Ítem
Acceso Abierto

Intra and inter-specific communication in Heliconius

dc.contributor.advisorSalazar, Camilo
dc.contributor.advisorPardo Díaz, Geimy Carolina
dc.creatorGonzález-Rojas, María Fernanda
dc.creator.degreeDoctor en Ciencias Biomédicas y Biológicasspa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-02-18T03:40:13Z
dc.date.available2021-02-18T03:40:13Z
dc.date.created2021-01-20
dc.descriptionLas mariposas del género Heliconius son un excelente ejemplo de mimetismo Mülleriano, donde especies filogenéticamente distantes convergen en un fenotipo alar casi idéntico cuando se encuentran en simpatría. Sin embargo, pocos estudios han abordado de manera integral la precisión del mimetismo y la variación que existe en las señales miméticas a lo largo del fitness landscape (que puede comprender múltiples picos óptimos). En este estudio, haciendo uso de análisis de cuantificación del color, tamaño y forma de las alas, investigué el grado de semejanza fenotípica entre especies co-miméticas en múltiples anillos de mariposas del género Heliconius. Encontré que el tamaño y la forma de las alas no contribuyen al mimetismo. Por el contrario, el color es el principal contribuyente, pero algunos fenotipos son más precisos entre co-miméticos que otros. Esto sugiere la presencia de múltiples picos adaptativos dentro de un mismo anillo mimético. En estas mariposas, el patrón de coloración se reconoce como la principal señal para el reconocimiento de pareja entre especies que están filogenéticamente cercanas, pero cuando esta señal se ve comprometida, las señales alternativas de apareamiento deben evolucionar para asegurar el aislamiento reproductivo y la integridad de la especie. Las especies estrechamente relacionadas H. melpomene malleti y H. timareta florencia se encuentran en la misma región geográfica y, a pesar de exhibir patrones de coloración casi idénticos, presentan un fuerte aislamiento reproductivo. En esta tesis, examiné cuales señales difieren entre especies y potencialmente contribuyen al aislamiento reproductivo. El patrón de coloración alar es indistinguible entre las dos especies, mientras que el perfil químico de la androconia y los genitales de los machos exhiben marcadas diferencias. Por otra parte, realicé experimentos de comportamiento para estudiar la importancia del color y las señales químicas en el reconocimiento de pareja por parte de las hembras. Encontré que los perfiles químicos y no el patrón de coloración alar impulsan la preferencia de las hembras por machos conespecíficos. Además, los experimentos con machos y hembras híbridos sugirieron un compuesto genético importante tanto para la producción química como para la preferencia, lo que sugiere que los productos químicos son la principal barrera reproductiva que se opone al flujo de genes entre estas dos especies hermanas y co-miméticas. En conjunto, estos resultados concuerdan con la idea de que la adaptación por mimetismo es un proceso complejo y dinámico que se ve afectado por más de un factor y que una combinación efectiva de estas señales (visuales y químicas) es esencial para los procesos de comunicación intra e interespecífica en mariposas.spa
dc.description.abstractHeliconius butterflies are an excellent example of Müllerian mimicry, where phylogenetically distant species converge to nearly identical wing phenotype when occurring in sympatry. However, few studies have comprehensively addressed mimicry accuracy and variation in mimicry signals across the fitness landscape (which may comprise multiple fitness peaks). In this study, using analysis of colour quantification, wing size and shape, I investigate the extent of phenotypic resemblance between co- mimic species in multiple Heliconius mimicry rings. I found that wing size and shape do not contribute to mimicry. In contrast, colour phenotype is the main contributor, but some phenotypes are more accurate between co-mimics than others. This suggests the presence of multiple adaptive peaks within the same mimetic ring. In these butterflies, colour pattern is recognised as the main cue for mate recognition between species that are phylogenetically close, but when this cue is compromised alternative mating signals must evolve to ensure reproductive isolation and species integrity. The closely related species H. melpomene malleti and H. timareta florencia occur in the same geographical region, and despite being co-mimics, they display strong reproductive isolation. Here, I tested which cues differ between species, and potentially contribute to reproductive isolation. Wing colour pattern was indistinguishable between the two species, while the chemical profile of the males’ androconia and genitalia showed marked differences. Finally, I conducted behavioural experiments to study the importance of colour and chemical signals in mate recognition by females. I found that chemical blends and not wing colour pattern drive the preference of females for conspecific males. Also, experiments with hybrid males and females suggested an important genetic compound for both chemical production and preference suggesting that chemicals are the major reproductive barrier opposing gene flow between these two sister and co-mimic species. Altogether, these results agree with the idea that mimicry adaptation is a complex and dynamic process affected by more than one factor and that an effective combination of these signals (visual and chemical) is essential for intra- and interspecific communication processes in butterflies.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_30934
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/30934
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programDoctorado en Ciencias Biomédicas y Biológicasspa
dc.rightsAtribución-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaPARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.source.bibliographicCitationCórdoba-Aguilar A, González-Tokman D, González-Santoyo I. Insect behavior: from mechanisms to ecological and evolutionary consequences. First Edit. Oxford, UK: Oxford University Press; 2018. 414 p.spa
dc.source.bibliographicCitationUetz GW, Roberts JA, Taylor PW. Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Anim Behav [Internet]. 2009;78:299–305. Available from: http://dx.doi.org/10.1016/j.anbehav.2009.04.023spa
dc.source.bibliographicCitationCandolin U. The use of multiple cues in mate choice. Biol Rev Camb Philos Soc [Internet]. 2003;78:575–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14700392spa
dc.source.bibliographicCitationChenoweth SF, Blows MW. Dissecting the complex genetic basis of mate choice. Nat Rev Genet [Internet]. 2006;7(9):681–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16921346spa
dc.source.bibliographicCitationBímová B, Albrecht T, Macholán M, Piálek J. Signalling components of the house mouse mate recognition system. Behav Processes. 2009;80(1):20–7.spa
dc.source.bibliographicCitationWyatt TD. Pheromones and animal behaviour: communication by smell and taste. Cambridge: Cambridge University Press; 2003.spa
dc.source.bibliographicCitationGreenspan RJ, Ferveur JF. Courtship in Drosophila. Annu Rev Genet. 2000;34:205–32.spa
dc.source.bibliographicCitationConner WE. “Un chant d’appel amoureux”: Acoustic communication in moths. J Exp Biol. 1999;202(13):1711–23.spa
dc.source.bibliographicCitationWeller SJ, Jacobson NL, Conner WE. The evolution of chemical defences and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol J Linn Soc. 1999;68(4):557–78.spa
dc.source.bibliographicCitationBoppré M. Chemical communication, plant relationships, and mimicry in the evolution of Danaid butterflies. Entomol Exp Appl. 1978;24(3):64–77.spa
dc.source.bibliographicCitationEisner T, Meinwald J. The chemistry of sexual selection. Proc Natl Acad Sci U S A. 1995;92:50–5.spa
dc.source.bibliographicCitationJiggins CD, Naisbit RE, Coe RL, Mallet J. Reproductive isolation caused by colour pattern mimicry. Nature. 2001;411:302–305.spa
dc.source.bibliographicCitationNosil P, Crespi BJ, Sandoval CP. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature. 2002;417(6887):440–3.spa
dc.source.bibliographicCitationEstrada C, Jiggins CD. Interspecific sexual attraction because of convergence in warning colouration: Is there a conflict between natural and sexual selection in mimetic species? J Evol Biol. 2008;21:749–60.spa
dc.source.bibliographicCitationBuellesbach J, Vetter SG, Schmitt T. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front Zool. 2018;15(22):1–11.spa
dc.source.bibliographicCitationDalbosco Dell’Aglio D, Troscianko J, McMillan WO, Stevens M, Jiggins CD. The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution (N Y). 2018;72(10):2156–66.spa
dc.source.bibliographicCitationFinkbeiner SD, Briscoe AD, Reed RD. Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution (N Y). 2014;68(12):3410–20.spa
dc.source.bibliographicCitationEndler. Natural selection on color patterns in Poecilia reticulata. Evolution (N Y). 1980;34:76–91.spa
dc.source.bibliographicCitationRuxton GD, Sherratt TN, Speed MP. Avoiding attack: The evolutionary ecology of crypsis, warning signals and mimicry. Vol. 17, Oxford biology. New York: Oxford University Press Inc.; 2004. 249 p.spa
dc.source.bibliographicCitationSherratt TN. The evolution of Müllerian mimicry. Naturwissenschaften. 2008;95:681–95.spa
dc.source.bibliographicCitationKapan DD. Three-butterfly system provides a field test of Müllerian mimicry. 2001;409:338–40.spa
dc.source.bibliographicCitationElias M, Gompert Z, Jiggins C, Willmott K. Mutualistic interactions drive ecological niche convergence in a diverse butterfly community. PLoS Biol [Internet]. 2008;6(12):2642–9. Available from: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0060300spa
dc.source.bibliographicCitationJoron M. Polymorphic mimicry, microhabitat use, and sex-specific behaviour. J Evol Biol. 2005;18(3):547–56.spa
dc.source.bibliographicCitationRojas B, Burdfield-Steel E, De Pasqual C, Gordon S, Hernández L, Mappes J, et al. Multimodal aposematic signals and their emerging role in mate attraction. Front Ecol Evol. 2018;6(93).spa
dc.source.bibliographicCitationDe Bruyne M, Baker TC. Odor detection in insects: Volatile codes. J Chem Ecol. 2008;34(7):882–97.spa
dc.source.bibliographicCitationMissbach C, Dweck HKM, Vogel H, Vilcinskas A, Stensmyr MC, Hansson BS, et al. Evolution of insect olfactory receptors. Elife. 2014;3(e02115):1–22.spa
dc.source.bibliographicCitationGreenfield M. Signalers and receivers: mechanisms and evolution of arthropod communication. New York, USA: Oxford University Press; 2002.spa
dc.source.bibliographicCitationEhman KD, Scott ME. Urinary odour preferences of MHC congenic female mice, Mus domesticus: Implications for kin recognition and detection of parasitized males. Anim Behav. 2001;62(4):781–9.spa
dc.source.bibliographicCitationKavaliers M, Colwell DD, Braun WJ, Choleris E. Brief exposure to the odour of a parasitized male alters the subsequent mate odour responses of female mice. Anim Behav. 2003;65(1):59–68.spa
dc.source.bibliographicCitationKavaliers M, Choleris E, Ågmo A, Pfaff DW. Olfactory-mediated parasite recognition and avoidance: Linking genes to behavior. Horm Behav. 2004;46(3):272–83.spa
dc.source.bibliographicCitationKavaliers M, Choleris E, Ågmo A, Muglia LJ, Ogawa S, Pfaff DW. Involvement of the oxytocin gene in the recognition and avoidance of parasitized males by female mice. Anim Behav. 2005;70(3):693–702.spa
dc.source.bibliographicCitationRich TJ, Hurst JL. The competing countermarks hypothesis: Reliable assessment of competitive ability by potential mates. Anim Behav. 1999;58(5):1027–37.spa
dc.source.bibliographicCitationBeynon RJ, Hurst JL. Multiple roles of major urinary proteins in the house mouse, Mus domesticus. Biochem Soc Trans. 2003;31(1):142–6.spa
dc.source.bibliographicCitationCzaczkes TJ, Grüter C, Ratnieks FLW. Trail pheromones: An integrative view of their role in social insect colony organization. Annu Rev Entomol. 2015;60(1):581–99.spa
dc.source.bibliographicCitationEstrada C, Schulz S, Yildizhan S, Gilbert LE. Sexual selection drives the evolution of antiaphrodisiac pheromones in butterflies. Evolution (N Y). 2011;65(10):2843–54.spa
dc.source.bibliographicCitationSchulz S, Estrada C, Yildizhan S, Boppré M, Gilbert LE. An antiaphrodisiac in Heliconius melpomene butterflies. J Chem Ecol. 2008;34(1):82–93.spa
dc.source.bibliographicCitationNieberding CM, de Vos H, Schneider M V., Lassance J-M, Estramil N, Andersson J, et al. The male sex pheromone of the butterfly Bicyclus anynana: Towards an evolutionary analysis. PLoS One. 2008;3(7):e2751.spa
dc.source.bibliographicCitationNieberding CM, Fischer K, Saastamoinen M, Allen CE, Wallin EA, Hedenström E, et al. Cracking the olfactory code of a butterfly: The scent of ageing. Ecol Lett. 2012;15(5):415–24.spa
dc.source.bibliographicCitationDussourd DE, Harvis CA, Meinwald J, Eisner T. Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc Natl Acad Sci U S A [Internet]. 1991;88:9224–7. Available from: http://www.pnas.org/content/88/20/9224spa
dc.source.bibliographicCitationShine R, Phillips B, Waye HL, LeMaster MP, Mason RT. Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates. Behav Ecol. 2003;54:162–6.spa
dc.source.bibliographicCitationMoore PJ, Reagan-Wallin NL, Haynes KF, Moore AJ. Odour conveys status on cockroaches. Nature [Internet]. 1997;25–6. Available from: http://www.nature.com/nature/journal/v389/n6646/full/389025a0.htmlspa
dc.source.bibliographicCitationSmith BH. Recognition of female kin by male bees through olfactory signals. Proc Natl Acad Sci USA [Internet]. 1983;80:4551–4553. Available from: http://www.pnas.org/content/80/14/4551.full.pdfspa
dc.source.bibliographicCitationMas F, Jallon J-M. Sexual isolation and cuticular hydrocarbon differences between Drosophila santomea and Drosophila yakuba. J Chem Ecol. 2005;31(11):2747–52.spa
dc.source.bibliographicCitationPardy JA, Rundle HD, Bernards MA, Moehring AJ. The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans. Heredity (Edinb) [Internet]. 2018;1. Available from: http://www.nature.com/articles/s41437-018-0080-3spa
dc.source.bibliographicCitationLinn C, Feder JL, Nojima S, Dambroski HR, Berlocher SH, Roelofs W. Fruit odor discrimination and sympatric host race formation in Rhagoletis. Proc Natl Acad Sci U S A. 2003;100(20):11490–3.spa
dc.source.bibliographicCitationOlsson SB, Linn CEJ, Feder JL, Michel A, Dambroski HR, Berlocher SH, et al. Comparing peripheral olfactory coding with host preference in the Rhagoletis species complex. Chem Senses. 2009;34:37–48.spa
dc.source.bibliographicCitationTregenza T, Pritchard VL, Butlin RK. Patterns of trait divergence between populations of the meadow grasshopper, Chorthippus parallelus. Evolution (N Y). 2000;54(2):574–85.spa
dc.source.bibliographicCitationSchwander T, Arbuthnott D, Gries R, Gries G, Nosil P, Crespi BJ. Hydrocarbon divergence and reproductive isolation in Timema stick Insects. BMC Evol Biol [Internet]. 2013;13. Available from: BMC Evolutionary Biologyspa
dc.source.bibliographicCitationLiu Y, Hu Y, Bi J, Kong X, Long G, Zheng Y, et al. Odorant-binding proteins involved in sex pheromone and host-plant recognition of the sugarcane borer Chilo infuscatellus (Lepidoptera: Crambidae). Pest Manag Sci. 2020;10.1002/ps.5961.spa
dc.source.bibliographicCitationPelozuelo L, Malosse C, Genestier G, Guenego H, Frerot B. Host-plant specialization in pheromone strains of the European corn borer Ostrinia nubilalis in France. J Chem Ecol. 2004;30(2):335–52.spa
dc.source.bibliographicCitationÔmura H, Yotsuzuka S. Male‐specific epicuticular compounds of the sulfur butterfly Colias erate poliographus (Lepidoptera: Pieridae). Appl Entomol Zool. 2015;spa
dc.source.bibliographicCitationSaveer AM, Becher PG, Birgersson G, Hansson BS, Witzgall P, Bengtsson M. Mate recognition and reproductive isolation in the sibling species Spodoptera littoralis and Spodoptera litura. Front Ecol Evol [Internet]. 2014;2(18):1–7. Available from: http://journal.frontiersin.org/article/10.3389/fevo.2014.00018/abstractspa
dc.source.bibliographicCitationSheck AL, Groot AT, Ward CM, Gemeno C, Wang J, Brownie C, et al. Genetics of sex pheromone blend differences between Heliothis virescens and Heliothis subflexa: A chromosome mapping approach. J Evol Biol. 2006;19(2):600–17.spa
dc.source.bibliographicCitationMarco A, Chivers DP, Kiesecker JM, Blaustein AR. Mate choice by chemical cues in Western Redback (Plethodon vehiculum) and Dunn’s (P. dunni) salamanders. Ethology [Internet]. 1998;104:781–8. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0310.1998.tb00111.x/abstractspa
dc.source.bibliographicCitationMartín J, López P. Chemoreception, symmetry and mate choice in lizards. Proc R Soc B Biol Sci [Internet]. 2000;267:1265–9. Available from: http://rspb.royalsocietypublishing.org/content/267/1450/1265spa
dc.source.bibliographicCitationNovotny MV. Pheromones, binding proteins and receptor responses in rodents. Biochem Soc. 2003;117–22.spa
dc.source.bibliographicCitationWyatt TD. Pheromones and animal behavior: chemical signals and signatures. Cambridge: Cambridge University Press; 2014.spa
dc.source.bibliographicCitationPhelan PL, Baker TC. Evolution of male pheromones in moths: repoductive isolation through sexual selection? Science (80- ). 1987;235:205–7.spa
dc.source.bibliographicCitationLöfstedt C, Herrebout WM, Menken SBJ. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology [Internet]. 1991;2:20–8. Available from: http://link.springer.com/article/10.1007/BF01240662 VN - readcube.comspa
dc.source.bibliographicCitationCostanzo K, Monteiro A. A The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc R Soc B Biol Sci. 2007;274:845–51.spa
dc.source.bibliographicCitationBigiani A, Mucignat-Caretta C, Montani G, Tirindelli R. Pheromone reception in mammals. Rev Physiol Biochem Pharmacol. 2005;155:1–35.spa
dc.source.bibliographicCitationGlover TJ, Tang XH, Roelofs WL. Sex-pheromone blend discrimination by male moths from E and Z-strains of European corn-borer. J Chem Ecol. 1987;13(1):143–51.spa
dc.source.bibliographicCitationEltz T, Zimmermann Y, Pfeiffer C, Ramirez Pech J, Twele R, Francke W, et al. An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol [Internet]. 2008;18:1844– 8. Available from: http://dx.doi.org/10.1016/j.cub.2008.10.049spa
dc.source.bibliographicCitationSymonds MRE, Elgar MA. The evolution of pheromonal diversity. Trends Ecol Evol. 2008;23:220-228.spa
dc.source.bibliographicCitationTanigaki T, Yamaoka R, Sota T. The role of cuticular hydrocarbons in mating and conspecific recognition in the closely related Longicorn beetles Pidonia grallatrix and P. takechii. Zoolog Sci. 2007;24(1):39–45.spa
dc.source.bibliographicCitationGeiselhardt S, Otte T, Hilker M. Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett. 2012;15(9):971–7.spa
dc.source.bibliographicCitationPeterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, et al. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology. 2007;17(2):87–96.spa
dc.source.bibliographicCitationXue HJ, Wei JN, Magalhães S, Zhang B, Song KQ, Liu J, et al. Contact pheromones of 2 sympatric beetles are modified by the host plant and affect mate choice. Behav Ecol. 2016;27(3):895–902.spa
dc.source.bibliographicCitationSouth A, LeVan K, Leombruni L, Orians CM, Lewis SM. Examining the role of cuticular hydrocarbons in Firefly species recognition. Ethology. 2008;114(9):916–24.spa
dc.source.bibliographicCitationHay-Roe MM, Lamas G, Nation JL. Pre- and postzygotic isolation and Haldane rule effects in reciprocal crosses of Danaus erippus and Danaus plexippus (Lepidoptera: Danainae), supported by differentiation of cuticular hydrocarbons, establish their status as separate species. Biol J Linn Soc. 2007;91(3):445–53.spa
dc.source.bibliographicCitationSyvertsen TC, Jackson LL, Blomquist GJ, Vinson SB. Alkadienes mediating courtship in the parasitoid Cardiochiles nigriceps (Hymenoptera: Braconidae). J Chem Ecol. 1995;21(12):1971–89.spa
dc.source.bibliographicCitationHoward RW. Comparative analysis of cuticular hydrocarbons from the Ectoparasitoids Cephalonomia waterstoni and Laelius utilis (Hymenoptera: Bethylidae) and their respective hosts, Cryptolestes ferrugineus (Coleoptera: Cucujidae) and <i>Trogoderm. Ann Entomol Soc Am. 1992;85(3):317–25.spa
dc.source.bibliographicCitationMerrill RM, Dasmahapatra KK, Davey JW, Dell’Aglio DD, Hanly JJ, Huber B, et al. The diversification Heliconius butterflies: What have we learned in 150 years? J Evol Biol. 2015;28(8):1417–38.spa
dc.source.bibliographicCitationJiggins CD. Ecological speciation in mimetic butterflies. Bioscience [Internet]. 2008;58(6):541–8. Available from: http://bioscience.oxfordjournals.org/cgi/doi/10.1641/B580610spa
dc.source.bibliographicCitationMérot C. Speciation in Heliconius butterflies: the balance between mimicry convergence and ecological divergence. Muséum National d ́Histoire Naturelle, Paris.; 2014.spa
dc.source.bibliographicCitationBrower LP, Brower JVZ, Collins CT. Experimental studies of mimicry. 7. Relative palatability and Mullerian mimicry among neotropical butterflies of the subfamily Heliconiinae. Zool Sci Contrib New York Zool Soc. 1963;48(7):65–84.spa
dc.source.bibliographicCitationChai P, Srygley RB. Predation and the flight, morphology, and temperature of Neotropical rain-forest butterflies. Am Nat. 1990;135(6):748–65.spa
dc.source.bibliographicCitationDarragh K. Pheromones in Heliconius butterflies: Chemical ecology, genetics, and behaviour. University of Cambridge; 2019.spa
dc.source.bibliographicCitationArias M, Davey JW, Martin S, Jiggins C, Nadeau N, Joron M, et al. How do predators generalize warning signals in simple and complex prey communities? Insights from a videogame. Proc R Soc B Biol Sci. 2020;287:e20200014.spa
dc.source.bibliographicCitationMerrill RM, Van Schooten B, Scott JA, Jiggins CD. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc R Soc B. 2011;278:511–8.spa
dc.source.bibliographicCitationDarragh K, Vanjari S, Mann F, González-Rojas MF, Morrison CR, Salazar C, et al. Male sex pheromone components in Heliconius butterflies released by the androconia affect female choice. PeerJ [Internet]. 2017;5:e3953. Available from: https://peerj.com/articles/3953spa
dc.source.bibliographicCitationRutowski R. The evolution of male mate-locating behavior in butterflies. Am Nat. 1991;138(5):1121–39.spa
dc.source.bibliographicCitationMavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M. Speciation by hybridization in Heliconius butterflies. Nature. 2006;441(7095):868–71.spa
dc.source.bibliographicCitationJiggins CD, Estrada C, Rodrigues A. Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J Evol Biol. 2004;17:680–91.spa
dc.source.bibliographicCitationMerrill RM, Rastas P, Martin SH, Melo MC, Barker S, Davey J, et al. Genetic dissection of assortative mating behavior. PLoS Biol. 2019;17(2):1–21.spa
dc.source.bibliographicCitationBoppré M. Chemically mediated interactions between butterflies. The biology of butterflies. Vane-Wright R, Ackery P, editors. Academic Press, London; 1984. 259–275 p.spa
dc.source.bibliographicCitationPinheiro de Castro ÉC, Zagrobelny M, Zurano JP, Zikan Cardoso M, Feyereisen R, Bak S. Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecol Evol. 2019;9:5079–93.spa
dc.source.bibliographicCitationSculfort O, de Castro ECP, Kozak KM, Bak S, Elias M, Nay B, et al. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecol Evol. 2020;(November 2019):1–18.spa
dc.source.bibliographicCitationDarragh K, Byers KJRP, Merrill RM, McMillan WO, Schulz S, Jiggins CD. Male pheromone composition depends on larval but not adult diet in Heliconius melpomene. Ecol Entomol. 2019;44(3):397–405.spa
dc.source.bibliographicCitationde Castro ÉCP, Musgrove J, Bak S, McMillan WO, Jiggins CD. Phenotypic plasticity in chemical defence allows butterflies to diversify host use strategies. bioRxiv Prepr. 2020;spa
dc.source.bibliographicCitationLangham GM. Specialized avian predators repeatedly attack novel color morphs of Heliconius butterflies. Evolution (N Y). 2004;58(12):2783–7.spa
dc.source.bibliographicCitationFinkbeiner SD, Fishman DA, Osorio D, Briscoe AD. Ultraviolet and yellow reflectance but not fluorescence is important for visual discrimination of conspecifics by Heliconius erato. J Exp Biol [Internet]. 2017;220(7):1267–76. Available from: http://jeb.biologists.org/lookup/doi/10.1242/jeb.153593spa
dc.source.bibliographicCitationMallet J, Barton NH. Strong natural selection in a warning-color hybrid zone. Evolution (N Y). 1989;43(2):421– 31.spa
dc.source.bibliographicCitationKapan DD. Divergent natural selection and Müllerian mimicry in polymorphic Heliconius cydno (Lepidoptera:Nymphalidae). The University of British Columbia; 1998.spa
dc.source.bibliographicCitationKronforst MR, Papa R. The functional basis of wing patterning in Heliconius butterflies: The molecules behind mimicry. Genetics. 2015;200:1–19.spa
dc.source.bibliographicCitationLinares M. The ghost of mimicry past: laboratory reconstitution of an extinct butterfly “race.” Heredity (Edinb). 1997;78:628–35.spa
dc.source.bibliographicCitationMallet J. Shift happens! Shifting balance and the evolution of diversity in warning colour and mimicry. Ecol Entomol. 2010;35(SUPPL. 1):90–104.spa
dc.source.bibliographicCitationFisher R. The genetical theory of natural selection. Oxford, U.K.: Oxford Univ. Press; 1930.spa
dc.source.bibliographicCitationChouteau M, Angers B. Wright’s shifting balance theory and the diversification of aposematic signals. PLoS One. 2012;7(3):e34028.spa
dc.source.bibliographicCitationMárquez R, Linderoth TP, Mejía-Vargas D, Nielsen R, Amézquita A, Kronforst MR. Divergence, gene flow, and the origin of leapfrog geographic distributions: The history of colour pattern variation in Phyllobates poison- dart frogs. Mol Ecol. 2020;29:3702–19.spa
dc.source.bibliographicCitationChouteau M, Llaurens V, Piron-Prunier F, Joron M. Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc Natl Acad Sci [Internet]. 2017;114(31):8325–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1702482114spa
dc.source.bibliographicCitationJamie GA, Meier JI. The persistence of polymorphisms across species radiations. Trends Ecol Evol [Internet]. 2020;35(9):795–808. Available from: https://doi.org/10.1016/j.tree.2020.04.007spa
dc.source.bibliographicCitationNadeau NJ. Genes controlling mimetic colour pattern variation in butterflies. Curr Opin Insect Sci [Internet]. 2016;17:24–31. Available from: http://dx.doi.org/10.1016/j.cois.2016.05.013spa
dc.source.bibliographicCitationLewis JJ, Reed RD. Genome-wide regulatory adaptation shapes population-level genomic landscapes in Heliconius. Mol Biol Evol. 2018;36(1):159–73.spa
dc.source.bibliographicCitationOrteu A, Jiggins CD. The genomics of coloration provides insights into adaptive evolution. Nat Rev Genet [Internet]. 2020;21(8):461–75. Available from: http://dx.doi.org/10.1038/s41576-020-0234-zspa
dc.source.bibliographicCitationMorris J, Hanly JJ, Martin SH, Van Belleghem SM, Salazar CA, Jiggins CD, et al. Deep convergence, shared ancestry, and evolutionary novelty in the genetic architecture of Heliconius mimicry. Genetics. 2020;216:765–80.spa
dc.source.bibliographicCitationMerrill RM, Wallbank RWR, Bull V, Salazar PCA, Mallet J, Stevens M, et al. Disruptive ecological selection on a mating cue. Proc R Soc B. 2012;279:4907–13.spa
dc.source.bibliographicCitationMérot C, Frérot B, Leppik E, Joron M. Beyond magic traits: Multimodal mating cues in Heliconius butterflies. Evolution (N Y). 2015;69(11):2891–904.spa
dc.source.bibliographicCitationRossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R, Jiggins CD, et al. Visual mate preference evolution during butterfly speciation is linked to neural processing genes. Nat Commun [Internet]. 2020;11(4763). Available from: http://dx.doi.org/10.1038/s41467-020-18609-zspa
dc.source.bibliographicCitationArmstrong EA. The ethology of bird display and behavior. New York, NY: Dover Publications.; 1965.spa
dc.source.bibliographicCitationGilliard ET. Birds of paradise and bower birds. Press NH, editor. Garden City, NY; 1969.spa
dc.source.bibliographicCitationJones TM, Hamilton JGC. A role for pheromones in mate choice in a lekking sandfly. Anim Behav. 1998;56:891–8.spa
dc.source.bibliographicCitationKotiaho JS. Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav Ecol Sociobiol. 2000;48:188–94.spa
dc.source.bibliographicCitationMilinski M, Bakker TCM. Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature. 1990;344:330–3.spa
dc.source.bibliographicCitationPivnick KA, Lavoir-Dornik J, McNeil J. The role of the androconia in the mating behaviour of the European skipper, Thymelicus lineola, and evidence for a male sex pheromone. Physiol Entomol. 1992;17(October):260–8.spa
dc.source.bibliographicCitationSnedden WA, Sakaluk SK. Acoustic signalling and its relation to male mating success in sagebrush crickets. Anim Behav. 1992;44(4):633–9.spa
dc.source.bibliographicCitationWing L. Drumming flight in the blue grouse and courtship characters of the Tetraonidae. Condor. 1946;48:154–7.spa
dc.source.bibliographicCitationWertheim B, van Baalen E-JA, Dicke M, Vet LEM. Pheromone mediated aggregation in nonsocial arthropods: An evolutionary ecological perspective. Annu Rev Entomol. 2005;50(1):321–46.spa
dc.source.bibliographicCitationSchiestl FP. The evolution of floral scent and insect chemical communication. Ecol Lett. 2010;13(5):643–56.spa
dc.source.bibliographicCitationAli MF, Morgan ED. Chemical communication in insect communities: a guide to insect pheromones with special emphasis on social insects. Biol Rev. 1990;65:227–247.spa
dc.source.bibliographicCitationButenandt VA, Beckmann R, Stamm D, Hecker E. Über den sexual-lockstoff des seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch. 1959;14b:283–4.spa
dc.source.bibliographicCitationLöfstedt C. Moth pheromone genetics and evolution. Philos Trans Biol Sci. 1993;340(1292):167–77.spa
dc.source.bibliographicCitationSmadja C, Butlin RK. On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity (Edinb). 2009;102:77–97.spa
dc.source.bibliographicCitationWicker-Thomas C. Evolution of insect pheromones and their role in reproductive isolation and speciation. Ann la Soc Entomol Fr [Internet]. 2011;47(1–2):55–62. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-80053962352&partnerID=tZOtx3y1spa
dc.source.bibliographicCitationGrillet M, Everaerts C, Houot B, Ritchie MG, Cobb M, Ferveur JF. Incipient speciation in Drosophila melanogaster involves chemical signals. Sci Rep. 2012;2(i):1–11.spa
dc.source.bibliographicCitationVane-Wright RI, Boppré M. Visual and chemical signalling in butterflies: functional and phylogenetic perspectives. Philos Trans R Soc L B Biol Sci. 1993;340:197–205.spa
dc.source.bibliographicCitationJiggins CD. The Ecology and Evolution of Heliconius Butterflies. Oxford University Press; 2017. 330 p.spa
dc.source.bibliographicCitationRothschild M, Moore BP, Brown W V. Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moth of the genera Zygaena and Amata (Lepidoptera). Biol J Linn Soc. 1984;23:375–380.spa
dc.source.bibliographicCitationMüller F. The scent-scales of the male “Maracujá butterflies.” In: Longstaff GB, editor. Butterfly hunting in many lands. New York, NY: Longmans, Green & Co; 1912. p. 655–659.spa
dc.source.bibliographicCitationEltringham H. On the abdominal glands in Heliconius (Lepidoptera). Trans R Entomol Soc Lond. 1925;73:269– 275.spa
dc.source.bibliographicCitationBarth R. Os órgäos odoriferos masculinos de alguns Heliconiinae do Brasil. Mem Inst Oswaldo Cruz. 1952;50:335–86.spa
dc.source.bibliographicCitationKlein AL, de Araújo AM. Courtship behavior of Heliconius erato phyllis (Lepidoptera, Nymphalidae) towards virgin and mated females: Conflict between attraction and repulsion signals? J Ethol. 2010;28(3):409–20.spa
dc.source.bibliographicCitationCrane J. Imaginal behaviour of a Trinidad butterfly, Heliconius erato hydara Hewitson, with special reference to the social use of color. Zool N Y. 1955;40:167–196.spa
dc.source.bibliographicCitationEstrada C, Yildizhan S, Schulz S, Gilbert LE. Sex-specific chemical cues from immatures facilitate the evolution of mate guarding in Heliconius butterflies. Proc R Soc B Biol Sci [Internet]. 2010;277:407–13. Available from: http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2009.1476spa
dc.source.bibliographicCitationGilbert LE. Postmating female odor in Heliconius butterflies: A male-contributed antiaphrodisia? Science (80- ). 1976;193(4251):419–20.spa
dc.source.bibliographicCitationMalouines C. Counter-perfume: using pheromones to prevent female remating. Biol Rev. 2016;92(3):1570– 81.spa
dc.source.bibliographicCitationMann F, Vanjari S, Rosser N, Mann S, Dasmahapatra KK, Corbin C, et al. The scent chemistry of Heliconius wing androconia. J Chem Ecol. 2017;43(9):843–57.spa
dc.source.bibliographicCitationLiénard MA, Wang H-L, Lassance J-M, Löfstedt C. Sex pheromone biosynthetic pathways are conserved between moths and the butterfly Bicyclus anynana. Nat Commun [Internet]. 2014;5:3957. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4050330&tool=pmcentrez&rendertype=abstr actspa
dc.source.bibliographicCitationYildizhan S, Van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, et al. Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. ChemBioChem. 2009;10:1666–77.spa
dc.source.bibliographicCitationAndersson J, Borg-Karlson A-K, Vongvanich N, Wiklund C. Male sex pheromone release and female mate choice in a butterfly. J Exp Biol. 2007;210:964–70.spa
dc.source.bibliographicCitationNishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, et al. Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol [Internet]. 1996;22(5):949–72. Available from: http://dx.doi.org/10.1007/BF02029947spa
dc.source.bibliographicCitationZhang YN, Xia YH, Zhu JY, Li SY, Dong SL. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol. 2014;40:439–51.spa
dc.source.bibliographicCitationZhang YN, Xia YH, Zhu JY, Li SY, Dong SL. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol. 2014;40:439–51.spa
dc.source.bibliographicCitationHe P, Zhang Y-F, Hong D-Y, Wang J, Wang X-L, Zuo L-H, et al. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics [Internet]. 2017;18(219). Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3592-yspa
dc.source.bibliographicCitationJurenka R. Insect pheromone biosynthesis. Top Curr Chem. 2004;239:97–131.spa
dc.source.bibliographicCitationAndo T, Inomata S, Yamamoto M. Lepidopteran Sex Pheromones. Top Curr Chem. 2004;239:51–96.spa
dc.source.bibliographicCitationGroot AT, Dekker T, Heckel DG. The genetic basis of pheromone evolution in moths. Annu Rev Entomol [Internet]. 2016;61:99–117. Available from: http://www.annualreviews.org/doi/10.1146/annurev-ento- 010715-023638spa
dc.source.bibliographicCitationLeary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A. 2012;109(35):14081–6.spa
dc.source.bibliographicCitationMiura N, Nakagawa T, Touhara K, Ishikawa Y. Broadly and narrowly tuned odorant receptors are involved in female sex pheromone reception in Ostrinia moths. Insect Biochem Mol Biol [Internet]. 2010;40(1):64–73. Available from: http://dx.doi.org/10.1016/j.ibmb.2009.12.011spa
dc.source.bibliographicCitationLeal WS. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2012;58:373–91.spa
dc.source.bibliographicCitationCorcoran JA, Jordan MD, Thrimawithana AH, Crowhurst RN, Newcomb RD. The peripheral olfactory repertoire of the lightbrown apple moth, Epiphyas postvittana. PLoS One. 2015;10(5):e0128596.spa
dc.source.bibliographicCitationWalker III WB, Gonzalez F, Garczynski SF, Witzgall P. The chemosensory receptors of codling moth Cydia pomonella – expression in larvae and adults. Sci Rep. 2016;6:23518.spa
dc.source.bibliographicCitationDe Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun. 2017;8(15709).spa
dc.source.bibliographicCitationZhang Y-N, Zhang L-W, Chen D-S, Liang S, Zhao-Qun L, Ye Z-F, et al. Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Mol Genet Genomics. 2017;spa
dc.source.bibliographicCitationGroot AT, Staudacher H, Barthel A, Inglis O, Schöfl G, Santangelo RG, et al. One quantitative trait locus for intra- and interspecific variation in a sex pheromone. Mol Ecol. 2013;22:1065–80.spa
dc.source.bibliographicCitationKoutroumpa FA, Jacquin-Joly E. Sex in the night : Fatty acid-derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie [Internet]. 2014;1–7. Available from: http://dx.doi.org/10.1016/j.biochi.2014.07.018spa
dc.source.bibliographicCitationLiu Y, Gu S, Zhang Y, Guo Y, Wang G. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS One. 2012;7(10):e48260.spa
dc.source.bibliographicCitationGu SH, Wu KM, Guo YY, Pickett JA, Field LM, Zhou JJ, et al. Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics [Internet]. 2013;14(636). Available from: BMC Genomicsspa
dc.source.bibliographicCitationJung CR, Kim Y. Comparative transcriptome analysis of sex pheromone glands of two sympatric lepidopteran congener species. Genomics [Internet]. 2014;103(4):308–15. Available from: http://dx.doi.org/10.1016/j.ygeno.2014.02.009spa
dc.source.bibliographicCitationLi RT, Ning C, Huang LQ, Dong JF, Li X, Wang CZ. Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. Insect Biochem Mol Biol [Internet]. 2017;90:90–100. Available from: https://doi.org/10.1016/j.ibmb.2017.09.016spa
dc.source.bibliographicCitationVogel H, Heidel AJ, Heckel DG, Groot AT. Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens. BMC Genomics. 2010;11(29):16–8.spa
dc.source.bibliographicCitationXia YH, Zhang YN, Hou XQ, Li F, Dong SL. Large number of putative chemoreception and pheromone biosynthesis genes revealed by analyzing transcriptome from ovipositor-pheromone glands of Chilo suppressalis. Sci Rep. 2015;5:1–12.spa
dc.source.bibliographicCitationSvensson M. Sexual selection in moths: the role of chemical communication. Biol Rev [Internet]. 1996;71:113–35. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1469- 185X.1996.tb00743.x/fullspa
dc.source.bibliographicCitationYildizhan S, van Loon J, Sramkova A, Ayasse M, Arsene C, ten Broeke C, et al. Aphrodisiac pheromones from the wings of the small cabbage white and large cabbage white butterflies, Pieris rapae and Pieris brassicae. ChemBioChem. 2009;10(10):1666–77.spa
dc.source.bibliographicCitationMann F, Szczerbowski D, Silva L De, Mcclure M, Elias M, Schulz S. 3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly Ithomia salapia. Beilstein J Org Chem. 2020;16:2776–87.spa
dc.source.bibliographicCitationWang HL, Brattström O, Brakefield PM, Francke W, Löfstedt C. Identification and biosynthesis of novel male specific esters in the wings of the tropical butterfly, Bicyclus martius sanaos. J Chem Ecol. 2014;40(6):549–59.spa
dc.source.bibliographicCitationOzaki K, Utoguchi A, Yamada A, Yoshikawa H. Identification and genomic structure of chemosensory proteins (CSP) and odorant binding proteins (OBP) genes expressed in foreleg tarsi of the swallowtail butterfly Papilio xuthus. Insect Biochem Mol Biol [Internet]. 2008;38(11):969–76. Available from: http://dx.doi.org/10.1016/j.ibmb.2008.07.010spa
dc.source.bibliographicCitationByers KJRP, Darragh K, Garza SF, Almeida DA, Warren IA, Rastas PMA, et al. Clusteing of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. bioRxiv Prepr. 2020;spa
dc.source.bibliographicCitationBeatty CD, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature [Internet]. 2004;431(7004):63–66. Available from: http://www.nature.com/nature/journal/v431/n7004/abs/nature02818.htmlspa
dc.source.bibliographicCitationBeatty CD, Beirinckx K, Sherratt TN. The evolution of Müllerian mimicry in multispecies communities. Nature [Internet]. 2004;431(7004):63–66. Available from: http://www.nature.com/nature/journal/v431/n7004/abs/nature02818.htmlspa
dc.source.bibliographicCitationGavrilets S, Hastings A. Coevolutionary chase in two-species systems with applications to mimicry. J Theor Biol. 1998;191:415–27.spa
dc.source.bibliographicCitationHuheey JE. Studies in warning coloration and mimicry. VII. Evolutionary consequences of a Batesian- Müllerian spectrum: A model for Müllerian mimicry. Evolution (N Y) [Internet]. 1976;30(1):86–93. Available from: http://www.jstor.org/stable/2407675%5Cnhttp://www.jstor.org/stable/pdfplus/2407675.pdf?acceptTC=tr uespa
dc.source.bibliographicCitationMérot C, Le Poul Y, Théry M, Joron M. Refining mimicry: phenotypic variation tracks the local optimum. J Anim Ecol. 2016;85(4):1056–69.spa
dc.source.bibliographicCitationSheppard PM, Turner JRG. The existence of Müllerian Mimicry. Evolution (N Y). 1974;31:452–3.spa
dc.source.bibliographicCitationJoron M, Iwasa Y. The evolution of a Müllerian mimic in a spatially distributed community. J Theor Biol. 2005;237(1):87–103.spa
dc.source.bibliographicCitationJoron M. Mimicry. In: Cardé RT, Resh VH, editors. Encyclopedia of Insects. 2nd Editio. New York: Academic Press, New York.; 2009. p. 633–43.spa
dc.source.bibliographicCitationJoron M, Mallet JLB. Diversity in mimicry: Paradox or paradigm? Trends Ecol Evol. 1998;13(11):461–6.spa
dc.source.bibliographicCitationMallet J, Joron M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Annu Rev Ecol Syst [Internet]. 1999;30:201–33. Available from: http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.30.1.201spa
dc.source.bibliographicCitationIhalainen E, Lindström L, Mappes J, Puolakkainen S. Can experienced birds select for Müllerian mimicry? Behav Ecol. 2008;19(2):362–8.spa
dc.source.bibliographicCitationIhalainen E, Lindström L, Mappes J, Puolakkainen S. Can experienced birds select for Müllerian mimicry? Behav Ecol. 2008;19(2):362–8.spa
dc.source.bibliographicCitationLangham GM. Rufous-tailed jacamars and aposematic butterflies: Do older birds attack novel prey? Behav Ecol. 2006;17(2):285–90.spa
dc.source.bibliographicCitationIhalainen E, Rowland HM, Speed MP, Ruxton GD, Mappes J. Prey community structure affects how predators select for Müllerian mimicry. Proc R Soc B Biol Sci [Internet]. 2012;279(1736):2099–105. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3321702&tool=pmcentrez&rendertype=abstr actspa
dc.source.bibliographicCitationBenson WW. Natural Selection for Müllerian mimicry in Heliconius erato in Costa Rica. Science (80- ). 1972;176(4037):936–9.spa
dc.source.bibliographicCitationChouteau M, Angers B. The role of predators in maintaining the geographic organization of aposematic signals. Am Nat. 2011;178(6):810–7.spa
dc.source.bibliographicCitationOwen DF, Smith DAS, Gordon IJ, Owixy AM. Polymorphic Müllerian mimicry in a group of African butterflies: a re-assessment of the relationship between Danaus chrysippus, Acraea encedon and Acraea encedana (Lepidoptera: Nymphalidae). J Zool. 1994;232(1):93–108.spa
dc.source.bibliographicCitationGordon IJ, Smith DAS. Diversity in mimicry. Trends Ecol Evol. 1999;14(4):150–1.spa
dc.source.bibliographicCitationChouteau M, Arias M, Joron M. Warning signals are under positive frequency-dependent selection in nature. Proc Natl Acad Sci [Internet]. 2016;113(8):2164–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1519216113spa
dc.source.bibliographicCitationMallet J, McMillan WO, Jiggins CD. Mimicry and warning colour at the boundary between races and species. In: Howard D, Berlocher S, editors. Endless forms Species and speciation [Internet]. Oxford, UK: Oxford University Press; 1998. p. 390–403. Available from: http://discovery.ucl.ac.uk/67729/spa
dc.source.bibliographicCitationBrower AVZ. A new mimetic species of Heliconius (Lepidoptera: Nymphalidae), from southeastern Colombia, revealed by cladistic analysis of mitochondrial DNA sequences. Zool J Linn Soc. 1996;116:317–32.spa
dc.source.bibliographicCitationGiraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M. Two sisters in the same dress: Heliconius cryptic species. BMC Evol Biol. 2008;8(324).spa
dc.source.bibliographicCitationMérot C, Mavárez J, Evin A, Dasmahapatra KK, Mallet J, Lamas G, et al. Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biol J Linn Soc. 2013;109:830–47.spa
dc.source.bibliographicCitationNadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA, Ortiz-Zuazaga H, et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res [Internet]. 2014;24:1316–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24823669spa
dc.source.bibliographicCitationRossato DO, Boligon D, Fornel R, Kronforst MR, Gonçalves GL, Moreira GRP. Subtle variation in size and shape of the whole forewing and the red band among co-mimics revealed by geometric morphometric analysis in Heliconius butterflies. Ecol Evol [Internet]. 2018;1–16. Available from: http://doi.wiley.com/10.1002/ece3.3916spa
dc.source.bibliographicCitationVan Belleghem SM, Alicea Roman PA, Carbia Gutierrez H, Counterman BA, Papa R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc R Soc B Biol Sci [Internet]. 2020;287:20201267. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2020.1267spa
dc.source.bibliographicCitationRosser N. Speciation and biogeography of Heliconnine butterflies. 2012.spa
dc.source.bibliographicCitationde Castro ÉCP, Zagrobelny M, Cardoso MZ, Bak S. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject. Biol Rev [Internet]. 2017; Available from: http://doi.wiley.com/10.1111/brv.12357spa
dc.source.bibliographicCitationRohlf FJ. TPSDig. Stony Brook, NY: Department of Ecology and Evolution, State University of NY at Stony Brook; 2010.spa
dc.source.bibliographicCitationAdams D, Collyer M, Kaliontzopoulou A, Sherratt E. Geometric morphometric analyses of 2D/3D landmark data. https://cran.r-project.org/package=geomorph.; 2017.spa
dc.source.bibliographicCitationBookstein F. Morphometrics tools for landmark data: Geometry and biology. New York, NY: Cambridge University Press; 1991.spa
dc.source.bibliographicCitationZelditch ML, Swiderski DL, Sheets HD, Fink WL. Geometric morphometrics for biologist: a primer. San Diego, LA: Elsevier Academic Press; 2004.spa
dc.source.bibliographicCitationHijmans RJ, Williams E, Vennes C. Package ‘geosphere.’ 2019.spa
dc.source.bibliographicCitationFriendly M, Fox J. Candisc: visualizing generalized canonical discriminant and canonical correlation analysis [Internet]. 2017. Available from: https://cran.r-project.org/package=candiscspa
dc.source.bibliographicCitationVan Belleghem SM, Papa R, Ortiz-Zuazaga H, Hendrickx F, Jiggins CD, McMillan WO, et al. Patternize : An R package for quantifying color pattern variation. Methods Ecol Evol. 2018;9:390–8.spa
dc.source.bibliographicCitationSchneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;11(7):671–5.spa
dc.source.bibliographicCitationMüller F. Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans Entomol Soc London. 1879;1879:20–29.spa
dc.source.bibliographicCitationSbordoni V, Bullini L, Scarpelli G, Forestiero S, Rampini M. Mimicry in the burnet moth Zygaena ephialtes: population studies and evidence of a Batesian—Müllerian situation. Ecol Entomol. 1979;4:83–93.spa
dc.source.bibliographicCitationNiehuis O, Hofmann A, Naumann CM, Misof B. Evolutionary history of the burnet moth genus Zygaena Fabricius, 1775 (Lepidoptera: Zygaenidae) inferred from nuclear and mitochondrial sequence data: phylogeny, host-plant association, wing pattern evolution and historical biogeography. Biol J Linn Soc. 2007;92:501–20.spa
dc.source.bibliographicCitationPlowright RC, Owen RE. The evolutionary significance of bumble bee color patterns: a mimetic interpretation. Evolution (N Y). 1980;34(4):622–37.spa
dc.source.bibliographicCitationWilliams P. The distribution of bumblebee colour patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. Biol J Linn Soc. 2007;92:97–118.spa
dc.source.bibliographicCitationZrzavý J, Nedvěd O. Evolution of mimicry in the New World Dysdercus (Hemiptera: Pyrrhocoridae). J Evol Biol. 1999;12:956–69.spa
dc.source.bibliographicCitationSymula R, Schulte R, Summers K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc R Soc B Biol Sci. 2001;268:2415–21.spa
dc.source.bibliographicCitationChiari Y, Vences M, Vieites DR, Rabemananjara F, Bora P, Ramilijaona Ravoahangimalala O, et al. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol Ecol. 2004;13:3763–74.spa
dc.source.bibliographicCitationSanders KL, Malhotra A, Thorpe RS. Evidence for a Müllerian mimetic radiation in Asian pitvipers. Proc R Soc B Biol Sci. 2006;273:1135–41.spa
dc.source.bibliographicCitationSpringer VG, Smith-Vaniz WF. Mimetic relationships involving fishes of the family Blenniidae. Smithson Contrib to Zool. 1972;(112):1–36.spa
dc.source.bibliographicCitationDumbacher JP, Fleischer RC. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc R Soc B Biol Sci. 2001;268:1971–6.spa
dc.source.bibliographicCitationChittka L. Bee color vision is optimal for coding flower color, but flower colors are not optimal for being coded—why? Isr J Plant Sci. 1997;45:115–27.spa
dc.source.bibliographicCitationRoy BA, Widmer A. Floral mimicry: a fascinating yet poorly understood phenomenon. Trends Plant Sci. 1999;4(8):325–30.spa
dc.source.bibliographicCitationBenitez-Vieyra S, Hempel De Ibarra N, Wertlen AM, Cocucci AA. How to look like a mallow: Evidence of floral mimicry between Turneraceae and Malvaceae. Proc R Soc B Biol Sci. 2007;274:2239–48.spa
dc.source.bibliographicCitationJones RT, Le Poul Y, Whibley AC, Mèrot C, Ffrench-Constant RH, Joron M. Wing shape variation associated with mimicry in butterflies. Evolution (N Y). 2013;67(8):2323–34.spa
dc.source.bibliographicCitationMontejo-Kovacevich G, Smith JE, Meier JI, Bacquet CN, Whiltshire-Romero E, Nadeau NJ, et al. Altitude and life-history shape the evolution of Heliconius wings. Evolution (N Y). 2019;73(12):2436–50.spa
dc.source.bibliographicCitationMena S, Kozak KM, Cárdenas RE, Checa MF. Forest stratification shapes allometry and flight morphology of tropical butterflies. Proc R Soc B Biol Sci [Internet]. 2020;287:20201071. Available from: https://royalsocietypublishing.org/doi/10.1098/rspb.2020.1071spa
dc.source.bibliographicCitationChazot N, Panara S, Zilbermann N, Blandin P, Le Poul Y, Cornette R, et al. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies. Evolution (N Y). 2015;70(1):181–94.spa
dc.source.bibliographicCitationCespedes A, Penz CM, DeVries PJ. Cruising the rain forest floor: Butterfly wing shape evolution and gliding in ground effect. J Anim Ecol. 2015;84(3):808–16.spa
dc.source.bibliographicCitationMendoza-Cuenca L, Macías-Ordóñez R. Foraging polymorphism in Heliconius charitonia (Lepidoptera: Nymphalidae): morphological constraints and behavioural compensation. J Trop Ecol. 2005;21:407–15.spa
dc.source.bibliographicCitationMallet JLB, Jackson DA. The ecology and social behaviour of the Neotropical butterfly Heliconius xanthocles Bates in Colombia. Zool J Linn Soc. 1980;70:1–13.spa
dc.source.bibliographicCitationReed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz GC, et al. <i>Optix</> drives the repeated convergent evolution of butterfly wing pattern mimicry. Science (80- ). 2011;333(6046):1137–41.spa
dc.source.bibliographicCitationLewis JJ, Van Belleghem SM. Mechanisms of change: a population-based perspective on the roles of modularity and pleiotropy in diversification. Front Ecol Evol. 2020;8:1–12.spa
dc.source.bibliographicCitationWallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, et al. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biol. 2016;14(1):1–16.spa
dc.source.bibliographicCitationMcMillan WO, Livraghi L, Concha C, Hanly JJ. From patterning genes to process: unraveling the gene regulatory networks that pattern Heliconius wings. Front Ecol Evol. 2020;8(221):1–15.spa
dc.source.bibliographicCitationNadeau NJ, Pardo-Diaz GC, Whibley A, Supple MA, Saenko S V., Wallbank RWR, et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature [Internet]. 2016;534(7605):106–10. Available from: http://dx.doi.org/10.1038/nature17961spa
dc.source.bibliographicCitationMartin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, et al. Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proc Natl Acad Sci [Internet]. 2012;109(31):12632–7. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1204800109spa
dc.source.bibliographicCitationLewis JJ, Van Belleghem SM, Riccardo P, Danko CG, Reed RD. Many functionally connected loci foster adaptive diversification along a neotropical hybrid zone. Sci Adv. 2020;6:eabb8617.spa
dc.source.bibliographicCitationMoest M, Van Belleghem SM, James JE, Salazar C, Martin SH, Barker SL, et al. Selective sweeps on novel and introgressed variation shape mimicry loci in a butterfly adaptive radiation. Vol. 18, PLOS Biology. 2020. e3000597 p.spa
dc.source.bibliographicCitationMorris J, Navarro N, Rastas P, Rawlins LD, Sammy J, Mallet J, et al. The genetic architecture of adaptation: convergence and pleiotropy in Heliconius wing pattern evolution. Heredity (Edinb) [Internet]. 2019;123(2):138–52. Available from: http://dx.doi.org/10.1038/s41437-018-0180-0spa
dc.source.bibliographicCitationPapa R, Kapan DD, Counterman BA, Maldonado K, Lindstrom DP, Reed RD, et al. Multi-Allelic Major Effect Genes Interact with Minor Effect QTLs to Control Adaptive Color Pattern Variation in Heliconius erato. PLoS One. 2013;8(3):e57033.spa
dc.source.bibliographicCitationConcha C, Wallbank RWR, Hanly JJ, Fenner J, Livraghi L, Rivera ES, et al. Interplay between developmental flexibility and determinism in the evolution of mimetic Heliconius wing patterns. Curr Biol [Internet]. 2019;29:1–14. Available from: https://doi.org/10.1016/j.cub.2019.10.010spa
dc.source.bibliographicCitationRowe C, Lindström L, Lyytinen A. The importance of pattern similarity between Müllerian mimics in predator avoidance learning. Proc R Soc B Biol Sci. 2004;271(1537):407–13.spa
dc.source.bibliographicCitationIhalainen E, Lindström L, Mappes J. Investigating Müllerian mimicry: Predator learning and variation in prey defences. J Evol Biol. 2007;20(2):780–91.spa
dc.source.bibliographicCitationRowland HM, Ihalainen E, Lindström L, Mappes J, Speed MP. Co-mimics have a mutualistic relationship despite unequal defences. Nature. 2007;448(7149):64–7.spa
dc.source.bibliographicCitationFinkbeiner SD, Briscoe AD, Mullen SP. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution (N Y). 2017;71(4):949–59.spa
dc.source.bibliographicCitationRutowski RL, Nahm AC, Macedonia JM. Iridescent hindwing patches in the Pipevine Swallowtail: Differences in dorsal and ventral surfaces relate to signal function and context. Funct Ecol. 2010;24(4):767–75.spa
dc.source.bibliographicCitationSu S, Lim M, Kunte K. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective. Evolution (N Y). 2015;69(11):2985–94.spa
dc.source.bibliographicCitationOliver JC, Robertson KA, Monteiro A. Accommodating natural and sexual selection in butterfly wing pattern evolution. Proc R Soc B Biol Sci. 2009;276(1666):2369–75.spa
dc.source.bibliographicCitationRobertson KA, Monteiro A. Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc R Soc B Biol Sci. 2005;272(1572):1541–6.spa
dc.source.bibliographicCitationDe Bona S, Valkonen JK, López-Sepulcre A, Mappes J. Predator mimicry, not conspicuousness, explains the efficacy of butterfly eyespots. Proc R Soc B Biol Sci. 2015;282:20150202.spa
dc.source.bibliographicCitationDeVries PJ, Penz CM, Hill RI. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J Anim Ecol. 2010;79:1077–85.spa
dc.source.bibliographicCitationFinkbeiner SD. Communal roosting in Heliconius butterflies (Nymphalidae): roost recruitment, establishment, fidelity, and resource use trends based on age and sex. J Lepid Soc. 2014;68(1):10–6.spa
dc.source.bibliographicCitationWillmott KR, Willmott JCR, Elias M, Jiggins CD. Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc R Soc B. 2017;284:20170744.spa
dc.source.bibliographicCitationCuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, et al. The biology of color. Science (80- ). 2017;357(6350):eaan0221.spa
dc.source.bibliographicCitationArias M, Meichanetzoglou A, Elias M, Rosser N, De-Silva DL, Nay B, et al. Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evol Biol [Internet]. 2016;16(272):1–10. Available from: http://dx.doi.org/10.1186/s12862-016-0843-5spa
dc.source.bibliographicCitationCoyne J., Orr H. Speciation. Sunderland, Massachusets: Sinauer Associates Inc, Sunderland, MA, USA.; 2004. 545 p.spa
dc.source.bibliographicCitationWang L, Anderson DJ. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature [Internet]. 2010;463(7278):227–31. Available from: http://www.nature.com/doifinder/10.1038/nature08678spa
dc.source.bibliographicCitationHartlieb E, Anderson P. Olfactory-released behaviours. In: B.S. H, editor. Insect Olfaction. Berlin, Heidelberg: Springer; 1999. p. 315–49.spa
dc.source.bibliographicCitationAlves H, Rouault JD, Kondoh Y, Nakano Y, Yamamoto D, Kim YK, et al. Evolution of cuticular hydrocarbons of hawaiian Drosophilidae. Behav Genet. 2010;40(5):694–705.spa
dc.source.bibliographicCitationEstrada C, Gilbert LE. Host plants and immatures as mate-searching cues in Heliconius butterflies. Anim Behav [Internet]. 2010;80(2):231–9. Available from: http://dx.doi.org/10.1016/j.anbehav.2010.04.023spa
dc.source.bibliographicCitationMérot C, Salazar C, Merrill RM, Jiggins CD, Joron M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc R Soc B Biol Sci. 2017;284:20170335.spa
dc.source.bibliographicCitationDarragh K, Montejo-Kovacevich G, Kozak KM, Morrison CR, Figueiredo CME, Ready JS, et al. Species specificity and intraspecific variation in the chemical profiles of Heliconius butterflies across a large geographic range. Ecol Evol Press [Internet]. 2019;00:1–25. Available from: https://www.biorxiv.org/content/10.1101/573469v1spa
dc.source.bibliographicCitationMerrill RM, Chia A, Nadeau NJ. Divergent warning patterns contribute to assortative mating between incipient Heliconius species. Ecol Evol. 2014;4(7):911–7.spa
dc.source.bibliographicCitationKozak KM, Wahlberg N, Neild AFE, Dasmahapatra KK, Mallet J, Jiggins CD. Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Syst Biol. 2015;64(3):505–24.spa
dc.source.bibliographicCitationBrower AVZ. Parallel race formation and the evolution of mimicry in Heliconius butterflies : A phylogenetic hypothesis from mitochondrial DNA sequences. Evolution (N Y). 1996;50(1):195–221.spa
dc.source.bibliographicCitationJiggins CD, Linares M, Naisbit RE, Salazar C, Yang ZH, Mallet J. Sex-linked hybrid sterility in a butterfly. Evolution (N Y). 2001;55(8):1631–8.spa
dc.source.bibliographicCitationSanchez AP, Pardo-Diaz GC, Enciso-Romero J, Muñoz A, Jiggins CD, Salazar C, et al. An introgressed wing pattern acts as a mating cues. Evolution (N Y). 2015;69(6):1619–29.spa
dc.source.bibliographicCitationVanjari S, Mann F, Merrill R, Schulz S, Jiggins C. Male sex pheromone components in the butterfly Heliconius melpomene. bioRxiv. 2015;spa
dc.source.bibliographicCitationR Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.spa
dc.source.bibliographicCitationBates D, Maechler M, Bolker B, Walker S, Bojesen Christensen RH, Singmann H, et al. Linear Mixed-Effects Models using “Eigen” and S4. Journal of Statistical Software. 2015. p. 1–48.spa
dc.source.bibliographicCitationWickham H. ggplot2 - Elegant Graphics for Data Analysis. 2nd ed. New York, NY: Springer-Verlag; 2009. 260 p.spa
dc.source.bibliographicCitationFox J, Weisberg S. An R companion to applied regression. 2nd ed. Sage, editor. Thousand Oaks, CA; 2011. 449 p.spa
dc.source.bibliographicCitationDorai-Raj S. binom: Binomial confidence intervals for several parameterizations [Internet]. 2014. Available from: http://cran.r-project.org/package=binomspa
dc.source.bibliographicCitationHench K, Vargas M, Höppner MP, McMillan WO, Puebla O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat Ecol Evol. 2019;3(4):657–67.spa
dc.source.bibliographicCitationBay RA, Arnegard ME, Conte GL, Best J, Bedford NL, McCann SR, et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates Stickleback speciation. Curr Biol. 2017;27(21):3344-3349.e4.spa
dc.source.bibliographicCitationShahandeh MP, Pischedda A, Turner TL. Male mate choice via cuticular hydrocarbon pheromones drives reproductive isolation between Drosophila species. Evolution (N Y). 2017;72(1):123–35.spa
dc.source.bibliographicCitationKeller-Costa T, Canário AVM, Hubbard PC. Chemical communication in cichlids: A mini-review. Gen Comp Endocrinol [Internet]. 2015;221:64–74. Available from: http://dx.doi.org/10.1016/j.ygcen.2015.01.001spa
dc.source.bibliographicCitationMerrill RM, Gompert Z, Dembeck LM, Kronforst MR, McMillan WO, Jiggins CD. Mate preference across the speciation continuum in a clade of mimetic butterflies. Evolution (N Y). 2011;65(5):1489–500.spa
dc.source.bibliographicCitationMuñoz AG, Salazar C, Castaño J, Jiggins CD, Linares M. Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J Evol Biol. 2010;23(6):1312–20.spa
dc.source.bibliographicCitationSouthcott L, Kronforst M. Female mate choice is a reproductive isolating barrier in Heliconius butterflies : Ethology. 2018;124:862–8659.spa
dc.source.bibliographicCitationLarsdotter-Mellström H, Eriksson K, Liblikas I, Wiklund C, Borg-Karlson AK, Nylin S, et al. It’s all in the mix: Blend-specific behavioral response to a sexual pheromone in a butterfly. Front Physiol. 2016;7(68):1–10.spa
dc.source.bibliographicCitationSnellings Y, Herrera B, Wildemann B, Beelen M, Zwarts L, Wenseleers T, et al. The role of cuticular hydrocarbons in mate recognition in Drosophila suzukii. Sci Rep [Internet]. 2018;8(4996):1–11. Available from: http://dx.doi.org/10.1038/s41598-018-23189-6spa
dc.source.bibliographicCitationRundle HD, Chenoweth SF, Doughty P, Blows MW. Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 2005;3(11):1988–95.spa
dc.source.bibliographicCitationGrula J, McChesney J, Taylor O. Aphrodisiac pheromones of the sulfur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae). J Chem Ecol. 1980;6:241–56.spa
dc.source.bibliographicCitationWago H. Studies on the Mating Behavior of the Pale Grass Blue, Zizeeria maha argia (Lepidoptera : Lycaenidae) III. Olfactory Cues in Sexual Discrimination by Males. Appl Ent Zool. 1978;13:283–9.spa
dc.source.bibliographicCitationKoutroumpa FA, Monsempes C, François M-C, de Cian A, Royer C, Concordet J-P, et al. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep. 2016;6:29620.spa
dc.source.bibliographicCitationCounterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, et al. Genomic hotspots for adaptation: The population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet. 2010;6(2):e1000796.spa
dc.source.bibliographicCitationCounterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, et al. Genomic hotspots for adaptation: The population genetics of Müllerian mimicry in Heliconius erato. PLoS Genet. 2010;6(2):e1000796.spa
dc.source.bibliographicCitationHillier NK, Vickers NJ. The role of Heliothine hairpencil compounds in female Heliothis virescens (Lepidoptera: Noctuidae) behavior and mate acceptance. Chem Senses. 2004;29(6):499–511.spa
dc.source.bibliographicCitationSchulz S, Nishida R. The pheromone system of the male danaine butterfly, Idea leuconoe. Bioorg Med Chem. 1996;4(3):341–9.spa
dc.source.bibliographicCitationAlbre J, Steinwender B, Newcomb RD. The evolution of desaturase gene regulation involved in sex pheromone production in Leafroller Moths of the genus Planotortrix. J Hered. 2013;104(5):627–38.spa
dc.source.bibliographicCitationDopman EB, Robbins PS, Seaman A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evolution (N Y). 2010;64(4):881–902.spa
dc.source.bibliographicCitationNaisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J. Hybrid sterility, Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genet Soc Am. 2002;161:1517–26.spa
dc.source.bibliographicCitationEdwards AWF. Likelihood. Cambridge University Press; 1972.spa
dc.source.bibliographicCitationHummel HE, Miller T. Techniques in pheromone research. Springer Science and Business Media; 2012. 464 p.spa
dc.source.bibliographicCitationHammer Ø, Harper DAT, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron [Internet]. 2001;4(1)(1):1–9. Available from: http://palaeo- electronica.org/2001_1/past/issue1_01.htmspa
dc.source.bibliographicCitationBurdfield-Steel E, Pakkanen H, Rojas B, Galarza JA, Mappes J. De novo synthesis of chemical defenses in an aposematic moth. J Insect Sci. 2018;18(2):1–4.spa
dc.source.bibliographicCitationMoore BP, Brown WV, Rothschild M. Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology. 1990;1(2):43–51.spa
dc.source.bibliographicCitationKaye H, Mackintosch NJ, Rothschild M, Moore BP. Odour of pyrazine potentiates an association between environmental cues and unpalatable taste. Anim Behav. 1989;37:1–6.spa
dc.source.bibliographicCitationCoyne J, Orr H. Speciation. Sinauer Associates Inc, Sunderland, MA, USA.; 2004.spa
dc.source.bibliographicCitationBrand P, Hinojosa-Díaz IA, Ayala R, Daigle M, Yurrita Obiols CL, Eltz T, et al. The evolution of sexual signaling is linked to odorant receptor tuning in perfume-collecting orchid bees. Nat Commun [Internet]. 2020;11. Available from: http://dx.doi.org/10.1038/s41467-019-14162-6spa
dc.source.bibliographicCitationLöfstedt C, Wahlberg N, Millar JG. Evolutionary Patterns of Pheromone Diversity in Lepidoptera. In: Berkeley ed. JARC, editor. Pheromone Communication in Moths : Evolution, Behavior and Application. University of California Press; 2016. p. 43-78.spa
dc.source.bibliographicCitationByers KJRP, Darragh K, Musgrove J, Abondano Almeida D, Garza SF, Warren IA, et al. A major locus controls a biologically active pheromone component in Heliconius melpomene. Evolution (N Y). 2020;1–16.spa
dc.source.bibliographicCitationConner W, Iyengar V. Male pheromones in moths. In pheromone communication. In: Allison J, Ring C, editors. Evolution, Behavior and Application. Berkeley: University of California Press; 2016. p. 191–208.spa
dc.source.bibliographicCitationAldrich JR, Blum MS, Duffey SS, Fales HM. Male specific natural products in the bug, Leptoglossus phyllopus: Chemistry and possible function. J Insect Physiol. 1976;22(9):1201–6.spa
dc.source.bibliographicCitationMorgan ED. Biosynthesis in insects: advanced edition. Royal Society of Chemistry, editor. RSC Publishing; 2010. 362 p.spa
dc.source.bibliographicCitationMeyer HJ, Norris DM. Vanillin and Syringaldehyde as attractants (Coleoptera: Scolytidae). Ann Entomol Soc Am. 1967;60(4):858–9.spa
dc.source.bibliographicCitationSeenivasagan T, Sharma KR, Sekhar K, Ganesan K, Prakash S, Vijayaraghavan R. Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol Res. 2009;104:827–33.spa
dc.source.bibliographicCitationSimmons LW, Alcock J, Reeder A. The role of cuticular hydrocarbons in male attraction and repulsion by female Dawson’s burrowing bee, Amegilla dawsoni. Anim Behav. 2003;66:677–85.spa
dc.source.bibliographicCitationCombs PA, Krupp JJ, Khosla NM, Bua D, Petrov DA, Levine JD, et al. Tissue-specific cis-regulatory divergence implicates eloF in inhibiting interspecies mating in Drosophila. Curr Biol. 2018;28(24):3969-3975.e3.spa
dc.source.bibliographicCitationKost S, Heckel DG, Yoshido A, Groot AT. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution (N Y). 2016;70(6):1418–27.spa
dc.source.bibliographicCitationSmadja CM, Butlin RK. A framework for comparing processes of speciation in the presence of gene flow. Mol Ecol. 2011;20(24):5123–40.spa
dc.source.bibliographicCitationSeehausen O, Takimoto G, Roy D, Jokela J. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol. 2008;17:30 – 44.spa
dc.source.bibliographicCitationSouthcott L, Kronforst M. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology. 2018;124:862–8659.spa
dc.source.bibliographicCitationGleason JM, James RA, Wicker-Thomas C, Ritchie MG. Identification of quantitative trait loci function through analysis of multiple cuticular hydrocarbons differing between Drosophila simulans and Drosophila sechellia females. Heredity (Edinb) [internet] 2009, 103(5):416-24. Available from: http:dx.doi.org/10.1038/hdy.2009.79spa
dc.source.bibliographicCitationTeal PEA, Tumlinson JH. Effects of interspecific hybridization between Heliothis virescens and H. subflexa on the sex pheromone communication system. Insect Physol. 1997;41:519–25.spa
dc.source.bibliographicCitationConstantino LM, Salazar JA. Natural hybridization of Heliconius cydno Doubleday from Western Colombia (Lepidoptera: Nymphalidae: Heliconiinae). Bol Cient del Mus Hist Nat Univ Caldas. 1998;2(June):41–5.spa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectMariposas del género Heliconiusspa
dc.subjectAnálisis del mimetismo batesiano y mülleriano de los Heliconiusspa
dc.subjectSistema de identificación entre mariposas comimeticasspa
dc.subjectIdentificación de señales químicas distintivas entre especies distintas de Heliconiusspa
dc.subject.ddcInvertebradosspa
dc.subject.keywordButterflies of the genus Heliconiusspa
dc.subject.keywordAnalysis of the Batesian and Müllerian mimicry of the Heliconiusspa
dc.subject.keywordIdentification system between comimetic butterfliesspa
dc.subject.keywordIdentification of distinctive chemical signals between species other than Heliconiusspa
dc.titleIntra and inter-specific communication in Heliconiusspa
dc.title.TranslatedTitleComunicación intra e inter-específica en Heliconiuseng
dc.typedoctoralThesiseng
dc.type.documentMonografíaspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de doctoradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_doctoral_Gonzalez.pdf
Tamaño:
45.29 MB
Formato:
Adobe Portable Document Format
Descripción: