Ítem
Acceso Abierto

Caracterización del transcriptoma de la araña polimórfica de color Gasteracantha cacriformis, con enfoque a los genes de pigmento

dc.contributor.advisorPardo Díaz, Geimy Carolina
dc.creatorTorres Quintero, Paula Alexandra
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-08-20T17:52:20Z
dc.date.available2020-08-20T17:52:20Z
dc.date.created2020-07-24
dc.descriptionEl polimorfismo de coloración es un sistema útil para estudiar procesos evolutivos y de desarrollo. No obstante, el estudio de este rasgo se ha sesgado a organismos modelo y la coloración en arácnidos no ha sido bien estudiada. La araña Gasteracantha cancriformis es una especie neotropical que presenta polimorfismo de coloración abdominal con al menos 16 morfos conocidos distribuidos desde el sur de Estados Unidos hasta el norte de Argentina. A la fecha, las bases genéticas que controlan dicho polimorfismo son desconocidas. En este estudio implementé RNAseq para ensamblar el transcriptoma de Gasteracantha, y evaluar expresión génica diferencial asociada a la coloración en hembras de color blanco, amarillo y naranja. A partir de las secuencias de los transcritos hice análisis nucleotídicos y estadísticos para establecer si existe una relación entre coloración y polimorfismos de ADN (SNPs) en el transcriptoma. En general, el perfil de expresión génica fue similar entre los fenotipos amarillo y naranja, quienes difirieron del fenotipo blanco. En los morfos amarillo y naranja dectecté mayor expresión de genes relacionados a astacina y vitelogenina, lo cual sugiere que estas coloraciones en G. cancriformis son producto de carotenoides. A nivel nucleotídico encontré que los transcritos diferencialmente expresados muestran señal asociada a fenotipo de color, pero esto no sucede a nivel de transcriptoma completo. Los datos obtenidos en este estudio proporcionan un recurso genético valioso para futuras investigaciones en arañas neotropicales y constituyen un paso fundamental hacia la identificación de las bases genéticas del polimorfismo de color en estos animales.spa
dc.description.abstractColor polymorphism in animals is a useful system to study evolutionary and developmental processes. However, the study of this trait is biased towards model organisms, while coloration in arachnids is less explored. Gasteracantha cancriformis is a neotropical spider that displays color polymorphism with at least 16 known morphs distributed from the southern United States to northern Argentina but, to date, the genetic basis underlying such polymorphism is unknown. In this study, I used RNAseq to generate a transcriptome assembly for Gasteracantha and assess differential gene expression between three different color morphs: white, yellow and orange. I also explored whether single nucleotide polymorphism (SNPs) across the transcriptome display any association with coloration. Overall, the gene expression profile of the yellow and orange morphs was similar, and they both differed from the white morph. Consistently, at nucleotide level I found that SNPs in the differential expressed transcripts cluster orange and yellow morphs together while the white morph appears more differentiated. Also, I detected higher expression levels of astacin and vitellogenin genes in the yellow and orange morphs, suggesting that these colorations in G. cancriformis are due to carotenoids. The data obtained in this study provide a valuable genetic resource for future studies on neotropical spiders and constitute a step towards the identification of the genetic basis of color polymorphism in these animals.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_28197
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/28197
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationAndo, S., Takeyama, T., & Hatano, M. (1986). Transport associated with serum vitellogenin of carotenoid in chum salmon (Oncorhynchus ketaf. Agricultural and Biological Chemistry, 50(3), 557–563. https://doi.org/10.1080/00021369.1986.10867435spa
dc.source.bibliographicCitationAndrews, S. (2010). FastQC A Quality Control tool for High Throughput Sequence Data. Babraham Bioinformatics. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.source.bibliographicCitationBazyar Lakeh, A. A., Ahmadi, M. R., Safi, S., Ytrestøyl, T., & Bjerkeng, B. (2010). Growth performance, mortality and carotenoid pigmentation of fry offspring as affected by dietary supplementation of astaxanthin to female rainbow trout (Oncorhynchus mykiss) broodstock. Journal of Applied Ichthyology, 26(1), 35–39. https://doi.org/10.1111/j.1439-0426.2009.01349.xspa
dc.source.bibliographicCitationBolger, A., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170spa
dc.source.bibliographicCitationBond, J. S., & Beynon, R. J. (1995). The astacin family of metalloendopeptidases. In Protein Science (Vol. 4, Issue 7, pp. 1247–1261). John Wiley & Sons, Ltd. https://doi.org/10.1002/pro.5560040701spa
dc.source.bibliographicCitationBukowski, T. C., Linn, C. D., & Christenson, T. E. (2001). Copulation and sperm release in Gasteracantha cancriformis (Araneae: Araneidae): Differential male behaviour based on female mating history. Animal Behaviour, 62(5), 887–895. https://doi.org/10.1006/anbe.2001.1834spa
dc.source.bibliographicCitationChamberland, L., Salgado-Roa, F. C., Basco, A., Crastz-Flores, A., Binford, G. J., & Agnarsson, I. (2020). Phylogeography of the widespread Caribbean spiny orb weaver Gasteracantha cancriformis. PeerJ, 8, e8976. https://doi.org/10.7717/peerj.8976spa
dc.source.bibliographicCitationCoddington, J. A., Griswold, C. E., Davila, D. S., Peftaranda, E., & Larcher, S. F. (1991). Designing and Testing Sampling Protocols to Estimate Biodiversity in Tropical Ecosystems. Dioscorides Press.spa
dc.source.bibliographicCitationConesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bio, 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610spa
dc.source.bibliographicCitationCroucher, P. J. P., Brewer, M. S., Winchell, C. J., Oxford, G. S., & Gillespie, R. G. (2013). De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics, 14(1), 1–18. https://doi.org/10.1186/1471-2164-14-862spa
dc.source.bibliographicCitationDanecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., Depristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., Mcvean, G., Durbin, R., & Project, G. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330spa
dc.source.bibliographicCitationForadori, M. J., Tillinghast, E. K., Smith, J. S., Townley, M. A., & Mooney, R. E. (2006). Astacin family metallopeptidases and serine peptidase inhibitors in spider digestive fluid. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 143(3), 257–268. https://doi.org/10.1016/j.cbpb.2005.08.012spa
dc.source.bibliographicCitationGarcía, M., & Lara, M. (2013). The use of carotenoid in aquaculture. Research Journal of Fisheries and Hydrobiology, 8(2), 38–49.spa
dc.source.bibliographicCitationGawryszewski, F. M., & Motta, P. C. (2012). Colouration of the orb-web spider Gasteracantha cancriformis does not increase its foraging success. Ethology Ecology and Evolution, 24(1), 23–38. https://doi.org/10.1080/03949370.2011.582044spa
dc.source.bibliographicCitationGawryszewski, Felipe M., & Motta, P. C. (2008). The silk tuft web decorations of the orb-weaver Gasteracantha cancriformis: Testing the prey attraction and the web advertisement hypotheses. Behaviour, 145(3), 277–295. https://doi.org/10.1163/156853908783402911spa
dc.source.bibliographicCitationGray, S. M., & McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. In Trends in Ecology and Evolution (Vol. 22, Issue 2, pp. 71–79). https://doi.org/10.1016/j.tree.2006.10.005spa
dc.source.bibliographicCitationGross, J. B., & Wilkens, H. (2013). Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele. Heredity, 111(2), 122–130. https://doi.org/10.1038/hdy.2013.26spa
dc.source.bibliographicCitationHaas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., Macmanes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., … Regev, A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols, 8(8), 1494–1512. https://doi.org/10.1038/nprot.2013.084spa
dc.source.bibliographicCitationHoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A., & Crossland, J. P. (2006). A single amino acid mutation contributes to adaptive beach mouse color pattern. Science, 313(5783), 101–104. https://doi.org/10.1126/science.1126121spa
dc.source.bibliographicCitationHsiung, B. K., Justyn, N. M., Blackledge, T. A., & Shawkey, M. D. (2017). Spiders have rich pigmentary and structural colour palettes. Journal of Experimental Biology, 220(11), 1975–1983. https://doi.org/10.1242/jeb.156083spa
dc.source.bibliographicCitationKhalaila, I., Peter-Katalinic, J., Tsang, C., Radcliffe, C. M., Aflalo, E. D., Harvey, D. J., Dwek, R. A., Rudd, P. M., & Sagi, A. (2004). Structural characterization of the N-glycan moiety and site of glycosylation in vitellogenin from the decapod crustacean Cherax quadricarinatus. Glycobiology, 14(9), 767–774. https://doi.org/10.1093/glycob/cwh105spa
dc.source.bibliographicCitationKrishnan, M., Bharathiraja, C., Warrier, S., Krishnan, M., Muthumeenakshi, P., Bharathiraja, C., & Subramoniam, T. (2008). A comparative study on vitellogenin receptor of a lepidopteran insect (Spodoptera litura) and a decapod crustacean (Scylla serrata): Phylogenetic implication and co-evolution with vitellogenins. In J Endocrinol Reprod (Vol. 12). https://www.researchgate.net/publication/241727062spa
dc.source.bibliographicCitationKronforst, M. R., Barsh, G. S., Kopp, A., Mallet, J., Monteiro, A., Mullen, S. P., Protas, M., Rosenblum, E. B., Schneider, C. J., & Hoekstra, H. E. (2012). Unraveling the thread of nature’s tapestry: The genetics of diversity and convergence in animal pigmentation. Pigment Cell and Melanoma Research, 25(4), 411–433. https://doi.org/10.1111/j.1755-148X.2012.01014.xspa
dc.source.bibliographicCitationKronforst, M. R., & Papa, R. (2015). The functional basis of wing patterning in Heliconius butterflies: The molecules behind mimicry. In Genetics (Vol. 200, Issue 1, pp. 1–19). Genetics. https://doi.org/10.1534/genetics.114.172387spa
dc.source.bibliographicCitationLangmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25. https://doi.org/10.1186/gb-2009-10-3-r25spa
dc.source.bibliographicCitationLefort, V., Desper, R., Gascuel, O., & Rosenberg, M. (2015). FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program. Molecular Biology and Evolution, 32(10), 2798–2800. https://doi.org/10.1093/molbev/msv150spa
dc.source.bibliographicCitationLevi, H. (1978). The American orb-weaver genera colphepeira, micrathena and gasteracantha north of Mexico (Araneae, Araneidae). Bulletin of the Museum of Comparative Zoology, 148(9), 417–442. https://doi.org/10.1038/193728a0spa
dc.source.bibliographicCitationLi, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323spa
dc.source.bibliographicCitationLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Project, G., & Subgroup, D. P. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics Applications Note, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352spa
dc.source.bibliographicCitationLi, Z., Zhang, S., & Liu, Q. (2008). Vitellogenin Functions as a Multivalent Pattern Recognition Receptor with an Opsonic Activity. PLoS ONE, 3(4), e1940. https://doi.org/10.1371/journal.pone.0001940spa
dc.source.bibliographicCitationLiang, Y., Bai, D., Yang, G., Wei, D., Guo, M., Yan, S., Wu, X., & Ning, B. (2012). Effect of Astacin on Growth and Color Formation of Juvenile Red-White Ornamental Carp (Cyprinus carpio var. koi L). The Israeli Journal of Aquaculture, 64. http://www.aquaculturehub.orgspa
dc.source.bibliographicCitationLibrary Prep and Array Kit Selector. (n.d.). Retrieved August 3, 2020, from https://www.illumina.com/library-prep-array-kit-selector.htmlspa
dc.source.bibliographicCitationLinnen, C. R., Poh, Y. P., Peterson, B. K., Barrett, R. D. H., Larson, J. G., Jensen, J. D., & Hoekstra, H. E. (2013). Adaptive evolution of multiple traits through multiple mutations at a single gene. Science, 339(6125), 1312–1316. https://doi.org/10.1126/science.1233213spa
dc.source.bibliographicCitationLubzens, E., Lissauer, L., Levavi-Sivan, B., Avarre, J. C., & Sammar, M. (2003). Carotenoid and retinoid transport to fish oocytes and eggs: What is the role of retinol binding protein? In Molecular Aspects of Medicine (Vol. 24, Issue 6, pp. 441–457). Elsevier Ltd. https://doi.org/10.1016/S0098-2997(03)00040-2spa
dc.source.bibliographicCitationMedina, R., Guerra, C., de Almeida, S., Costal, F., Alves, P., Carmo, O., Ferreyra, A., Bonilla, C., Gonzalez, E. E., Kalapothakis, E., & Chávez, C. (2019). Diversity of astacin-like metalloproteases identified by transcriptomic analysis in Peruvian Loxosceles laeta spider venom and in vitro activity characterization. Biochimie, 167, 81–92. https://doi.org/10.1016/j.biochi.2019.08.017spa
dc.source.bibliographicCitationMuma, M. H. (1971). Biological and Behavioral Notes on Gasteracantha cancriformis (Arachnida: Araneidae). In The Florida Entomologist (Vol. 54, Issue 4, p. 345). https://doi.org/10.2307/3493600spa
dc.source.bibliographicCitationMuma, M. H., & Stone, K. J. (1971). Predation of Gasteracantha cancriformis (Arachnidae: Araneidae) Eggs in Florida Citrus Groves by Phalacrotophora epeirae (Insecta: Phoridae) and Arachnophaga ferruginea (Insecta: Eupelmidae). In The Florida Entomologist (Vol. 54, Issue 4, p. 305). https://doi.org/10.2307/3493590spa
dc.source.bibliographicCitationNachman, M. W., Hoekstra, H. E., & D’Agostino, S. L. (2003). The genetic basis of adaptive melanism in pocket mice. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5268–5273. https://doi.org/10.1073/pnas.0431157100spa
dc.source.bibliographicCitationOrteu, A., & Jiggins, C. D. (2020). The genomics of coloration provides insights into adaptive evolution. Nature Reviews Genetics. https://doi.org/10.1038/s41576-020-0234-zspa
dc.source.bibliographicCitationOxford, G. S., & Gillespie, R. G. (1998). Evolution and Ecology of Spider Coloration. Annual Review of Entomology, 43(1), 619–643. https://doi.org/10.1146/annurev.ento.43.1.619spa
dc.source.bibliographicCitationProsdocimi, F., Bittencourt, D., da Silva, F. R., Kirst, M., Motta, P. C., & Rech, E. L. (2011). Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution. PLoS ONE, 6(6), e21634. https://doi.org/10.1371/journal.pone.0021634spa
dc.source.bibliographicCitationPurcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet, 81, 559–575. https://doi.org/10.1086/519795spa
dc.source.bibliographicCitationReed, R. D., Papa, R., Martin, A., Hines, H. M., Counterman, B. A., Pardo-Diaz, C., Jiggins, C. D., Chamberlain, N. L., Kronforst, M. R., Chen, R., Halder, G., Nijhout, H. F., & McMillan, W. O. (2011). Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 333(6046), 1137–1141. https://doi.org/10.1126/science.1208227spa
dc.source.bibliographicCitationRobinson, M. D., Mccarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics Applications Note, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616spa
dc.source.bibliographicCitationLourenĉo, A. P., Martins, J. R., Bitondi, M. M. G., & Simões, Z. L. P. (2009). Trade-off between immune stimulation and expression of storage protein genes. Archives of Insect Biochemistry and Physiology, 71(2), 70–87. https://doi.org/10.1002/arch.20301spa
dc.source.bibliographicCitationSalgado-Roa, F. C., Pardo-Diaz, C., Lasso, E., Arias, C. F., Solferini, V. N., & Salazar, C. (2018). Gene flow and Andean uplift shape the diversification of Gasteracantha cancriformis (Araneae: Araneidae) in Northern South America. Ecology and Evolution, 8(14), 7131–7142. https://doi.org/10.1002/ece3.4237spa
dc.source.bibliographicCitationStreelman, J. T., Peichel, C. L., & Parichy, D. M. (2007). Developmental Genetics of Adaptation in Fishes: The Case for Novelty. Annual Review of Ecology, Evolution, and Systematics, 38(1), 655–681. https://doi.org/10.1146/annurev.ecolsys.38.091206.095537spa
dc.source.bibliographicCitationVieira, F. G., Lassalle, F., Korneliussen, T. S., & Fumagalli, M. (2016). Improving the estimation of genetic distances from Next-Generation Sequencing data. Biological Journal of the Linnean Society, 117(1), 139–149. https://doi.org/10.1111/bij.12511spa
dc.source.bibliographicCitationWalter, A., Bechsgaard, J., Scavenius, C., Dyrlund, T. S., Sanggaard, K. W., Enghild, J. J., & Bilde, T. (2017). Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genomics, 18(1), 600. https://doi.org/10.1186/s12864-017-3987-9spa
dc.source.bibliographicCitationWhite, T. E., & Kemp, D. J. (2015). Technicolour deceit: A sensory basis for the study of colour-based lures. Animal Behaviour, 105, 231–243. https://doi.org/10.1016/j.anbehav.2015.04.025spa
dc.source.bibliographicCitationWittkopp, P. J., Smith-Winberry, G., Arnold, L. L., Thompson, E. M., Cooley, A. M., Yuan, D. C., Song, Q., & McAllister, B. F. (2011). Local adaptation for body color in Drosophila americana. Heredity, 106(4), 592–602. https://doi.org/10.1038/hdy.2010.90spa
dc.source.bibliographicCitationWittkopp, Patricia J., & Beldade, P. (2009). Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Seminars in Cell and Developmental Biology, 20(1), 65–71. https://doi.org/10.1016/j.semcdb.2008.10.002spa
dc.source.bibliographicCitationXing, L., Sun, L., Liu, S., Wan, Z., Li, X., Miao, T., Zhang, L., Bai, Y., & Yang, H. (2018). Growth, histology, ultrastructure and expression of MITF and astacin in the pigmentation stages of green, white and purple morphs of the sea cucumber, Apostichopus japonicus. Aquaculture Research, 49(1), 177–187. https://doi.org/10.1111/are.13446spa
dc.source.bibliographicCitationYoshida, M. (1989). Predatory behavior of gasteracantha mammosa C. koch (araneae: Araneidae). Acta Arachnologica, 37(2), 57–67. https://doi.org/10.2476/asjaa.37.57spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectGasteracantha cancriformisspa
dc.subjectTranscriptomaspa
dc.subjectExpresión diferencial de genesspa
dc.subjectPolimorfismo de colorspa
dc.subject.ddcInvertebradosspa
dc.subject.ddcEvolución & genéticaspa
dc.subject.keywordGasteracantha cancriformiseng
dc.subject.keywordGasteracantha cancriformisspa
dc.subject.keywordTranscriptomespa
dc.subject.keywordDifferential gene expressionspa
dc.subject.keywordColor polymorphismspa
dc.titleCaracterización del transcriptoma de la araña polimórfica de color Gasteracantha cacriformis, con enfoque a los genes de pigmentospa
dc.title.TranslatedTitleCharacterization of the transcriptome of color-polymorphic spider Gasteracantha cancriformis with special reference to pigment genes.eng
dc.typebachelorThesiseng
dc.type.documentMonografíaspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
TorresQuintero-PaulaAlexandra-2020.pdf
Tamaño:
1.27 MB
Formato:
Adobe Portable Document Format
Descripción: