Ítem
Acceso Abierto

Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.

dc.contributor.advisorRamírez, Juan David
dc.contributor.advisorHernandez, Diana Carolina
dc.creatorMartínez Medina, David Fernando
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-08-20T22:39:00Z
dc.date.available2020-08-20T22:39:00Z
dc.date.created2020-03-07
dc.descriptionLa identificación de las especies de vectores y su infección natural mediante RT- PCR (reacción en cadena de la polimerasa con transcriptasa inversa) son datos importantes para el control de la transmisión de las arbovirosis, lo cual se lleva a cabo principalmente en países como México y Brasil. Sin embargo, esta información para el oriente de Colombia es limitada. Por lo cual, el siguiente estudio tuvo como objetivo la identificación (morfológica y molecular) de las especies del genero Aedes presentes en tres municipios (Saravena, Arauquita y Tame) del departamento de Arauca, Colombia. Así como, la detección de la infección por arbovirus (Dengue, Chikungunya, Zika y Mayaro), mediante la amplificación del material genético por RT-PCR. Los resultados muestran la coexistencia de Ae. aegypti y Ae. albopictus en la zona urbana de los municipios de Saravena y Arauquita, donde los individuos se encontraron infectados por Dengue (DENV-1) y Chikungunya (CHIKV). El arbovirus con mayor frecuencia es el DENV-1 con una tasa de infección de 24,3% (27/111) para Ae. aegypti y 39,7% (23/58) para Ae. albopictus. Seguido por CHIKV con una tasa de infección de 1,8% (2/111) para Ae. aegypti y 6,9% (4/58) para Ae. albopictus. Se obtuvo un 4.5% (5/111) de infección mixta por DENV-1 y CHIKV en la especie Ae. aegypti y no se detectó infección por Zika (ZIKV) y Mayaro (MAYV). Finalmente, el presente estudio propone el procesamiento individual de los insectos y no por pools para la detección de los arbovirus dado que de esta manera se obtiene una tasa de infección más acertada y se logra evidenciar las infecciones mixtas.spa
dc.description.abstractThe identification of the vector species and their natural infection are important data for the control of the transmission of arboviral infections. However, this information for the eastern part of Colombia is limited. Therefore, the following study aimed to identify (morphological and molecular) the species of the genus Aedes present in three municipalities (Saravena, Arauquita and Tame) in the department of Arauca, Colombia. As well as the detection of arboviral infection (Dengue, Chikungunya, Zika and Mayaro), by amplifying the genetic 3 material by RT-PCR (reverse transcriptase polymerase chain reaction). The results showed the coexistence of Ae. aegypti and Ae. albopictus in the urban area of the municipalities of Saravena and Arauquita, where the individuals were found infected by Dengue (DENV-1) and Chikungunya (CHIKV). The most frequently arbovirus was DENV-1 with an infection rate of 24.3% (27/111) for Ae. aegypti and 39.7% (23/58) for Ae. albopictus. Followed by CHIKV with an infection rate of 1.8% (2/111) for Ae. aegypti and 6.9% (4/58) for Ae. albopictus. A mixed infection of DENV-1 and CHIKV was obtained in 4.5% (5/111) in the species Ae. aegypti and Zika (ZIKV) and Mayaro (MAYV) infection were not detected. Finally, the present study proposes the individual processing of insects for the detection of arboviruses since in this way a more accurate infection rate is obtained and the mixed infections are evidenced.spa
dc.description.sponsorshipDirección de Investigación e Innovación de la Universidad del Rosariospa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_28211
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/28211
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.source.bibliographicCitationAtencia, M. C., Pérez, M. D. J., Caldera, S. M., Jaramillo, M. C., & Bejarano, E. E. (2018). Genetic variability of Aedes aegypti in the department of Sucre, Colombia, by analysis of the nucleotide sequence of the mitochondrial ND4 gene. Biomédica, 38(2), 267-276.spa
dc.source.bibliographicCitationAzevedo, R. S., Silva, E. V., Carvalho, V. L., Rodrigues, S. G., Neto, J. P. N., Monteiro, H. A., ... & Vasconcelos, P. F. (2009). Mayaro fever virus, Brazilian amazon. Emerging infectious diseases, 15(11), 1830.spa
dc.source.bibliographicCitationBarbosa, R. M. R., Melo-Santos, M. A. V. D., Silveira Jr, J. C., Silva-Filha, M. H. N. L., Souza, W. V., Oliveira, C. M. F. D., ... & Nakazawa, M. M. (2020). Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Memórias do Instituto Oswaldo Cruz, 115.spa
dc.source.bibliographicCitationBarmak, D. H., Dorso, C. O., & Otero, M. (2016). Modelling dengue epidemic spreading with human mobility. Physica A: Statistical Mechanics and its Applications, 447, 129-140.spa
dc.source.bibliographicCitationBeaty, B. J., Black, W. C., Eisen, L., Flores, A. E., García-Rejón, J. E., Loroño-Pino, M., & Saavedra-Rodriguez, K. (2016). The intensifying storm: Domestication of Aedes aegypti, urbanization of arboviruses, and emerging insecticide resistance. In Global Health Im-pacts of Vector-Borne Diseases: Workshop Summary, National Academies Press.spa
dc.source.bibliographicCitationBoletín Epidemiológico Semanal (BES) Semana Epidemiológica 22, 24 al 30 de mayo (2020). Obtenido de: https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2020_Bolet%C3%ADn_epidemiológico_semana%2022.pd fspa
dc.source.bibliographicCitationBracco, J. E., Capurro, M. L., Lourenço-de-Oliveira, R., & Sallum, M. A. M. (2007). Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Memorias do Instituto Oswaldo Cruz, 102(5), 573-580.spa
dc.source.bibliographicCitationCaldera, S. M., Jaramillo, M. C., Cochero, S., Pérez Doria, A., & Bejarano, E. E. (2019). Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue. Revista.spa
dc.source.bibliographicCitationCamacho-Gómez, M., & Zuleta, L. P. (2019). Primer reporte de Aedes (Stegomyia) albopictus (Skuse) en la Orinoquía colombiana. Biomédica, 39(4). Camacho-Gómez & Zuleta, 2019spa
dc.source.bibliographicCitationCalle-Tobón, A., Pérez-Pérez, J., Rojo, R., Rojas-Montoya, W., Triana-Chavez, O., RúaUribe, G., & Gómez-Palacio, A. (2020). Surveillance of Zika virus in field-caught Aedes aegypti and Aedes albopictus suggests important role of male mosquitoes in viral populations maintenance in Medellín, Colombia. Infection, Genetics and Evolution, 104434.spa
dc.source.bibliographicCitationCaron, M., Paupy, C., Grard, G., Becquart, P., Mombo, I., Nso, B. B. B., ... & Leroy, E. M. (2012). Recent introduction and rapid dissemination of Chikungunya virus and Dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clinical infectious diseases, 55(6), e45-e53.spa
dc.source.bibliographicCitationCarvajal, J. J., Honorio, N. A., Díaz, S. P., Ruiz, E. R., Asprilla, J., Ardila, S., & Parra-Henao, G. (2016). Detección de Aedes albopictus (Skuse)(Diptera: Culicidae) en el municipio de Istmina, Chocó, Colombia. Biomédica, 36(3), 438-446spa
dc.source.bibliographicCitationCheong, Y. L., Leitão, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spatial and spatio-temporal epidemiology, 10, 75-84.spa
dc.source.bibliographicCitationClaeys, C., Robles, C., Bertaudiere-Montes, V., Deschamps-Cottin, M., Megnifo, H. T., Pelagie-Moutenda, R., ... & Bravet, P. (2016). Socio-ecological factors contributing to the exposure of human populations to mosquito bites that transmit dengue fever, chikungunya and zika viruses: a comparison between mainland France and the French Antilles. Environnement, Risques & Santé, 15(4), 318-325.spa
dc.source.bibliographicCitationCook, R. J. (2005). Kappa. Encyclopedia of biostatistics, 4.spa
dc.source.bibliographicCitationCova-Garcia, P., Sutil, E., & Rausseo, J. A. (1966). Mosquitos (Culicinos) de Venezuela: Tomo I and Tomo II. Ministerio de Sanidad y Asistencia Social, Caracas.spa
dc.source.bibliographicCitationde la Cruz, C. H., Martinez, S. L. A., Failoc-Rojas, V. E., & Aguilar-Gamboa, F. R. (2019). Momento de considerar otras arbovirosis luego del virus mayaro. Revista Cubana de Medicina General Integral, 35(2).spa
dc.source.bibliographicCitationDuong, V., Lambrechts, L., Paul, R. E., Ly, S., Lay, R. S., Long, K. C., ... & Buchy, P. (2015). Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences, 112(47), 14688-14693.spa
dc.source.bibliographicCitationEiras, A. E., Pires, S. F., Staunton, K. M., Paixão, K. S., Resende, M. C., Silva, H. A., ... & Ritchie, S. A. (2018). A high-risk Zika and dengue transmission hub: virus detections in mosquitoes at a Brazilian university campus. Parasites & vectors, 11(1), 359.spa
dc.source.bibliographicCitationEspinal, M. A., Andrus, J. K., Jauregui, B., Hull Waterman, S., Morens, D. M., Santos, J. I., ... & Olson, D. (2019). Arbovirosis emergentes y reemergentes transmitidas por Aedes en la Región de las Américas: implicaciones en materia de políticas de salud. Rev Panam Salud Publica; 43, may 2019.spa
dc.source.bibliographicCitationFaye, O., Diallo, D., Diallo, M., Weidmann, M., & Sall, A. A. (2013). Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J, 10, 311. doi:10.1186/1743-422x-10-311spa
dc.source.bibliographicCitationFailloux, A. B., Vazeille, M., & Rodhain, F. (2002). Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. Journal of Molecular Evolution, 55(6), 653-663.spa
dc.source.bibliographicCitationFerreira-de-Brito, A., Ribeiro, I. P., Miranda, R. M. D., Fernandes, R. S., Campos, S. S., Silva, K. A. B. D., ... & Lourenço-de-Oliveira, R. (2016). First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Memórias do Instituto Oswaldo Cruz, 111(10), 655-658.spa
dc.source.bibliographicCitationFreitas, R. M. D. (2010). A review on the ecological determinants of Aedes aegypti (Diptera: Culicidae) vectorial capacity.spa
dc.source.bibliographicCitationForattini, O. P. (1965). Entomologia médica: culicini: culex, Aedes e Psorophora (Vol. 2). Faculdade de Higiene e Saúde Pública, Depto. de Parasitología.spa
dc.source.bibliographicCitationGarcia-Rejon, J. E., Ulloa-Garcia, A., Cigarroa-Toledo, N., Pech-May, A., MachainWilliams, C., Cetina-Trejo, R. C., ... & Baak-Baak, C. M. (2018). Study of Aedes aegypti population with emphasis on the gonotrophic cycle length and identification of arboviruses: implications for vector management in cemeteries. Revista do Instituto de Medicina Tropical de São Paulo, 60.spa
dc.source.bibliographicCitationGómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142spa
dc.source.bibliographicCitationGu, W., Lampman, R., & Novak, R. J. (2004). Assessment of arbovirus vector infection rates using variable size pooling. Medical and veterinary entomology, 18(2), 200-204spa
dc.source.bibliographicCitationGutiérrez‐Bugallo, G., Rodríguez‐Roche, R., Díaz, G., Pérez, M., Mendizábal, M. E., Peraza, I., ... & Guzmán, M. G. (2018). Spatio‐temporal distribution of vertically transmitted dengue viruses by Aedes aegypti (Diptera: Culicidae) from Arroyo Naranjo, Havana, Cuba. Tropical Medicine & International Health, 23(12), 1342-1349.spa
dc.source.bibliographicCitationGómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142.spa
dc.source.bibliographicCitationHall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., Yen, S., Strydom, H., ... & Peacey, M. (2014). Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. Journal of virological methods, 195, 194-204.spa
dc.source.bibliographicCitationHiga, Y., Yen, N. T., Kawada, H., Son, T. H., Hoa, N. T., & Takagi, M. (2010). Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. Journal of the American Mosquito Control Association, 26(1), 1-9.spa
dc.source.bibliographicCitationHoyos-López, R., Atencia-Pineda, M. C., & Gallego-Gómez, J. C. (2019). Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba,spa
dc.source.bibliographicCitationHoyos-López, R., Suaza-Vasco, J., Rúa-Uribe, G., Uribe, S., & Gallego-Gómez, J. C. (2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Memórias do Instituto Oswaldo Cruz, 111(10), 625-634.spa
dc.source.bibliographicCitationJaimes-Duenez, J., Arboleda, S., Triana-Chávez, O., & Gomez-Palacio, A. (2015). Spatiotemporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis, 9(4), e0003553.spa
dc.source.bibliographicCitationJoyce, A. L., Torres, M. M., Torres, R., & Moreno, M. (2018). Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika. Parasites & vectors, 11(1), 637.spa
dc.source.bibliographicCitationKraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., ... & Hendrickx, G. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife, 4, e08347spa
dc.source.bibliographicCitationKraemer, M. U., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., ... & Shirude, S. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature microbiology, 4(5), 854.spa
dc.source.bibliographicCitationLanciotti, R. S., Kosoy, O. L., Laven, J. J., Panella, A. J., Velez, J. O., Lambert, A. J., & Campbell, G. L. (2007). Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis, 13(5), 764-767. doi:10.3201/eid1305.070015spa
dc.source.bibliographicCitationLee, Y., Schmidt, H., Collier, T. C., Conner, W. R., Hanemaaijer, M. J., Slatkin, M., ... & Mulligan, F. S. (2019). Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC genomics, 20(1), 1-10.spa
dc.source.bibliographicCitationLi, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., ... & Chen, X. G. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis, 8(11), e3301.spa
dc.source.bibliographicCitationLiang, L., Jia, P., Tan, X., Chen, J., & Chen, X. (2019). Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus. PLoS neglected tropical diseases, 13(7), e0007528.spa
dc.source.bibliographicCitationLong, K. C., Ziegler, S. A., Thangamani, S., Hausser, N. L., Kochel, T. J., Higgs, S., & Tesh, R. B. (2011). Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg, 85(4), 750-757. doi:10.4269/ajtmh.2011.11-0359.spa
dc.source.bibliographicCitationLorenz, C., Ribeiro, A. F., & Chiaravalloti-Neto, F. (2019). Mayaro virus distribution in South America. Acta tropica, 198, 105093.spa
dc.source.bibliographicCitationLounibos, L. P., & Kramer, L. D. (2016). Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. The Journal of infectious diseases, 214(suppl_5), S453-S458.spa
dc.source.bibliographicCitationLourenço-de-Oliveira, R., Vazeille, M., Filippis, A. M. B. D., & Failloux, A. B. (2002). Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil. Memorias do Instituto Oswaldo Cruz, 97(3), 437-439.spa
dc.source.bibliographicCitationLozano-Fuentes, S., Hayden, M. H., Welsh-Rodriguez, C., Ochoa-Martinez, C., TapiaSantos, B., Kobylinski, K. C., . . . Eisen, L. (2012). The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg, 87(5), 902-909. doi:10.4269/ajtmh.2012.12-0244.spa
dc.source.bibliographicCitationMaia, L. M. S., Bezerra, M. C. F., Costa, M. C. S., Souza, E. M., Oliveira, M. E. B., Ribeiro, A. L. M., ... & Slhessarenko, R. D. (2019). Natural vertical infection by dengue virus serotype 4, Zika virus and Mayaro virus in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus. Medical and veterinary entomology, 33(3), 437-442.spa
dc.source.bibliographicCitationMassaro, E., Kondor, D., & Ratti, C. (2019). Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Scientific reports, 9(1), 1-13spa
dc.source.bibliographicCitationMartínez-Vega, R. A., Danis-Lozano, R., Díaz-Quijano, F. A., Velasco-Hernández, J., Santos-Luna, R., Román-Pérez, S., ... & Ramos-Castañeda, J. (2015). Peridomestic infection as a determining factor of dengue transmission. PLoS neglected tropical diseases, 9(12), e0004296.spa
dc.source.bibliographicCitationPatsoula, E., Samanidou-Voyadjoglou, A., Spanakos, G., Kremastinou, J., Nasioulas, G., & Vakalis, N. C. (2006). Molecular and morphological characterization of Aedes albopictus in northwestern Greece and differentiation from Aedes cretinus and Aedes aegypti. Journal of medical entomology, 43(1), 40-54.spa
dc.source.bibliographicCitationPech-May, A., Moo-Llanes, D. A., Puerto-Avila, M. B., Casas, M., Danis-Lozano, R., Ponce, G., ... & González, C. (2016). Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Tropica, 157, 30-41.spa
dc.source.bibliographicCitationPereira, T. N., Carvalho, F. D., De Mendonça, S. F., Rocha, M. N., & Moreira, L. A. (2020). Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLOS Neglected Tropical Diseases, 14(4), e0007518.spa
dc.source.bibliographicCitationOrtiz-Canamejoy, K., & Villota, A. C. (2018). Primera evidencia de Aedes albopictus en el departamento del Putumayo, Colombia. MedUNAB, 21(1), 10-15.spa
dc.source.bibliographicCitationRahayu, A., Saraswati, U., Supriyati, E., Kumalawati, D. A., Hermantara, R., Rovik, A., ... & Wardana, D. S. (2019). Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. International journal of environmental research and public health, 16(10), 1742.spa
dc.source.bibliographicCitationRamasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS neglected tropical diseases, 5(11), e1369.spa
dc.source.bibliographicCitationRoehrig, J. T., & Lanciotti, R. S. (2009). Arboviruses. In Clinical Virology Manual, Fourth Edition (pp. 387-407). American Society of Microbiology.spa
dc.source.bibliographicCitationSalehi Z, Najafi M (2014) RNA preservation and stabilizaton. Biochem Physiol: Open Access 3: 1-4.spa
dc.source.bibliographicCitationSantiago, G. A., Vergne, E., Quiles, Y., Cosme, J., Vazquez, J., Medina, J. F., . . . MunozJordan, J. L. (2013). Analytical and clinical performance of the CDC real time RT-PCR 27 assay for detection and typing of dengue virus. PLoS Negl Trop Dis, 7(7), e2311. doi:10.1371/journal.pntd.0002311spa
dc.source.bibliographicCitationSarfraz, M. S., Tripathi, N. K., Tipdecho, T., Thongbu, T., Kerdthong, P., & Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC public health, 12(1), 853.spa
dc.source.bibliographicCitationShope, R. E., & Meegan, J. M. (1997). Arboviruses. In Viral Infections of Humans (pp. 151- 183). Springer, Boston, MA.p.151.spa
dc.source.bibliographicCitationTurell, M. J., Beaman, J. R., & Tammariello, R. F. (1992). Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. Journal of medical entomology, 29(1), 49-53.spa
dc.source.bibliographicCitationVelandia-Romero, M. L., Olano, V. A., Coronel-Ruiz, C., Cabezas, L., Calderón-Peláez, M. A., Castellanos, J. E., & Matiz, M. I. (2017). Detección del virus del dengue en larvas y pupas de Aedes aegypti recolectadas en áreas rurales del municipio de Anapoima, Cundinamarca, Colombia. Biomédica, 37, 193-200.spa
dc.source.bibliographicCitationVega-Rúa, A., Zouache, K., Girod, R., Failloux, A. B., & Lourenço-de-Oliveira, R. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of virology, 88(11), 6294-6306.spa
dc.source.bibliographicCitationVillar, L. A., Rojas, D. P., Besada-Lombana, S., & Sarti, E. (2015). Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS neglected tropical diseases, 9(3).spa
dc.source.bibliographicCitationWalter, SD, Hildreth, SW y Beaty, BJ (1980). Estimación de las tasas de infección en poblaciones de organismos utilizando grupos de tamaño variable. American Journal of Epidemiology , 112 (1), 124-128.spa
dc.source.bibliographicCitationWeaver, S. C., & Barrett, A. D. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology, 2(10), 789spa
dc.source.bibliographicCitationWhiteman, A., Gomez, C., Rovira, J., Chen, G., McMillan, W. O., & Loaiza, J. (2019). Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth, 16(2), 210-221.spa
dc.source.bibliographicCitationWorld Health Organization. (2020). Real-time RT-PCR (TaqManTM) protocol – Mayaro virus (MAYV). Obtenido de: https://www.paho.org/en/node/60626spa
dc.source.bibliographicCitationZamora-Delgado, J., Castaño, J. C., & Hoyos-López, R. (2015). DNA barcode sequences used to identify Aedes (Stegomyia) albopictus (Diptera: Culicidae) in La Tebaida (Quindío, Colombia). Revista Colombiana de Entomología, 41(2), 212-217spa
dc.source.bibliographicCitationZhu, G., Liu, T., Xiao, J., Zhang, B., Song, T., Zhang, Y., ... & Hao, Y. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of the Total Environment, 651, 969-978spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectArbovirusspa
dc.subjectDenguespa
dc.subjectZikaspa
dc.subjectChikungunyaspa
dc.subjectMayarospa
dc.subjectAedesspa
dc.subject.ddcOtros invertebradosspa
dc.subject.ddcIncidencia & prevención de la enfermedadspa
dc.subject.keywordArbovirusspa
dc.subject.keywordDenguespa
dc.subject.keywordZikaspa
dc.subject.keywordChikungunyaspa
dc.subject.keywordMayarospa
dc.subject.keywordAedesspa
dc.titleIdentificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.spa
dc.title.TranslatedTitleIdentification of species of the genus Aedes (Diptera; Culicidae) and detection of infection by Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulating in three municipalities of Arauca, Colombia.eng
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
MartinezMedina-DavidFernando-2020.pdf
Tamaño:
559.33 KB
Formato:
Adobe Portable Document Format
Descripción: