Brazilian Amazon population. En: Am J Trop Med Hyg. Vol. 73; No. 2; pp. 244 - 255;
dc.source.bibliographicCitationTubo, N J; Pagan, A J; Taylor, J J; Nelson, R W; Linehan, J L; Ertelt, J M; Huseby, E S; Way, S S; Jenkins, M K (2013) Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. En: Cell. Vol. 153; No. 4; pp. 785 - 796; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23663778. Disponible en: 10.1016/j.cell.2013.04.007.
dc.source.bibliographicCitationTyler, Jessica S; Treeck, Moritz; Boothroyd, John C (2011) Focus on the ringleader: the role of AMA1 in apicomplexan invasion and replication. En: Trends in parasitology. Vol. 27; No. 9; pp. 410 - 420;
dc.source.bibliographicCitationUdomsangpetch, Rachanee; Kaneko, Osamu; Chotivanich, Kesinee; Sattabongkot, Jetsumon (2008) Cultivation of Plasmodium vivax. En: Trends in parasitology. Vol. 24; No. 2; pp. 85 - 88;
dc.source.bibliographicCitationUjvari, B; Belov, K (2011) Major Histocompatibility Complex (MHC) markers in conservation biology. En: Int J Mol Sci. Vol. 12; No. 8; pp. 5168 - 5186; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/21954351. Disponible en: 10.3390/ijms12085168.
dc.source.bibliographicCitationUNICEF (2007) Malaria & children: Progress in intervention coverage. Geneva 978-92-806-4184-4;
dc.source.bibliographicCitationUrquiza, Mauricio; Patarroyo, Manuel A; Marı́n, Viviana; Ocampo, Marisol; Suarez, Jorge; Lopez, Ramses; Puentes, Alvaro; Curtidor, Hernando; Garcı́a, Javier; Rodrı́guez, Luis E %J Peptides (2002) Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Vol. 23; No. 12; pp. 2265 - 2277;
dc.source.bibliographicCitationVan Loveren, Henk; Van Amsterdam, J G; Vandebriel, Rob J; Kimman, Tjeerd G; Rümke, Hans C; Steerenberg, Peter S; Vos, Jeff G %J Environmental health perspectives (2001) Vaccine-induced antibody responses as parameters of the influence of endogenous and environmental factors. Vol. 109; No. 8; pp. 757 - 764;
dc.source.bibliographicCitationVanBuskirk, K M; Sevova, E; Adams, J H (2004) Conserved residues in the Plasmodium vivax Duffy-binding protein ligand domain are critical for erythrocyte receptor recognition. En: Proc Natl Acad Sci U S A. Vol. 101; No. 44; pp. 15754 - 15759; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15498870.
dc.source.bibliographicCitationVargas, L E; Parra, C A; Salazar, L M; Guzman, F; Pinto, M; Patarroyo, M E (2003) MHC allele-specific binding of a malaria peptide makes it become promiscuous on fitting a glycine residue into pocket 6. En: Biochem Biophys Res Commun. Vol. 307; No. 1; pp. 148 - 156; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12849994.
dc.source.bibliographicCitationVersiani, F G; Almeida, M E; Melo, G C; Versiani, F O; Orlandi, P P; Mariuba, L A; Soares, L A; Souza, L P; da Silva Balieiro, A A; Monteiro, W M; Costa, F T; del Portillo, H A; Lacerda, M V; Nogueira, P A (2013) High levels of IgG3 anti ICB2-5 in Plasmodium vivax-infected individuals who did not develop symptoms. En: Malar J. Vol. 12; pp. 294 - 294; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23977965. Disponible en: 10.1186/1475-2875-12-294.
dc.source.bibliographicCitationVillard, V; Agak, G W; Frank, G; Jafarshad, A; Servis, C; Nebie, I; Sirima, S B; Felger, I; Arevalo-Herrera, M; Herrera, S; Heitz, F; Backer, V; Druilhe, P; Kajava, A V; Corradin, G (2007) Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif. En: PLoS One. Vol. 2; No. 7; pp. e645 - e645; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/17653272. Disponible en: 10.1371/journal.pone.0000645.
dc.source.bibliographicCitationVillegas-Mendez, A; Inkson, C A; Shaw, T N; Strangward, P; Couper, K N (2016) Long-Lived CD4+IFN-gamma+ T Cells rather than Short-Lived CD4+IFN-gamma+IL-10+ T Cells Initiate Rapid IL-10 Production To Suppress Anamnestic T Cell Responses during Secondary Malaria Infection. En: J Immunol. Vol. 197; No. 8; pp. 3152 - 3164; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27630165. Disponible en: 10.4049/jimmunol.1600968.
dc.source.bibliographicCitationVulliez-Le Normand, Brigitte; Saul, Frederick A; Hoos, Sylviane; Faber, Bart W; Bentley, Graham A (2017) Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. En: PLoS One. Vol. 12; No. 8; pp. e0183198 - e0183198;
dc.source.bibliographicCitationVulliez-Le Normand, Brigitte; Saul, Frederick A; Hoos, Sylviane; Faber, Bart W; Bentley, Graham A %J PLoS One (2017) Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. Vol. 12; No. 8; pp. e0183198 - e0183198;
dc.source.bibliographicCitationWang, Peng; Sidney, John; Kim, Yohan; Sette, Alessandro; Lund, Ole; Nielsen, Morten; Peters, Bjoern (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. En: BMC bioinformatics. Vol. 11; No. 1; pp. 1 - 1;
dc.source.bibliographicCitationWhite, N J; Pukrittayakamee, S; Hien, T T; Faiz, M A; Mokuolu, O A; Dondorp, A M (2014) Malaria. En: Lancet. Vol. 383; No. 9918; pp. 723 - 735; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23953767. Disponible en: 10.1016/S0140-6736(13)60024-0.
dc.source.bibliographicCitationWinckel, C W F (1955) Long latency in Plasmodium vivax infections in a temperate zone. En: Documenta de medicina geographica et tropica. Vol. 7; No. 3; pp. 292 - 298;
dc.source.bibliographicCitationWipasa, J; Elliott, S; Xu, H; Good, M F (2002) Immunity to asexual blood stage malaria and vaccine approaches. En: Immunol Cell Biol. Vol. 80; No. 5; pp. 401 - 414; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/12225376. Disponible en: 10.1046/j.1440-1711.2002.01107.x.
dc.source.bibliographicCitationWykes, M N; Good, M F (2008) What really happens to dendritic cells during malaria?. En: Nat Rev Microbiol. Vol. 6; No. 11; pp. 864 - 870; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18711429. Disponible en: 10.1038/nrmicro1988.
dc.source.bibliographicCitationYamauchi, L M; Coppi, A; Snounou, G; Sinnis, P (2007) Plasmodium sporozoites trickle out of the injection site. En: Cell Microbiol. Vol. 9; No. 5; pp. 1215 - 1222; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/17223931. Disponible en: 10.1111/j.1462-5822.2006.00861.x.
dc.source.bibliographicCitationYap, X Z; Lundie, R J; Beeson, J G; O'Keeffe, M (2019) Dendritic Cell Responses and Function in Malaria. En: Front Immunol. Vol. 10; pp. 357 - 357; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/30886619. Disponible en: 10.3389/fimmu.2019.00357.
dc.source.bibliographicCitationYazdani, S S; Mukherjee, P; Chauhan, V S; Chitnis, C E (2006) Immune responses to asexual blood-stages of malaria parasites. En: Curr Mol Med. Vol. 6; No. 2; pp. 187 - 203; Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16515510.
dc.source.bibliographicCitationYildiz Zeyrek, F; Palacpac, N; Yuksel, F; Yagi, M; Honjo, K; Fujita, Y; Arisue, N; Takeo, S; Tanabe, K; Horii, T; Tsuboi, T; Ishii, K J; Coban, C (2011) Serologic markers in relation to parasite exposure history help to estimate transmission dynamics of Plasmodium vivax. En: PLoS One. Vol. 6; No. 11; pp. e28126 - e28126; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22140521. Disponible en: 10.1371/journal.pone.0028126.
dc.source.bibliographicCitationYu, D; Vinuesa, C G (2010) The elusive identity of T follicular helper cells. En: Trends Immunol. Vol. 31; No. 10; pp. 377 - 383; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/20810318. Disponible en: 10.1016/j.it.2010.07.001.
dc.source.bibliographicCitationYunis, J J; Ossa, H; Salazar, M; Delgado, M B; Deulofeut, R; de la Hoz, A; Bing, D H; Ramos, O; Yunis, E J; Yunis, E J (1994) Major histocompatibility complex class II alleles and haplotypes and blood groups of four Amerindian tribes of northern Colombia. En: Hum Immunol. Vol. 41; No. 4; pp. 248 - 258; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/7883592. Disponible en: 10.1016/0198-8859(94)90043-4.
dc.source.bibliographicCitationYuseff, Maria-Isabel; Pierobon, Paolo; Reversat, Anne; Lennon-Duménil, Ana-Maria %J Nature Reviews Immunology (2013) How B cells capture, process and present antigens: a crucial role for cell polarity. Vol. 13; No. 7; pp. 475 - 486;
dc.source.bibliographicCitationZeeshan, M; Tyagi, R K; Tyagi, K; Alam, M S; Sharma, Y D (2015) Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. En: J Infect Dis. Vol. 211; No. 7; pp. 1111 - 1120; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25312039. Disponible en: 10.1093/infdis/jiu558.
dc.source.bibliographicCitationZevering, Y; Amante, F; Smillie, A; Currier, J; Smith, G; Houghten, R A; Good, M F (1992) High frequency of malaria-specific T cells in non-exposed humans. En: Eur J Immunol. Vol. 22; No. 3; pp. 689 - 696; Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/1547814. Disponible en: 10.1002/eji.1830220311.
dc.source.bibliographicCitationZhang, Lianming; Chen, Yiqing; Wong, Hau-San; Zhou, Shuigeng; Mamitsuka, Hiroshi; Zhu, Shanfeng (2012) TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. En: PLoS One. Vol. 7; No. 2; pp. e30483 - e30483;
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectMalaria
dc.subjectPlasmodium vivax
dc.subjectHLA-DR
dc.subjectPéptidos sintéticos
dc.subjectRespuesta inmune
dc.subjectVacunas
dc.subject.keywordMalaria
dc.subject.keywordPlasmodium vivax
dc.subject.keywordHLA-DR
dc.subject.keywordSynthetic peptides
dc.subject.keywordImmune response
dc.subject.keywordVaccines
dc.titleEvaluación de la respuesta inmune frente a los potenciales candidatos a vacuna contra Plasmodium vivax PvRON2, Pv12, PvDBP y PvMSP1
dc.title.TranslatedTitleEvaluation of the immune response against potential vaccine candidates against Plasmodium vivax PvRON2, Pv12, PvDBP, and PvMSP1
dc.typemasterThesis
dc.type.documentTesis
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis
local.department.reportEscuela de Medicina y Ciencias de la Salud
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
Evaluación-de-la-respuesta-inmune-lopez-santana--sonia-carolina.pdf
Tamaño:
6.93 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Referencias.ris
Tamaño:
161.47 KB
Formato:
Descripción: