Ítem
Acceso Abierto

Exploring longitudinal and cross-sectional studies associating physical activity with intestinal microbiota changes

dc.contributor.advisorRamos Caballero, Diana Marcela
dc.contributor.advisorRivera Amezquita, Laura Victoria
dc.creatorAya Aldana, Jeimmy Viviana
dc.creator.degreeMagíster en actividad física y saludspa
dc.creator.degreetypePart timespa
dc.date.accessioned2020-08-11T13:56:19Z
dc.date.available2020-08-11T13:56:19Z
dc.date.created2020-08-06
dc.descriptionLa revisión actual tuvo como objetivo dilucidar los efectos moduladores de la actividad física y las actividades deportivas en el microbioma gastrointestinal. Se analizaron veinte estudios transversales y longitudinales, utilizando medidas metagenómicas y diversas ómicas. Recientemente se han publicado estudios sobre la microbiota intestinal y el ejercicio, que examinan principalmente los efectos de los programas de entrenamiento en sujetos que anteriormente no realizaban actividad física regular. Estos estudios sugieren que el ejercicio no causa cambios estructurales en la microbiota, y que la diversidad de especies permanece sin cambios después de 6 semanas o menos de participar en un programa de ejercicio. Se ha informado que la adaptación del cosistema intestinal al ejercicio en sujetos sedentarios responde al fenotipo del hospedador (índice de masa corporal y edad). Los resultados sugieren que los estudios transversales pueden proporcionar información sobre las diferencias entre los atletas altamente adaptados con estilos de vida activos y los adultos sedentarios, particularmente en la abundancia y función de la microbiota intestinal. Curiosamente, la comparación de adultos sanos con diferentes niveles de aptitud cardiorrespiratoria ha revelado resultados similares, lo que indica una falta de diferencias importantes en la abundancia de grupos taxonómicos y la riqueza de especies. Los enfoques metabolómicos, metagenómicos y transcriptómicos permiten identificar posibles mecanismos entre la microbiota intestinal y la fisiología del huésped en el ejercicio físico, principalmente a través de grupos funcionales de bacterias como Veillonella, Prevotella, Akkermansia y archaeon Methanobrevibacter. La mayor parte de la investigación revisada se centró en el entrenamiento de resistencia. Por lo tanto, los efectos potenciales del entrenamiento de resistencia y el entrenamiento de alta intensidad en el microbioma gastrointestinal deben explorarse en estudios futuros.spa
dc.description.abstractThe current review aimed to elucidate the modulatory effects of physical activity and sports activities on the gastrointestinal microbiome. Twenty cross-sectional and longitudinal studies were analyzed, using metagenomic and various omics measures. Studies across gut microbiota and exercise have recently been published, mainly examining the effects of training programs in subjects who did not previously perform regular physical activity. These studies suggest that exercise does not cause structural changes in the microbiota, with species diversity remaining unchanged after 6 weeks or less of engaging in an exercise program. Gut cosystem adaptation to exercise in sedentary subjects has been reported to respond to the host phenotype (body mass index and age). Results suggests that cross-sectional studies can provide insights into differences between highly adapted athletes with active lifestyles and sedentary adults, particularly in the abundance and function of gut microbiota. Interestingly, comparing healthy adults with different levels of cardiorespiratory fitness has revealed similar results, indicating a lack of important differences in the abundance of taxonomic groups and species richness. Metabolomic, metagenomic and transcriptomic approaches allow the identification of possible mechanisms between the intestinal microbiota and the host physiology in physical exercise, mainly through functional groups of bacteria such as Veillonella, Prevotella, Akkermansia and archaeon Methanobrevibacter. Most of the reviewed research focused on endurance training. Thus, the potential effects of resistance training and high-intensity training on the gastrointestinal microbiome need to be explored in future studies.spa
dc.description.embargo2020-08-11 09:05:01: Script de automatizacion de embargos. Se restringe por dos años por solicitud especifica del programa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_26549
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/26549
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programMaestría en Actividad Física y Saludspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.spa
dc.source.bibliographicCitationBerg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, Souza RSC de, van Overbeek L, Singh BK, Wagner M, Walsh A, Sessitsch A, Schloter M. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020 Jun 30;8(1):103spa
dc.source.bibliographicCitationGomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018 04;9(4):308–25.spa
dc.source.bibliographicCitationChatterjee A, Duerkop BA. Beyond Bacteria: Bacteriophage-Eukaryotic Host Interactions Reveal Emerging Paradigms of Health and Disease. Front Microbiol [Internet]. 2018 [cited 2020 Jun 3];9. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.01394/fullspa
dc.source.bibliographicCitationTremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012 Sep 13;489(7415):242–9.spa
dc.source.bibliographicCitationHolmes E, Li JV, Marchesi JR, Nicholson JK. Gut Microbiota Composition and Activity in Relation to Host Metabolic Phenotype and Disease Risk. Cell Metab. 2012 Nov 7;16(5):559–64.spa
dc.source.bibliographicCitationGevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C. The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome. PLoS Biol [Internet]. 2012 Aug 14 [cited 2020 Feb 6];10(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419203/spa
dc.source.bibliographicCitationDieterich W, Schink M, Zopf Y. Microbiota in the Gastrointestinal Tract. Med Sci [Internet]. 2018 Dec 14 [cited 2020 Jul 30];6(4). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6313343/spa
dc.source.bibliographicCitationHo H-E, Bunyavanich S. Role of the Microbiome in Food Allergy. Curr Allergy Asthma Rep. 2018 05;18(4):27.spa
dc.source.bibliographicCitationMicrobiome - Latest research and news | Nature [Internet]. [cited 2020 Jul 30]. Available from: https://www-nature-com.ez.urosario.edu.co/subjects/microbiomespa
dc.source.bibliographicCitationLederberg J, Mccray AT. `Ome Sweet `Omics--A Genealogical Treasury of Words. The Scientist. 2001 Apr 2;15(7):8–8.spa
dc.source.bibliographicCitationMicrobiome - an overview | ScienceDirect Topics [Internet]. [cited 2020 Jul 30]. Available from: https://www-sciencedirect-com.ez.urosario.edu.co/topics/immunology-and-microbiology/microbiomespa
dc.source.bibliographicCitationWeiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017 Mar 3;5(1):27.spa
dc.source.bibliographicCitationGoodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE. Conducting a Microbiome Study. Cell. 2014 Jul 17;158(2):250–62.spa
dc.source.bibliographicCitationWillis AD. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol [Internet]. 2019 [cited 2020 Apr 30];10. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2019.02407/fullspa
dc.source.bibliographicCitationZeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunology. 2017.spa
dc.source.bibliographicCitationLi M, Wang M, Donovan SM. Early development of the gut microbiome and immune-mediated childhood disorders. Semin Reprod Med. 2014;spa
dc.source.bibliographicCitationRinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019 Jan 10;7(1).spa
dc.source.bibliographicCitationWarburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017 Sep;32(5):541–56.spa
dc.source.bibliographicCitationPlovier H, Cani PD. Microbial Impact on Host Metabolism: Opportunities for Novel Treatments of Nutritional Disorders? Microbiol Spectr. 2017;5(3).spa
dc.source.bibliographicCitationVerhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients. 2019 Jul 11;11(7).spa
dc.source.bibliographicCitationNicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012 Jun 8;336(6086):1262–7.spa
dc.source.bibliographicCitationMach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J Sport Health Sci. 2017 Jun;6(2):179–97.spa
dc.source.bibliographicCitationCodella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver. 2018 Apr;50(4):331–41.spa
dc.source.bibliographicCitationMailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exerc Sport Sci Rev. 2019;47(2):75–85.spa
dc.source.bibliographicCitationCerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol. 2016;7:51.spa
dc.source.bibliographicCitationRiebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, Pescatello LS. Updating ACSM’s Recommendations for Exercise Preparticipation Health Screening: Med Sci Sports Exerc. 2015 Nov;47(11):2473–9.spa
dc.source.bibliographicCitationJang L-G, Choi G, Kim S-W, Kim B-Y, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019 May 3;16(1):21.spa
dc.source.bibliographicCitationO’Donovan CM, Madigan SM, Garcia-Perez I, Rankin A, O’ Sullivan O, Cotter PD. Distinct microbiome composition and metabolome exists across subgroups of elite Irish athletes. J Sci Med Sport. 2019 Sep 18;spa
dc.source.bibliographicCitationBarton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O’Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut. 2018;67(4):625–33.spa
dc.source.bibliographicCitationScheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham L-D, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul;25(7):1104–9.spa
dc.source.bibliographicCitationLiang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, Chen J, Cai Y, Zhou J. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLOS ONE. 2019 Dec 27;14(12):e0226240.spa
dc.source.bibliographicCitationPetersen LM, Bautista EJ, Nguyen H, Hanson BM, Chen L, Lek SH, Sodergren E, Weinstock GM. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome. 2017 Aug 10;5(1):98.spa
dc.source.bibliographicCitationJäger R, Mohr AE, Carpenter KC, Kerksick CM, Purpura M, Moussa A, Townsend JR, Lamprecht M, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Smith-Ryan AE, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ter Haar JA, Antonio J. International Society of Sports Nutrition Position Stand: Probiotics. J Int Soc Sports Nutr. 2019 Dec 21;16(1):62.spa
dc.source.bibliographicCitationClarke SF, Murphy EF, O’Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O’Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O’Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014 Dec;63(12):1913–20.spa
dc.source.bibliographicCitationEstaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S, Ahmadi-Vand Z, Marsden KR, Gibson DL. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016 08;4(1):42.spa
dc.source.bibliographicCitationBressa C, Bailén-Andrino M, Pérez-Santiago J, González-Soltero R, Pérez M, Montalvo-Lominchar MG, Maté-Muñoz JL, Domínguez R, Moreno D, Larrosa M. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS One. 2017;12(2):e0171352.spa
dc.source.bibliographicCitationYang Y, Shi Y, Wiklund P, Tan X, Wu N, Zhang X, Tikkanen O, Zhang C, Munukka E, Cheng S. The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients [Internet]. 2017 Jul 25 [cited 2020 Apr 30];9(8). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579588/spa
dc.source.bibliographicCitationWhisner CM, Maldonado J, Dente B, Krajmalnik-Brown R, Bruening M. Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiol. 2018 12;18(1):210.spa
dc.source.bibliographicCitationDurk RP, Castillo E, Márquez-Magaña L, Grosicki GJ, Bolter ND, Lee CM, Bagley JR. Gut Microbiota Composition Is Related to Cardiorespiratory Fitness in Healthy Young Adults. Int J Sport Nutr Exerc Metab. 2019 May 1;29(3):249–53.spa
dc.source.bibliographicCitationAllen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018;50(4):747–57.spa
dc.source.bibliographicCitationCockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol. 2015 Jan;95(2):209–30.spa
dc.source.bibliographicCitationCockburn DW, Suh C, Medina KP, Duvall RM, Wawrzak Z, Henrissat B, Koropatkin NM. Novel carbohydrate binding modules in the surface anchored α-amylase of Eubacterium rectale provide a molecular rationale for the range of starches used by this organism in the human gut. Mol Microbiol. 2018;107(2):249–64.spa
dc.source.bibliographicCitationDerrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017 May;106:171–81.spa
dc.source.bibliographicCitationOttman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017 Dec 1;31(6):637–42.spa
dc.source.bibliographicCitationLeylabadlo HE, Ghotaslou R, Feizabadi MM, Farajnia S, Moaddab SY, Ganbarov K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, Kafil HS. The critical role of Faecalibacterium prausnitzii in human health: An overview. Microb Pathog. 2020 Dec 1;149:104344.spa
dc.source.bibliographicCitationLouis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009 May;294(1):1–8.spa
dc.source.bibliographicCitationFu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. 2019 Jun 27;59(sup1):S130–52.spa
dc.source.bibliographicCitationBunesova V, Lacroix C, Schwab C. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microb Ecol. 2018 Jan;75(1):228–38.spa
dc.source.bibliographicCitationEngels C, Ruscheweyh H-J, Beerenwinkel N, Lacroix C, Schwab C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Front Microbiol. 2016;7:713.spa
dc.source.bibliographicCitationPedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, Forslund K, Hildebrand F, Prifti E, Falony G, Le Chatelier E, Levenez F, Doré J, Mattila I, Plichta DR, Pöhö P, Hellgren LI, Arumugam M, Sunagawa S, Vieira-Silva S, Jørgensen T, Holm JB, Trošt K, MetaHIT Consortium, Kristiansen K, Brix S, Raes J, Wang J, Hansen T, Bork P, Brunak S, Oresic M, Ehrlich SD, Pedersen O. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016 21;535(7612):376–81.spa
dc.source.bibliographicCitationÓ Cuív P, de Wouters T, Giri R, Mondot S, Smith WJ, Blottière HM, Begun J, Morrison M. The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe. 2017 Oct;47:209–17.spa
dc.source.bibliographicCitationNgom II, Hasni I, Lo CI, Traore SI, Fontanini A, Raoult D, Fenollar F. Taxono-genomics and description of Gordonibacter massiliensis sp. nov., a new bacterium isolated from stool of healthy patient. New Microbes New Infect. 2020 Jan;33:100624spa
dc.source.bibliographicCitationSelma MV, Tomás-Barberán FA, Beltrán D, García-Villalba R, Espín JC. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol. 2014 Jul;64(Pt 7):2346–52.spa
dc.source.bibliographicCitationRodriguez J, Pierre N, Naslain D, Bontemps F, Ferreira D, Priem F, Deldicque L, Francaux M. Urolithin B, a newly identified regulator of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2017 Aug;8(4):583–97.spa
dc.source.bibliographicCitationLee G, Park J-S, Lee E-J, Ahn J-H, Kim H-S. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine Int J Phytother Phytopharm. 2019 Mar 1;55:50–7.spa
dc.source.bibliographicCitationJung D-H, Kim G-Y, Kim I-Y, Seo D-H, Nam Y-D, Kang H, Song Y, Park C-S. Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity. J Microbiol Biotechnol. 2019 Dec 28;29(12):1904–15.spa
dc.source.bibliographicCitationBercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil Off J Eur Gastrointest Motil Soc. 2011 Dec;23(12):1132–9.spa
dc.source.bibliographicCitationWang H, Braun C, Murphy EF, Enck P. Bifidobacterium longum 1714TM Strain Modulates Brain Activity of Healthy Volunteers During Social Stress. Am J Gastroenterol. 2019;114(7):1152–62.spa
dc.source.bibliographicCitationZhang J, Song L, Wang Y, Liu C, Zhang L, Zhu S, Liu S, Duan L. Beneficial effect of butyrate-producing Lachnospiraceae on stress-induced visceral hypersensitivity in rats. J Gastroenterol Hepatol. 2019 Aug;34(8):1368–76.spa
dc.source.bibliographicCitationPatterson AM, Mulder IE, Travis AJ, Lan A, Cerf-Bensussan N, Gaboriau-Routhiau V, Garden K, Logan E, Delday MI, Coutts AGP, Monnais E, Ferraria VC, Inoue R, Grant G, Aminov RI. Human Gut Symbiont Roseburia hominis Promotes and Regulates Innate Immunity. Front Immunol. 2017;8:1166.spa
dc.source.bibliographicCitationWang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, Wang Y, Liu C, Wang W, Wang J, Liu S-J, Liu H. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019 02;26(1):222-235.e5.spa
dc.source.bibliographicCitationWu T-R, Lin C-S, Chang C-J, Lin T-L, Martel J, Ko Y-F, Ojcius DM, Lu C-C, Young JD, Lai H-C. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 2019 Feb 1;68(2):248–62.spa
dc.source.bibliographicCitationWu F, Guo X, Zhang J, Zhang M, Ou Z, Peng Y. Phascolarctobacterium faecium abundant colonization in human gastrointestinal tract. Exp Ther Med. 2017 Oct;14(4):3122–6.spa
dc.source.bibliographicCitationNaderpoor N, Mousa A, Gomez-Arango LF, Barrett HL, Dekker Nitert M, de Courten B. Faecal Microbiota Are Related to Insulin Sensitivity and Secretion in Overweight or Obese Adults. J Clin Med. 2019 Apr 4;8(4).spa
dc.source.bibliographicCitationMbakwa CA, Penders J, Savelkoul PH, Thijs C, Dagnelie PC, Mommers M, Arts ICW. Gut colonization with methanobrevibacter smithii is associated with childhood weight development. Obes Silver Spring Md. 2015 Dec;23(12):2508–16.spa
dc.source.bibliographicCitationGhavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, Zali MR. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018 Apr;117:285–9.spa
dc.source.bibliographicCitationNishijima S, Suda W, Oshima K, Kim S-W, Hirose Y, Morita H, Hattori M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res Int J Rapid Publ Rep Genes Genomes. 2016 Apr;23(2):125–33.spa
dc.source.bibliographicCitationChaudhary PP, Conway PL, Schlundt J. Methanogens in humans: potentially beneficial or harmful for health. Appl Microbiol Biotechnol. 2018 Apr 1;102(7):3095–104.spa
dc.source.bibliographicCitationMorrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016 03;7(3):189–200.spa
dc.source.bibliographicCitationCastro-Mejía JL, Khakimov B, Krych Ł, Bülow J, Bechshøft RL, Højfeldt G, Mertz KH, Garne ES, Schacht SR, Ahmad HF, Kot W, Hansen LH, Perez-Cueto FJA, Lind MV, Lassen AJ, Tetens I, Jensen T, Reitelseder S, Jespersen AP, Holm L, Engelsen SB, Nielsen DS. Physical fitness in community dwelling older adults is linked to dietary intake, gut microbiota and metabolomic signatures. bioRxiv. 2019 Oct 8;793612.spa
dc.source.bibliographicCitationMunukka E, Ahtiainen JP, Puigbó P, Jalkanen S, Pahkala K, Keskitalo A, Kujala UM, Pietilä S, Hollmén M, Elo L, Huovinen P, D’Auria G, Pekkala S. Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol [Internet]. 2018 Oct 3 [cited 2019 Oct 15];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178902/spa
dc.source.bibliographicCitationMorita E, Yokoyama H, Imai D, Takeda R, Ota A, Kawai E, Hisada T, Emoto M, Suzuki Y, Okazaki K. Aerobic Exercise Training with Brisk Walking Increases Intestinal Bacteroides in Healthy Elderly Women. Nutrients. 2019 Apr;11(4):868.spa
dc.source.bibliographicCitationTaniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep. 2018 Dec;6(23):e13935.spa
dc.source.bibliographicCitationKern T, Blond MB, Hansen TH, Rosenkilde M, Quist JS, Gram AS, Ekstrøm CT, Hansen T, Stallknecht B. Structured exercise alters the gut microbiota in humans with overweight and obesity—A randomized controlled trial. Int J Obes. 2020 Jan;44(1):125–35.spa
dc.source.bibliographicCitationBiolo G, Ciocchi B, Stulle M, Piccoli A, Lorenzon S, Dal Mas V, Barazzoni R, Zanetti M, Guarnieri G. Metabolic consequences of physical inactivity. J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found. 2005 Jan;15(1):49–53spa
dc.source.bibliographicCitationHawley JA. Adaptations Of Skeletal Muscle To Prolonged, Intense Endurance Training. Clin Exp Pharmacol Physiol. 2002;29(3):218–22.spa
dc.source.bibliographicCitationZhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Front Microbiol. 2018;9:765.spa
dc.source.bibliographicCitationRivera-Brown AM, Frontera WR. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training. PM R. 2012 Nov;4(11):797–804.spa
dc.source.bibliographicCitationTaniguchi H, Tanisawa K, Sun X, Kubo T, Hoshino Y, Hosokawa M, Takeyama H, Higuchi M. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep. 2018 Dec;6(23):e13935.spa
dc.source.bibliographicCitationHampton-Marcell JT, Eshoo TW, Cook MD, Gilbert JA, Horswill CA, Poretsky R. Comparative Analysis of Gut Microbiota Following Changes in Training Volume Among Swimmers. Int J Sports Med. 2020 May;41(5):292–9.spa
dc.source.bibliographicCitationCronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, Woods T, Nugent H, Fanning A, Melgar S, Falvey EC, Holmes E, Cotter PD, O’Sullivan O, Molloy MG, Shanahan F. A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems. 2018 Jun;3(3).spa
dc.source.bibliographicCitationTang R, Harasymowicz NS, Wu C-L, Collins KH, Choi Y-R, Oswald SJ, Guilak F. Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet–induced obesity. Sci Adv. 2020 May 1;6(19):eaaz7492.spa
dc.source.bibliographicCitationClark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol. 2017;8:319.spa
dc.source.bibliographicCitationZinöcker MK, Lindseth IA. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients [Internet]. 2018 Mar 17 [cited 2020 Apr 21];10(3). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5872783/spa
dc.source.bibliographicCitationRakoff-Nahoum S, Foster KR, Comstock LE. The evolution of cooperation within the gut microbiota. Nature. 2016 May;533(7602):255–9.spa
dc.source.bibliographicCitationHajishengallis G, Lamont RJ. Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts. Trends Microbiol. 2016 Jun 1;24(6):477–89.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectMicrobioma gastrointestinalspa
dc.subjectEjerciciospa
dc.subjectAtletasspa
dc.subjectEstilo de vida activospa
dc.subjectInactividad físicaspa
dc.subject.ddcIncidencia & prevención de la enfermedadspa
dc.subject.keywordGastrointestinal Microbiomespa
dc.subject.keywordExercisespa
dc.subject.keywordAthletesspa
dc.subject.keywordActive Lifestylespa
dc.subject.keywordPhysical inactivityspa
dc.titleExploring longitudinal and cross-sectional studies associating physical activity with intestinal microbiota changesspa
dc.title.TranslatedTitleCambios en la microbiota intestinal asociados al nivel de actividad física en adultos aparentemente sanos, revisión de la literaturaspa
dc.typemasterThesiseng
dc.type.documentRevisión de la literaturaspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de maestríaspa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Viviana Aya Final Masters Thesis .pdf
Tamaño:
653.88 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal