Ítem
Embargo

The role of intensity, temporal synchrony, and biogenic amines for unimodal and multimodal integration during learning and memory of honey bees and bumble bees

dc.contributor.advisorRiveros Rivera, André Josafat
dc.contributor.gruplacCANNON
dc.creatorGil-Guevara, Oswaldo
dc.creator.degreeDoctor en Ciencias Biomédicas y Biológicas
dc.creator.degreeLevelDoctorado
dc.creator.degreetypeFull time
dc.date.accessioned2024-08-20T12:44:48Z
dc.date.available2024-08-20T12:44:48Z
dc.date.created2023-08-23
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2025-08-21
dc.descriptionThis PhD thesis investigates the interplay between bimodal signal integration, multisensory processing, and the role of biogenic amines in learning and memory tasks of honey bees and bumble bees. The three chapters provide valuable insights into these interconnected concepts and on the mechanisms underlying bee’s behaviour. The first chapter focuses on the dependency of intensity, for the integration of bimodal signals during learning and memory tasks. My findings demonstrate that successful integration of multimodal signals in honey bees during learning and memory tasks is influenced by the intensity levels of their individual components. This integration follows the principle of inverse effectiveness, akin to observations in vertebrates, suggesting comparable underlying neuronal computations. The second chapter explored the interaction between synchronicity, temporal order and intensity during learning and memory in honey bees. My results support an interaction between the temporal rule and inverse effectiveness principles, suggesting that bees exhibit enhanced perceptual processing when exposed to synchronous bimodal stimuli, particularly at lower levels. Additionally, I found that alternate temporal orders of asynchronous stimuli affected performance only at low intensities. Finally, in chapter 3 I investigated the effects of biogenic amines on unimodal and bimodal PER conditioning in bumble bees expanding our understanding of how octopamine (OA) and dopamine (DA) work in tandem to modulate appetitive learning and memory. My results suggest that the influence of octopamine (OA) and dopamine (DA) administration on learning and memory processes is concentration-dependent and exhibits distinct patterns. Such patterns agree with the well known role of OA as modulator of olfactory and visual learning and including its modulatory role in bimodal learning. While in insects DA is believed to modulate aversive learning here my results suggest an previously unknown inhibitory role during olfactory, visual and bimodal appetitive learning. These results potentially open new avenues of research into the rewarding systems in bees, and insects in general, allowing direct comparisons with vertebrates. Overall, the striking similarities observed between vertebrates and insects regarding multimodal integration principles and the involvement of biogenic amines underscore the universality of these mechanisms across different taxa. These findings contribute to our broader understanding of the neural mechanisms underlying learning and memory processes, emphasizing the adaptive strategies employed by animals in their foraging behaviour involving multiple modalities.
dc.description.abstractMultisensory integration is a fundamental aspect of learning and memory across animals and is particularly relevant during ecological tasks such as foraging and pollination. This study aimed to investigate the influence of external physical properties of unimodal elements of a composed signal such as intensity and the temporal relationships (synchronicity and order) on the multimodal integration of olfactory and visual signals in honey bees. Furthermore, this study targeted the exploration of the impact of biogenic amines on unimodal and multimodal learning and memory processes in bumble bees, recognizing the crucial role of the inner neuromodulatory environment in the formation of rewarding associations. Through an electromechanical setup, bees were trained using precisely controlled intensity levels and temporal relationships (sync /out of sync /alternate orders presentation) of unimodal and bimodal stimuli. The Proboscis Extension Response (PER) conditioning protocol was employed as a measure of reward learning. To manipulate the neuromodulatory environment of bumble bees, oral administration of biogenic amines, octopamine (OA) and dopamine (DA) agonist 6,7-ADTN was employed. Our findings support the Principle of Inverse Effectiveness (PoIE), indicating that bimodal stimuli are more effectively learned and retained when the individual unisensory responses are relatively weak. The interaction between synchrony and intensity significantly influenced bimodal learning and memory, with maximal enhancement observed at low intensities and synchronous stimuli. Furthermore, our investigation into the role of biogenic amines revealed concentration-dependent and opposing effects OA and DA during unimodal and bimodal appetitive learning. Higher doses of OA improved performance across all modalities, while DA had modality and dose-dependent inhibitory effects. These results provide valuable insights into the complex mechanisms and neural modulation underlying appetitive learning tasks in bees, contributing to our understanding of their behavioural adaptation to complex signals. Ultimately, these findings suggest remarkable parallels between the mechanisms of multisensory integration and rewarding systems in bees and vertebrates. These shared characteristics underscore the significance of bees as a valuable comparative model in neuroscience research.
dc.description.sponsorshipPrograma de Becas COLCIENCIAS-Colfuturo No. 727 de la República de Colombia
dc.description.sponsorshipAnimal Behavior Society (ABS Developing Nations Award 2020, otorgado a Oswaldo Gil-Guevara)
dc.format.extent197 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_43290
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/43290
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentEscuela de Medicina y Ciencias de la Salud
dc.publisher.programDoctorado en Ciencias Biomédicas y Biológicas
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accesoRestringido (Temporalmente bloqueado)
dc.rights.licenciaPARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitationMoller, Peter (2002) Multimodal sensory integration in weakly electric fish: a behavioral account. En: Journal of Physiology-Paris. Vol. 96; No. 5-6; pp. 547 - 556; Disponible en: http://linkinghub.elsevier.com/retrieve/pii/S092842570300010X; papers2://publication/doi/10.1016/S0928-4257(03)00010-X.
dc.source.bibliographicCitationStein, Barry E; Stanford, Terrence R (2008) Multisensory integration: current issues from the perspective of the single neuron. En: Nature Reviews Neuroscience. Vol. 9; No. 4; pp. 255 - 266; Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA. bestein@wfubmc.edu Disponible en: http://www.nature.com/doifinder/10.1038/nrn2331; papers2://publication/doi/10.1038/nrn2331.
dc.source.bibliographicCitationCrapse, Trinity B; Sommer, Marc A (2008) Corollary discharge across the animal kingdom. En: Nature Reviews Neuroscience. Vol. 9; No. 8; pp. 587 - 600; Disponible en: http://www.nature.com/doifinder/10.1038/nrn2457; papers2://publication/doi/10.1038/nrn2457.
dc.source.bibliographicCitationOtto, Thomas U; Dassy, Brice; Mamassian, Pascal (2013) Principles of multisensory behavior. En: The Journal of neuroscience : the official journal of the Society for Neuroscience. Vol. 33; No. 17; pp. 7463 - 74; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23616552. Disponible en: 10.1523/JNEUROSCI.4678-12.2013.
dc.source.bibliographicCitationMeredith, M. Alex; Stein, Barry E. (1996) Spatial Determinants of Multisensory Colliculus Neurons Integration in Cat Superior. En: Journal of Neurophysiology. Vol. 75; No. 5; pp. 1843 - 1857.;
dc.source.bibliographicCitationLeo, Fabrizio; Bertini, Caterina; di Pellegrino, Giuseppe; Làdavas, Elisabetta (2008) Multisensory integration for orienting responses in humans requires the activation of the superior colliculus. En: Experimental brain research. Vol. 186; No. 1; pp. 67 - 77; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18008066. Disponible en: 10.1007/s00221-007-1204-9.
dc.source.bibliographicCitationten Cate, Carel; Rowe, Candy (2007) Biases in signal evolution: learning makes a difference. En: Trends in Ecology and Evolution. Vol. 22; No. 7; pp. 380 - 387; 0169-5347; Disponible en: 10.1016/j.tree.2007.03.006.
dc.source.bibliographicCitationEndler, John A.; Basolo, Alexandra L. (1998) Sensory ecology, receiver biases and sexual selection. En: Trends in Ecology and Evolution. Vol. 13; No. 10; pp. 415 - 420; 0169-5347; Disponible en: 10.1016/S0169-5347(98)01471-2.
dc.source.bibliographicCitationRiveros, Andre J.; Gronenberg, Wulfila (2012) Decision-making and associative color learning in harnessed bumblebees (Bombus impatiens). En: Animal Cognition. Vol. 15; No. 6; pp. 1183 - 1193; 1435-9456 (Electronic) 1435-9448 (Linking); Disponible en: 10.1007/s10071-012-0542-6.
dc.source.bibliographicCitationRiveros, Andre J.; Gronenberg, Wulfila (2009) Olfactory learning and memory in the bumblebee Bombus occidentalis. En: Naturwissenschaften. Vol. 96; No. 7; pp. 851 - 856; 1432-1904 (Electronic) 0028-1042 (Linking); Disponible en: 10.1007/s00114-009-0532-y.
dc.source.bibliographicCitationRiveros, Andre J; Gronenberg, Wulfila (2009) Learning from learning and memory in bumblebees. En: Communicative & Integrative Biology. Vol. 2; No. 5; pp. 437 - 440; Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2775245&tool=pmcentrez&rendertype=abstract. Disponible en: 0.1007/s00114-009-0532-y.
dc.source.bibliographicCitationJernigan, C M; Roubik, D W; Wcislo, W T; Riveros, a J (2014) Color-dependent learning in restrained Africanized honey bees. En: The Journal of experimental biology. Vol. 217; pp. 337 - 43; 1477-9145 (Electronic)\r0022-0949 (Linking); Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24072797. Disponible en: 10.1242/jeb.091355.
dc.source.bibliographicCitationLeonard, Anne S; Dornhaus, Anna; Papaj, Daniel R (2011) Why are floral signals complex? an outline of functional hypotheses. En: The Systematics Association Special Volume 81: Evolution of Plant-Pollinator Relationships. pp. 279 - 300; Cambridge: Cambridge University Press; 9780521198929; Disponible en: 10.1017/CBO9781139014113.010.
dc.source.bibliographicCitationTakeda, K (1961) Classical Conditioned Response in the Honey Bee. En: Journal of Insect Physiology. Vol. 6; No. 3; pp. 168–179 - 168–179; 0022-1910; Disponible en: 10.1111/j.1365-2982.2005.00691.x.
dc.source.bibliographicCitationMatsumoto, Yukihisa; Menzel, Randolf; Sandoz, Jean Christophe; Giurfa, Martin (2012) Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. En: Journal of Neuroscience Methods. Vol. 211; No. 1; pp. 159 - 167; Elsevier B.V.; 1872-678X (Electronic)\r0165-0270 (Linking); Disponible en: http://dx.doi.org/10.1016/j.jneumeth.2012.08.018. Disponible en: 10.1016/j.jneumeth.2012.08.018.
dc.source.bibliographicCitationGegear, Robert J.; Laverty, Terence M. (2001) The effect of variation among floral traits on the flower constancy of pollinators. En: Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution. pp. 1 - 20; 0521781957; Disponible en: http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511542268&cid=CBO9780511542268A008&tabName=Chapter. Disponible en: 10.1017/CBO9780511542268.002.
dc.source.bibliographicCitationRubi, Tricia L.; Stephens, David W. (2016) Should receivers follow multiple signal components? An economic perspective. En: Behavioral Ecology. Vol. 27; No. 1; pp. 36 - 44; Disponible en: https://academic.oup.com/beheco/article/27/1/36/1742218. Disponible en: 10.1093/beheco/arv121.
dc.source.bibliographicCitationKulahci, I. G; Dornhaus, A.; Papaj, D. R (2008) Multimodal signals enhance decision making in foraging bumble-bees. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 275; No. 1636; pp. 797 - 802; 0962-8452; Disponible en: http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2007.1176. Disponible en: 10.1098/rspb.2007.1176.
dc.source.bibliographicCitationDukas, Reuven; Ratcliffe, John M (2009) Cognitive Ecology II. En: Library. pp. 372 - 372; Chicago and London: The University of Chicago Press; 9780226169354; Disponible en: http://books.google.com/books?hl=en&lr=&id=TAiAcZ0Q9LQC&oi=fnd&pg=PR4&dq=Cognitive+ecology+II&ots=orjCrP6lZ0&sig=-SMlCU6O5iVMf4N-hSbczW0fr9M. Disponible en: 10.1016/j.anbehav.2010.03.021.
dc.source.bibliographicCitationChittka, Lars; Thomson, James D. (2001) Cognitive ecology of pollination: animal behavior and floral evolution. En: Cambridge University Press. Vol. 108; pp. 287 - 288; 0511040970; Disponible en: http://doi.wiley.com/10.1046/j.1439-0310.2002.00774.x. Disponible en: 10.1046/j.1439-0310.2002.00774.x.
dc.source.bibliographicCitationLeonard, Anne S.; Masek, Pavel (2014) Multisensory integration of colors and scents: Insights from bees and flowers. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 200; No. 6; pp. 463 - 474; 0340-7594; Disponible en: 10.1007/s00359-014-0904-4.
dc.source.bibliographicCitationHori, Sayaka; Takeuchi, Hideaki; Arikawa, Kentaro; Kinoshita, Michiyo; Ichikawa, Naoko; Sasaki, Masami; Kubo, Takeo (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 192; pp. 691 - 700.; 0340-7594; Disponible en: 10.1007/s00359-005-0091-4.
dc.source.bibliographicCitationRaguso, Robert A. (2004) Flowers as sensory billboards: Progress towards an integrated understanding of floral advertisement. En: Current Opinion in Plant Biology. Vol. 7; No. 4; pp. 434 - 440; 1369-5266; Disponible en: 10.1016/j.pbi.2004.05.010.
dc.source.bibliographicCitationHori, Sayaka; Takeuchi, Hideaki; Kubo, Takeo (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 193; No. 8; pp. 825 - 833; 0340-7594; Disponible en: 10.1007/s00359-007-0234-x.
dc.source.bibliographicCitationTaborsky, Michael (2014) Tribute to tinbergen: The four problems of biology. a critical appraisal. En: Ethology. Vol. 120; No. 3; pp. 224 - 227; 01791613; Disponible en: 10.1111/eth.12209.
dc.source.bibliographicCitationLeonard, Anne S.; Francis, Jacob S. (2017) Plant–animal communication: past, present and future. En: Evolutionary Ecology. Vol. 31; No. 2; pp. 143 - 151; Springer International Publishing; Disponible en: 10.1007/s10682-017-9884-5.
dc.source.bibliographicCitationGiurfa, Martin (2007) Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 193; No. 8; pp. 801 - 824; 0340-7594; Disponible en: 10.1007/s00359-007-0235-9.
dc.source.bibliographicCitationKatzenberger, Tim D.; Lunau, Klaus; Junker, Robert R. (2013) Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. En: Behavioral Ecology and Sociobiology. Vol. 67; No. 10; pp. 1587 - 1599; 0340-5443; Disponible en: 10.1007/s00265-013-1570-1.
dc.source.bibliographicCitationDobrin, Scott E.; Fahrbach, Susan E. (2012) Visual associative learning in restrained honey bees with intact antennae. En: PLoS ONE. Vol. 7; No. 6; pp. 1 - 7; 1932-6203; Disponible en: 10.1371/journal.pone.0037666.
dc.source.bibliographicCitationRubi, Tricia L.; Stephens, David W. (2016) Does multimodality per se improve receiver performance? An explicit comparison of multimodal versus unimodal complex signals in a learned signal following task. En: Behavioral Ecology and Sociobiology. Vol. 70; pp. 409 - 416.; Disponible en: 10.1007/s00265-016-2061-y.
dc.source.bibliographicCitationAltieri, Nicholas; Stevenson, Ryan A.; Wallace, Mark T.; Wenger, Michael J. (2015) Learning to Associate Auditory and Visual Stimuli: Behavioral and Neural Mechanisms. En: Brain Topography. Vol. 28; No. 3; pp. 479 - 493; Disponible en: 10.1007/s10548-013-0333-7.
dc.source.bibliographicCitationMota, T.; Giurfa, M.; Sandoz, J.-C. (2011) Color modulates olfactory learning in honeybees by an occasion-setting mechanism. En: Learning & Memory. Vol. 18; pp. 144 - 155.; 1072-0502; Disponible en: http://www.learnmem.org/cgi/doi/10.1101/lm.2073511. Disponible en: 10.1101/lm.2073511.
dc.source.bibliographicCitationBalamurali, G. S.; Somanathan, Hema; Hempel de Ibarra, N. (2015) Motion cues improve the performance of harnessed bees in a colour learning task. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 201; No. 5; pp. 505 - 511; Springer Berlin Heidelberg; 1432-1351 (Electronic)\r0340-7594 (Linking); Disponible en: http://dx.doi.org/10.1007/s00359-015-0994-7. Disponible en: 10.1007/s00359-015-0994-7.
dc.source.bibliographicCitationRowe, Candy (2005) Multisensory learning: from experimental psychology to animal training. En: Anthrozoos. Vol. 18; No. 3; pp. 222 - 235; Disponible en: http://search.ebscohost.com/login.aspx?direct=true&db=eih&AN=20486609&site=eds-live.
dc.source.bibliographicCitationReichert, Michael S.; Quinn, John L. (2017) Cognition in Contests: Mechanisms, Ecology, and Evolution. En: Trends in Ecology and Evolution. Vol. 32; No. 10; pp. 773 - 785; Elsevier Ltd; Disponible en: http://dx.doi.org/10.1016/j.tree.2017.07.003. Disponible en: 10.1016/j.tree.2017.07.003.
dc.source.bibliographicCitationPartan, Sarah R. (2017) Multimodal shifts in noise: switching channels to communicate through rapid environmental change. En: Animal Behaviour. Vol. 124; pp. 325 - 337; Elsevier Ltd; Disponible en: http://dx.doi.org/10.1016/j.anbehav.2016.08.003. Disponible en: 10.1016/j.anbehav.2016.08.003.
dc.source.bibliographicCitationKrueger Fister, Juliane; Stevenson, Ryan A.; Nidiffer, Aaron R.; Barnett, Zachary P.; Wallace, Mark T. (2016) Stimulus intensity modulates multisensory temporal processing. En: Neuropsychologia. Vol. 88; pp. 92 - 100; Elsevier; 0028-3932,00283932; Disponible en: http://dx.doi.org/10.1016/j.neuropsychologia.2016.02.016. Disponible en: 10.1016/j.neuropsychologia.2016.02.016.
dc.source.bibliographicCitationGhosh, D. Dipon; Nitabach, Michael N.; Zhang, Yun; Harris, Gareth (2017) Multisensory integration in C. elegans. En: Current Opinion in Neurobiology. Vol. 43; pp. 110 - 118; Elsevier Ltd; 1873-6882 (Electronic) 0959-4388 (Linking); Disponible en: http://dx.doi.org/10.1016/j.conb.2017.01.005. Disponible en: 10.1016/j.conb.2017.01.005.
dc.source.bibliographicCitationPavlov, I (1927) Conditioned reflexes. New York, New York, USA.: Dover Publications;
dc.source.bibliographicCitationGiurfa, M.; Sandoz, J.-C. (2012) Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. En: Learning & Memory. Vol. 19; pp. 54 - 66.; 1549-5485 (Electronic)\n1072-0502 (Linking); Disponible en: http://learnmem.cshlp.org/cgi/doi/10.1101/lm.024711.111. Disponible en: 10.1101/lm.024711.111.
dc.source.bibliographicCitationBitterman, M. E.; Menzel, R.; Fietz, A.; Schäfer, S. (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). En: Journal of comparative psychology (Washington, D.C. : 1983). Vol. 97; No. 2; pp. 107 - 119; 0735-7036; Disponible en: 10.1037//0735-7036.97.2.107.
dc.source.bibliographicCitationHorridge, Adrian (2009) What does the honeybee see? And How do we know?: a critique of scientific reason. : Australian National University Press, Canberra;
dc.source.bibliographicCitationMeredith, M A; Stein, Barry E (1986) Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. En: Journal of Neurophysiology. Vol. 56; No. 3; pp. 640 - 662; 0022-3077 (Print)\r0022-3077 (Linking); Disponible en: http://jn.physiology.org/content/56/3/640.abstract. Disponible en: citeulike-article-id:844215.
dc.source.bibliographicCitationMeredith, M.Alex; Stein, Barry E. (1983) Interactions Among Converging Sensory Inputs in the Superior Colliculus. En: Science. Vol. 221; No. 4608; pp. 389 - 391.; Disponible en: 10.1126/science.6867718.
dc.source.bibliographicCitationMaBouDi, Ha Di; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars (2017) Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. En: PLoS Computational Biology. Vol. 13; No. 6; pp. e1005551. - e1005551.; 1111111111; Disponible en: 10.1371/journal.pcbi.1005551.
dc.source.bibliographicCitationCarcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe (2015) Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain. En: Journal of Neuroscience. Vol. 35; No. 10; pp. 4157 - 4167; 1529-2401; Disponible en: 10.1523/JNEUROSCI.0734-14.2015.
dc.source.bibliographicCitationCarcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe (2018) Differential Processing by Two Olfactory Subsystems in the Honeybee Brain. En: Neuroscience. Vol. 374; 0022-3077; Disponible en: 10.1016/j.neuroscience.2018.01.029.
dc.source.bibliographicCitationSrinivasan, M.V.; Zhang, S.W.; H., Zhu (1998) Honeybees link sights to smells. En: Nature. Vol. 396; No. December; pp. 637 - 638;
dc.source.bibliographicCitationHatt, H.; Bauer, Ulrike (1980) Single unit analysis of mechano- and chemosensitive neurones in the crayfish claw. En: Neuroscience Letters. Disponible en: 10.1016/0304-3940(80)90085-3.
dc.source.bibliographicCitationBernstein, Lynne E.; Auer, Edwardt T. J.R.; Moore, Ean K. (2004) Audiovisual Speech Binding: Convergence or Association?. En: The handbook of multisensory processes. pp. 203 - 224; Cambridge, Massachusetts; London, Engand: The MIT Press; 0-262-03321-6;
dc.source.bibliographicCitationKaas, Jon H.; Collins, Christine E. (2004) The Resurrection of Multisensory Cortex in Primates: Connection Patterns That Integrate Modalities. En: The handbook of multisensory processes. pp. 285 - 294; Cambridge, Massachusetts; London, Engand: The MIT Press; 0-262-03321-6;
dc.source.bibliographicCitationKing, Andrew J.; Doubell, Timothy P.; Skaliora, Irini (2004) Epigenetic Factors That Align Visual and Auditory Maps in the Ferret Midbrain. En: The handbook of multisensory processes. pp. 599 - 612; Cambridge, Massachusetts; London, Engand: The MIT Press; 0-262-03321-6;
dc.source.bibliographicCitationWallace, Mark T.; Ramachandran, Ramnarayan; Stein, Barry E. (2004) A revised view of sensory cortical parcellation. En: Proceedings of the National Academy of Sciences. 0027-8424 (Print)\r0027-8424 (Linking); Disponible en: 10.1073/pnas.0305697101.
dc.source.bibliographicCitationHomberg, Uwe; Erber, Joachim (1979) Response characteristics and identification of extrinsic mushroom body neurons of the bee. En: Zeitschrift fur Naturforschung. Vol. 34; No. 7-8; pp. 612 - 615; 0939-5075; Disponible en: 10.1515/znc-1979-7-820.
dc.source.bibliographicCitationErber, J. (1978) Response characteristics and after effects of multimodal neurons in the mushroom body area of the honey bee. En: Physiological Entomology. Vol. 3; No. 2; pp. 77 - 89; 1365-3032; Disponible en: 10.1111/j.1365-3032.1978.tb00137.x.
dc.source.bibliographicCitationMenzel, R (2001) Searching fort the memory trace in a mini-brain, the honeybee. En: Learn. Mem. Vol. 8; pp. 53 - 62; Disponible en: 10.1101/lm.38801.logeny.
dc.source.bibliographicCitationGalizia, C. Giovanni; Rössler, Wolfgang (2010) Parallel Olfactory Systems in Insects: Anatomy and Function. En: Annual Review of Entomology. Vol. 55; No. 1; pp. 399 - 420; 1545-4487 (Electronic)\r0066-4170 (Linking); Disponible en: http://www.annualreviews.org/doi/10.1146/annurev-ento-112408-085442. Disponible en: 10.1146/annurev-ento-112408-085442.
dc.source.bibliographicCitationSandoz, Jean Christophe (2011) Behavioral and Neurophysiological Study of Olfactory Perception and Learning in Honeybees. En: Frontiers in Systems Neuroscience. Vol. 5; No. 98; pp. 1 - 20; 1662-5137 (Electronic)\r1662-5137 (Linking); Disponible en: http://journal.frontiersin.org/article/10.3389/fnsys.2011.00098/abstract. Disponible en: 10.3389/fnsys.2011.00098.
dc.source.bibliographicCitationCarcaud, Julie; Giurfa, Martin; Sandoz, Jean Christophe (2016) Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract. En: Frontiers in Integrative Neuroscience. Vol. 9; 1662-5145 (Electronic)\r1662-5145 (Linking); Disponible en: 10.3389/fnint.2015.00075.
dc.source.bibliographicCitationLlinas, Rodolfo R.; Roy, Sisir (2009) The 'prediction imperative' as the basis for self-awareness. En: Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 364; No. 1521; pp. 1301 - 1307; 1471-2970 (Electronic) 0962-8436 (Linking); Disponible en: 10.1098/rstb.2008.0309.
dc.source.bibliographicCitationHempel de Ibarra, N.; Vorobyev, M.; Menzel, R. (2014) Mechanisms, functions and ecology of colour vision in the honeybee. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 200; No. 6; pp. 411 - 433; 0340-7594; Disponible en: 10.1007/s00359-014-0915-1.
dc.source.bibliographicCitationKatz, Paul; Grillner, Sten; Wilson, Rachel; Borst, Alexander; Greenspan, Ralph; Buzsáki, György; Martin, Kevan; Marder, Eve; Kristan, William; Friedrich, Rainer; Chklovskii, Dmitri “Mitya” (2013) Vertebrate versus invertebrate neural circuits. En: Current Biology. Vol. 23; No. 12; pp. R504 - R506; 0960-9822; Disponible en: http://linkinghub.elsevier.com/retrieve/pii/S0960982213006349. Disponible en: 10.1016/j.cub.2013.05.039.
dc.source.bibliographicCitationSmarandache-Wellmann, Carmen Ramona (2016) Arthropod neurons and nervous system. En: Current Biology. Vol. 26; No. 20; pp. R960 - R965; Elsevier; Disponible en: http://dx.doi.org/10.1016/j.cub.2016.07.063. Disponible en: 10.1016/j.cub.2016.07.063.
dc.source.bibliographicCitationStrube-Bloss, Martin F.; Rössler, Wolfgang (2018) Multimodal integration and stimulus categorization in putative mushroom body output neurons of the honeybee. En: Royal Society Open Science. Vol. 5; pp. 171785 - 171785; Disponible en: http://dx.doi.org/10.1098/rsos.171785. Disponible en: 10.1098/rsos.171785.
dc.source.bibliographicCitationKajikawa, Yoshinao; Falchier, Arnaud; Musacchia, Gabriella; Lakatos, Peter; Schroeder, Charles E. (2012) Audiovisual integration in Nonhuman primates. En: The Neural Bases of Multisensory Processes. pp. 65 - 98; Boca Raton (FL), London, New York: CRC Press/Taylor & Francis;
dc.source.bibliographicCitationStein, Barry E.; Huneycutt, W. Scott; Meredith, M. Alex (1988) Neurons and behavior: the same rules of multisensory integration apply. En: Brain Research. Vol. 448; pp. 355 - 358; 0006-8993 (Print); Disponible en: 10.1016/j.neucom.2017.06.026.
dc.source.bibliographicCitationMauelshagen, J. (1993) Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. En: Journal of neurophysiology. Vol. 69; No. 2; pp. 609 - 625; 0022-3077 (Print)\r0022-3077 (Linking); Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/8459289. Disponible en: 10.1152/jn.1993.69.2.609.
dc.source.bibliographicCitationEhmer, Birgit; Gronenberg, Wulfila (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). En: Journal of Comparative Neurology. Vol. 451; No. 4; pp. 362 - 373.; 0021-9967 (Print)\r0021-9967 (Linking); Disponible en: 10.1002/cne.10355.
dc.source.bibliographicCitationMeredith, M. Alex; Stein, Barry E. (1986) Spatial factors determine the activity of multisensory neurons in cat superior colliculus. En: Brain Research. Vol. 365; pp. 350 - 354; Disponible en: http://www.cedrat-technologies.com/fileadmin/user_upload/cedrat_groupe/Publications/Publications/2004/06/Actuator2004_P85_Tool_adaptor_for_active_vibration_control_in_turning_operations.pdf. Disponible en: 10.1016/0006-8993(86)91648-3.
dc.source.bibliographicCitationGiurfa, Martin; Zhang, Shaowu; Jenett, Arnim; Menzel, Randolf; Srinivasan, Mandyam V. (2001) The concepts of 'sameness' and 'difference' in an insect. En: Nature. Vol. 410; No. 6831; pp. 930 - 933; 0028-0836; Disponible en: 10.1038/35073582.
dc.source.bibliographicCitationRaguso, Robert A. (2001) Floral scent, olfaction, and scent-driven foraging behavior. En: Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution. pp. 83 - 105; Cambridge, UK: Cambridge University Press;
dc.source.bibliographicCitationChittka, Lars; Spaethe, Johannes; Schmidt, Annette; Hickelsberger, Anja (2009) Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision. En: Cognitive Ecology of Pollination. pp. 106 - 126; Cambridge, UK Disponible en: 10.1017/cbo9780511542268.007.
dc.source.bibliographicCitationDomjan, Michael (2015) The principles of learning and behavior. pp. 433 - 433; Stamford, CT, USA: Cengage Learning; 13: 978-1-285-08856-3;
dc.source.bibliographicCitationSandoz, Jean-Christophe; Menzel, Randolf (2001) Side-Specificity of Olfactory Learning in the Honeybee: Generalization between Odors and Sides. En: Learning & Memory. Vol. 8; No. 5; pp. 286 - 294; 1072-0502; Disponible en: http://www.learnmem.org/cgi/doi/10.1101/lm.41401. Disponible en: 10.1101/lm.41401.
dc.source.bibliographicCitationGuerrieri, Fernando; Schubert, Marco; Sandoz, Jean Christophe; Giurfa, Martin (2005) Perceptual and neural olfactory similarity in honeybees. En: PLoS Biology. Vol. 3; No. 4; pp. 0718 - 0732; 1545-7885 (Electronic)\r1544-9173 (Linking); Disponible en: 10.1371/journal.pbio.0030060.
dc.source.bibliographicCitationSandoz, Jean-Christophe (2013) Neural Correlates of Olfactory Learning in the Primary Olfactory Center of the Honeybee Brain. En: Handbook of Behavioral Neuroscience. pp. 416 - 432; Elsevier; 1569-7339; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780124158238000307. Disponible en: 10.1016/B978-0-12-415823-8.00030-7.
dc.source.bibliographicCitationWebb, Barbara (2004) Neural mechanisms for prediction: Do insects have forward models?. En: Trends in Neurosciences. Vol. 27; No. 5; pp. 278 - 282; 0166-2236; Disponible en: 10.1016/j.tins.2004.03.004.
dc.source.bibliographicCitationHartline, D. K.; Colman, D. R. (2007) Rapid Conduction and the Evolution of Giant Axons and Myelinated Fibers. En: Current Biology. Vol. 17; No. 1; pp. 29 - 35; 0960-9822 (Print); Disponible en: 10.1016/j.cub.2006.11.042.
dc.source.bibliographicCitationSpong, Kristin E.; Andrew, R. David; Robertson, R. Meldrum (2016) Mechanisms of spreading depolarization in vertebrate and insect central nervous systems. En: Journal of Neurophysiology. Vol. 116; No. 3; pp. 1117 - 1127; 0022-3077; Disponible en: http://jn.physiology.org/lookup/doi/10.1152/jn.00352.2016. Disponible en: 10.1152/jn.00352.2016.
dc.source.bibliographicCitationOleskevich, Sharon (1999) Cholinergic Synaptic Transmission in Insect Mushroom Bodies In Vitro. En: Journal of neurophysiology. Vol. 82; pp. 1091 - 1096; Disponible en: 10.1002/1097-0142(19871001)60:7<1657::AID-CNCR2820600739>3.0.CO;2-Z.
dc.source.bibliographicCitationOsborne, Richard H. (1996) Insect Neurotransmission: Neurotransmitters and Their Receptors. En: Pharmacol theory. Vol. 69; No. 2; pp. 117 - 142; 9781467366212; Disponible en: 10.1109/MicroCom.2016.7522453.
dc.source.bibliographicCitationStrube-Bloss, M. F.; Nawrot, M. P.; Menzel, R. (2011) Mushroom Body Output Neurons Encode Odor-Reward Associations. En: Journal of Neuroscience. Vol. 31; No. 8; pp. 3129 - 3140; 0270-6474; Disponible en: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2583-10.2011. Disponible en: 10.1523/JNEUROSCI.2583-10.2011.
dc.source.bibliographicCitationStrube-Bloss, Martin F.; Nawrot, Martin P.; Menzel, Randolf (2016) Neural correlates of side-specific odour memory in mushroom body output neurons. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 283; No. 1844; Disponible en: 10.1098/rspb.2016.1270.
dc.source.bibliographicCitationRybak, Jürgen; Menzel, R. (1993) Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha‐lobe. En: Journal of Comparative Neurology. Vol. 334; No. 3; pp. 444 - 465; 0021-9967; Disponible en: 10.1002/cne.903340309.
dc.source.bibliographicCitationGronenberg, Wulfila (2001) Subdivisions of Hymenopteran Mushroom Body Calyces by Their Afferent Supply. En: Journal of Comparative Neurology. Vol. 436; No. April; pp. 474 - 489; Disponible en: papers3://publication/uuid/0E396442-CC57-4BF5-A716-E0E5A76B1A71. Disponible en: 10.1007/s00520-017-3888-0.
dc.source.bibliographicCitationMeredith, M A; Nemitz, J; Stein, B (1987) Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. En: The Journal of neuroscience. Vol. 7; No. 10; pp. 3215 - 29; 0270-6474; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3668625. Disponible en: citeulike-article-id:409430.
dc.source.bibliographicCitationHammer, M. (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. En: Nature. Vol. 366; No. 6450; pp. 59 - 63; Disponible en: http://www.nature.com.globalproxy.cvt.dk/nature/journal/v333/n6176/pdf/333816a0.pdf.
dc.source.bibliographicCitationScheiner, R.; Baumann, A.; Blenau, W. (2006) Aminergic Control and Modulation of Honeybee Behaviour. En: Current Neuropharmacology. Vol. 4; No. 4; pp. 259 - 276; Disponible en: 10.2174/157015906778520791.
dc.source.bibliographicCitationSøvik, Eirik; Perry, Clint J.; Barron, Andrew B. (2015) Insect reward systems: Comparing flies and bees. En: Advances in Insect Physiology. Vol. 48; pp. 189 - 226; London: Academic Press; Disponible en: 10.1016/bs.aiip.2014.12.006.
dc.source.bibliographicCitationStrausfeld, Nicholas J. (2002) Organization of the honey bee mushroom body: Representation of the calyx within the vertical and gamma lobes. En: Journal of Comparative Neurology. Vol. 450; No. 1; pp. 4 - 33; Disponible en: 10.1002/cne.10285.
dc.source.bibliographicCitationMobbs, P.G. (1982) The brain of the honeybee Apis Mellifera. I. The connections and spatial organization of the Mushroom Bodies. En: Philosophical Transactions of the Royal Society of London B. Vol. 298; pp. 309 - 354;
dc.source.bibliographicCitationBrusca, Richard C; Moore, Wendy; Shuster, Stephen M (2016) Invertebrates. pp. 1778 - 1778; Sunderland, Massachusetts U.S.A: Sinauer Associates, Inc., Publishers, 2016.;
dc.source.bibliographicCitationAvarguès-Weber, Aurore; Mota, Theo (2016) Advances and limitations of visual conditioning protocols in harnessed bees. En: Journal of Physiology Paris. Vol. 110; No. 3; pp. 107 - 118; Disponible en: 10.1016/j.jphysparis.2016.12.006.
dc.source.bibliographicCitationMenzel, Randolf; Bitterman, M. E. (1983) Learning by Honeybees in an Unnatural Situation. En: Neuroethology and Behavioral Physiology: Roots and Growing Points. pp. 206 - 2015; Berlin Heidelberg NewYork Tokyo: Springer-V erlag; 13: 978- 3-642-69273-4 e; Disponible en: 10.1007/978-3-642-69271-0.
dc.source.bibliographicCitationLichtenstein, Leonie; Lichtenstein, Matthias; Spaethe, Johannes (2018) Length of stimulus presentation and visual angle are critical for efficient visual PER conditioning in the restrained honey bee, Apis mellifera. En: The Journal of Experimental Biology. Vol. 221; No. 14; pp. jeb179622 - jeb179622; Disponible en: 10.1242/jeb.179622.
dc.source.bibliographicCitationLichtenstein, Leonie; Brockmann, Axel; Spaethe, Johannes (2019) Learning of monochromatic stimuli in Apis cerana and Apis mellifera by means of PER conditioning. En: Journal of Insect Physiology. Vol. 114; No. February; pp. 30 - 34; Elsevier; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022191018303615. Disponible en: 10.1016/j.jinsphys.2019.02.006.
dc.source.bibliographicCitationChapman, R.F.; Simpson, Stephen J.; Douglas, Angela, E. (2013) The Insects: Structure and Function. pp. 929 - 929; Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sa ̃o Paulo, Delhi, Mexico City: New York : Cambridge University Press; 978-0-521-11389-2;
dc.source.bibliographicCitationRössler, Wolfgang; Groh, C. (2012) Plasticity of Synaptic Microcircuits in the Mushroom-Body Calyx of the Honey Bee. En: Honeybee Neurobiology and Behavior.: Springer, Dordrecht; 978-94-007-2099-2; Disponible en: https://doi.org/10.1007/978-94-007-2099-2_12.
dc.source.bibliographicCitationRybak, Jürgen; Menzel, Randolf (2010) Mushroom body of the honeybee. En: Handbook of Brain Microcircuits. Oxford, UK: Oxford University Press; 978-0-19-538988-3;
dc.source.bibliographicCitationSchürmann, F.W.; Elekes, K. (1987) Synaptic Connectivity in the Mushroom Bodies of the Honeybee Brain: Electron Microscopy and Immunocytochemistry of Neuroactive Compounds. En: Neurobiology and behavior of honeybees. Berlin Heidelberg NewYork London Paris Tokyo: Springer-Verlag Berlin Heidelberg; 13: 978-3-642-71498-6; Disponible en: 10.1007/978-3-642-71496-2.
dc.source.bibliographicCitationSzyszka, Paul; Ditzen, Mathias; Galkin, Alexander; Galizia, C. Giovanni; Menzel, Randolf (2005) Sparsening and Temporal Sharpening of Olfactory Representations in the Honeybee Mushroom Bodies. En: Journal of Neurophysiology. Vol. 94; No. 5; pp. 3303 - 3313; Disponible en: 10.1152/jn.00397.2005.
dc.source.bibliographicCitationScheiner, Ricarda; Plückhahn, Stephanie; Öney, Bahar; Blenau, Wolfgang; Erber, Joachim (2002) Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. En: Behavioural Brain Research. Vol. 136; No. 2; pp. 545 - 553; 0166-4328 (Print)\r0166-4328 (Linking); Disponible en: 10.1016/S0166-4328(02)00205-X.
dc.source.bibliographicCitationHu, A.; Zhang, W.; Wang, Z. (2010) Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway. En: Proceedings of the National Academy of Sciences. Vol. 107; No. 22; pp. 10262 - 10267; Disponible en: 10.1073/pnas.0914912107.
dc.source.bibliographicCitationBicker, G.; Kreissl, S. (1994) Calcium imaging reveals nicotinic acetylcholine receptors on cultured mushroom body neurons. En: Journal of Neurophysiology. Vol. 71; No. 2; pp. 808 - 810; Disponible en: 10.1152/jn.1994.71.2.808.
dc.source.bibliographicCitationHussaini, S. A.; Menzel, R. (2013) Mushroom Body Extrinsic Neurons in the Honeybee Brain Encode Cues and Contexts Differently. En: Journal of Neuroscience. Vol. 33; No. 17; pp. 7154 - 7164; Disponible en: 10.1523/jneurosci.1331-12.2013.
dc.source.bibliographicCitationMenzel, Randolf (2014) The insect mushroom body, an experience-dependent recoding device. En: Journal of Physiology Paris. Vol. 108; No. 2-3; pp. 84 - 95; Elsevier Ltd; Disponible en: http://dx.doi.org/10.1016/j.jphysparis.2014.07.004. Disponible en: 10.1016/j.jphysparis.2014.07.004.
dc.source.bibliographicCitationPearce, J.M. (1994) Discrimination and categorization. En: Animal learning and cognition. Handbook of perception and cognition. pp. 109 - 134; San Diego: Academic Pres;
dc.source.bibliographicCitationRescorla, Robert A; Wagner, Allan R (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and non reinforcement. En: Classical conditioning II: current research and theory. pp. 64 - 99.; New York: Applenton-Century-Crofts; 0390718017; Disponible en: papers2://publication/uuid/51EED98C-39D3-4ECA-9CC8-F7E445CCB145. Disponible en: 10.1101/gr.110528.110.
dc.source.bibliographicCitationKropf, Jan; Rössler, Wolfgang (2018) In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee. En: PLoS ONE. Vol. 13; No. 1; pp. 1 - 16; 1111111111; Disponible en: 10.1371/journal.pone.0191425.
dc.source.bibliographicCitationOwald, David; Felsenberg, Johannes; Talbot, Clifford B.; Das, Gaurav; Perisse, Emmanuel; Huetteroth, Wolf; Waddell, Scott (2015) Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. En: Neuron. Vol. 86; No. 2; Disponible en: 10.1016/j.neuron.2015.03.025.
dc.source.bibliographicCitationBarron, Andrew B.; Maleszka, Joanna; Vander Meer, Robert K.; Robinson, Gene E.; Maleszka, Ryszard (2007) Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. En: Journal of Insect Physiology. Vol. 53; No. 2; pp. 187 - 194; Disponible en: 10.1016/j.jinsphys.2006.11.009.
dc.source.bibliographicCitationRiveros, Andre J.; Leonard, Anne S.; Gronenberg, W.; Papaj, Daniel R. (2020) Learning of bimodal versus unimodal signals in restrained bumblebees. En: Journal of Experimental Biology. Vol. 223; pp. jeb220103. - jeb220103.; Disponible en: 10.1242/jeb.220103.
dc.source.bibliographicCitationGroh, Claudia; Rössler, Wolfgang (2020) Analysis of synaptic microcircuits in the mushroom bodies of the honeybee. En: Insects. Vol. 11; No. 1; Disponible en: 10.3390/insects11010043.
dc.source.bibliographicCitationGil-Guevara, Oswaldo; Amézquita, Adolfo (2020) Adjusted phonotactic reactions to sound amplitude and pulse number mediate territoriality in the harlequin poison frog. En: Behavioural Processes. Vol. 181; pp. 104249 - 104249; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0376635720304423. Disponible en: 10.1016/j.beproc.2020.104249.
dc.source.bibliographicCitationBarron, Andrew B.; Klein, Colin (2016) What insects can tell us about the origins of consciousness. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 113; No. 18; pp. 4900 - 4908; National Academy of Sciences; Disponible en: 10.1073/pnas.1520084113.
dc.source.bibliographicCitationSanes, Joshua R.; Zipursky, S. Lawrence (2010) Design Principles of Insect and Vertebrate Visual Systems. En: Neuron. Vol. 66; No. 1; pp. 15 - 36; Disponible en: 10.1016/j.neuron.2010.01.018.
dc.source.bibliographicCitationGnaedinger, A.; Gurden, H.; Gourévitch, B.; Martin, C. (2019) Multisensory learning between odor and sound enhances beta oscillations. En: Scientific reports. Vol. 9; No. 1; pp. 11236 - 11236; NLM (Medline); Disponible en: 10.1038/s41598-019-47503-y.
dc.source.bibliographicCitationGiurfa, Martin (2003) Cognitive neuroethology: Dissecting non-elemental learning in a honeybee brain. En: Current Opinion in Neurobiology. Vol. 13; No. 6; pp. 726 - 735; Disponible en: 10.1016/j.conb.2003.10.015.
dc.source.bibliographicCitationLeonard, Anne S; Dornhaus, Anna; Papaj, Daniel R (2011) Forget-me-not: Complex floral displays, inter-signal interactions, and pollinator cognition. En: Current Zoology. Vol. 57; No. 2; pp. 215 - 224; Disponible en: https://academic.oup.com/cz/article/57/2/215/1790263. Disponible en: 10.1093/czoolo/57.2.215.
dc.source.bibliographicCitationAkre, Karin L.; Ryan, Michael J. (2010) Complexity Increases Working Memory for Mating Signals. En: Current Biology. Vol. 20; No. 6; pp. 502 - 505; Disponible en: 10.1016/j.cub.2010.01.021.
dc.source.bibliographicCitationSutherland, N.S.; Mackintosh, N.J. (1971) Mechanisms of Animal Discrimination Learning. New York & London: Elsevier; 9780126777505; Disponible en: 10.1016/C2013-0-11565-6.
dc.source.bibliographicCitationAlvarado, Juan Carlos; Vaughan, J William; Stanford, Terrence R; Stein, Barry E (2007) Multisensory Versus Unisensory Integration : Contrasting Modes in the Superior Colliculus. En: Journal of Neurophysiology. Vol. 97; pp. 3193 - 3205; Disponible en: 10.1152/jn.00018.2007.
dc.source.bibliographicCitationGuo, Jianzeng; Guo, Aike (2005) Crossmodal interaction between olfactory and visual learning in Drosophila. En: Science. Vol. 309; No. 5732; pp. 307 - 310; Disponible en: 10.1038/098448b0.
dc.source.bibliographicCitationSiddall, Emma C.; Marples, Nicola M. (2008) Better to be bimodal: The interaction of color and odor on learning and memory. En: Behavioral Ecology. Vol. 19; No. 2; pp. 425 - 432; Disponible en: 10.1093/beheco/arm155.
dc.source.bibliographicCitationWilson, Alistair J.; Dean, Mark; Higham, James P. (2013) A game theoretic approach to multimodal communication. En: Behavioral Ecology and Sociobiology. Vol. 67; No. 9; pp. 1399 - 1415; Disponible en: 10.1007/s00265-013-1589-3.
dc.source.bibliographicCitationHou, Han; Zheng, Qihao; Zhao, Yuchen; Pouget, Alexandre; Gu, Yong (2019) Neural Correlates of Optimal Multisensory Decision Making under Time-Varying Reliabilities with an Invariant Linear Probabilistic Population Code. En: Neuron. Vol. 104; No. 5; pp. 1010 - 1021.e10; Elsevier Inc.; Disponible en: https://doi.org/10.1016/j.neuron.2019.08.038. Disponible en: 10.1016/j.neuron.2019.08.038.
dc.source.bibliographicCitationLeonard, Anne S.; Dornhaus, Anna; Papaj, Daniel R. (2011) Flowers help bees cope with uncertainty: Signal detection and the function of floral complexity. En: Journal of Experimental Biology. Vol. 214; pp. 113 - 121.; Disponible en: 10.1242/jeb.047407.
dc.source.bibliographicCitationLaland, Kevin N; Sterelny, Kim; Odling-Smee, John; Hoppitt, William; Uller, Tobias (2011) Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful?. En: Science. Vol. 334; No. 6062; pp. 1512 - 1516; Disponible en: www.sciencemag.org. Disponible en: 10.1126/science.1210879.
dc.source.bibliographicCitationRowe, Candy (1999) Receiver psychology and the evolution of multicomponent signals. En: Animal Behaviour. Vol. 58; No. 5; pp. 921 - 931; Disponible en: http://www.idealibrary.comon. Disponible en: 10.1006/anbe.1999.1242.
dc.source.bibliographicCitationHuang, Jingnan; Zhang, Zhaonan; Feng, Wangjiang; Zhao, Yuanhong; Aldanondo, Anna; de Brito Sanchez, Maria Gabriela; Paoli, Marco; Rolland, Angele; Li, Zhiguo; Nie, Hongyi; Lin, Yan; Zhang, Shaowu; Giurfa, Martin; Su, Songkun (2022) Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain. En: Science. Vol. 376; No. 6592; pp. 508 - 512; Disponible en: https://www.science.org. Disponible en: 10.1126/science.abn9920.
dc.source.bibliographicCitationGil-Guevara, Oswaldo; Bernal, Hernan A.; Riveros, Andre J. (2022) Honey bees respond to multimodal stimuli following the principle of inverse effectiveness. En: Journal of Experimental Biology. Vol. 225; No. 10; Disponible en: 10.1242/jeb.243832.
dc.source.bibliographicCitationRiveros, Andre J. (2023) Temporal configuration and modality of components determine the performance of bumble bees during the learning of a multimodal signal. En: Journal of Experimental Biology. Vol. 226; No. 1; Disponible en: https://journals.biologists.com/jeb/article/226/1/jeb245233/286252/Temporal-configuration-and-modality-of-components; http://www.ncbi.nlm.nih.gov/pubmed/36601985. Disponible en: 10.1242/jeb.245233.
dc.source.bibliographicCitationOlberg, Robert M.; Willis, Mark A. (1990) Pheromone-modulated optomotor response in male gypsy moths, Lymantria dispar L.: Directionally selective visual interneurons in the ventral nerve cord. En: Journal of Comparative Physiology A. Disponible en: 10.1007/BF00192665.
dc.source.bibliographicCitationDyer, Adrian G.; Paulk, Angelique C.; Reser, David H. (2011) Colour processing in complex environments: Insights from the visual system of bees. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 278; No. 1707; pp. 952 - 959; Royal Society; 1471-2954 (Electronic)\n0962-8452 (Linking); Disponible en: 10.1098/rspb.2010.2412.
dc.source.bibliographicCitationStein, Barry E.; Jiang, Wan; Stanford, Terrence R. (2004) Multisensory Integration in Single Neurons of the Midbrain. En: The handbook of multisensory processes. pp. 243 - 264; Cambridge, Massachusetts; London, Engand: MIT Press.; 0262033216; Disponible en: nicht verfügbar?.
dc.source.bibliographicCitationKevan, Peter G.; Chittka, Lars; Dyer, Adrian G. (2001) Limits to the salience of ultraviolet: Lessons from colour vision in bees and birds. En: Journal of Experimental Biology. Vol. 204; No. 14; pp. 2571 - 2580; 0022-0949; Disponible en: 10.1242/jeb.204.14.2571.
dc.source.bibliographicCitationKandel, Eric R; Schwartz, James H; Jessell, Thomas M; Siegelbaum, Steven A.; Hudspeth, A.J. (2013) Principles of Neural Science. En: Neurology. Vol. 4; pp. 1414 - 1414; The McGraw-Hill Companies; 0838577016; Disponible en: http://www.amazon.com/Principles-Neural-Science-Eric-Kandel/dp/0838577016. Disponible en: 10.1036/0838577016.
dc.source.bibliographicCitationWolf, Reinhard; Wittig, Tobias; Liu, Li; Wustmann, Gerold; Eyding, Dirk; Heisenberg, Martin; Wolf, Reinhard; Wittig, Tobias; Liu, Li; Wustmann, Gerold; Eyding, Dirk (1998) Drosophila Mushroom Bodies Are Dispensable for Visual , Tactile , and Motor Learning. En: Learning & Memory. Vol. 5; No. 1; pp. 166 - 178; 1072-0502 (Print); Disponible en: 10.1101/lm.5.1.166.
dc.source.bibliographicCitationVieira, Amanda Rodrigues; Salles, Nayara; Borges, Marco; Mota, Theo; Rodrigues Vieira, Amanda; Salles, Nayara; Borges, Marco; Mota, Theo (2018) Visual discrimination transfer and modulation by biogenic amines in honeybees. En: The Journal of Experimental Biology. Vol. 221; No. March; pp. jeb.178830 - jeb.178830; 0000000280; Disponible en: 10.1242/jeb.178830.
dc.source.bibliographicCitationJohnston, Timothy D. (1982) Selective Costs and Benefits in the Evolution of Learning. En: Advances in the Study of Behavior. Vol. 12; No. C; pp. 65 - 106; 9780120045129; Disponible en: 10.1016/S0065-3454(08)60046-7.
dc.source.bibliographicCitationSchiestl, Florian P.; Johnson, Steven D. (2013) Pollinator-mediated evolution of floral signals. En: Trends in Ecology and Evolution. Vol. 28; No. 5; pp. 307 - 315; Elsevier Ltd; 0169-5347; Disponible en: http://dx.doi.org/10.1016/j.tree.2013.01.019. Disponible en: 10.1016/j.tree.2013.01.019.
dc.source.bibliographicCitationKuwabara, M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. En: J Fac Hokkaido Uni Serc VI Zool.
dc.source.bibliographicCitationDonaldson, Zoe R. (2010) We're the same.. but different: Addressing academic divides in the study of brain and behavior. En: Frontiers in Behavioral Neuroscience. Vol. 4; No. JUL; Disponible en: 10.3389/fnbeh.2010.00041.
dc.source.bibliographicCitationBarron, Andrew B. (2022) How animal minds can help reveal the human mind. En: Nature Reviews Psychology. Vol. 1; No. 12; pp. 687 - 688; Springer Science and Business Media LLC; Disponible en: 10.1038/s44159-022-00122-3.
dc.source.bibliographicCitationPerry, Clint J.; Barron, Andrew B. (2013) Neural mechanisms of reward in insects. En: Annual Review of Entomology. Vol. 58; pp. 543 - 562; Disponible en: 10.1146/annurev-ento-120811-153631.
dc.source.bibliographicCitationHammer, Martin; Menzel, Randolf (1995) Learning and memory in the honeybee. En: Journal of Neuroscience. Vol. 15; No. 3 I; pp. 1617 - 1630; Disponible en: 10.1523/jneurosci.15-03-01617.1995.
dc.source.bibliographicCitationBarron, Andrew B.; Søvik, Eirik; Cornish, Jennifer L. (2010) The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. En: Frontiers in Behavioral Neuroscience. Vol. 4; No. OCT; pp. 1 - 9; Disponible en: 10.3389/fnbeh.2010.00163.
dc.source.bibliographicCitationHammer, Martin (1997) The neural basis of associative reward learning in honeybees. En: Trends in Neurosciences. Vol. 20; No. 6; pp. 245 - 252; Disponible en: 10.1016/S0166-2236(96)01019-3.
dc.source.bibliographicCitationWaddell, Scott (2013) Reinforcement signalling in Drosophila; dopamine does it all after all. En: Current Opinion in Neurobiology. Vol. 23; No. 3; pp. 324 - 329; Elsevier Ltd; Disponible en: http://dx.doi.org/10.1016/j.conb.2013.01.005. Disponible en: 10.1016/j.conb.2013.01.005.
dc.source.bibliographicCitationBurke, Christopher J.; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J.; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott (2012) Layered reward signalling through octopamine and dopamine in Drosophila. En: Nature. Vol. 492; No. 7429; pp. 433 - 437; Nature Publishing Group; Disponible en: http://dx.doi.org/10.1038/nature11614. Disponible en: 10.1038/nature11614.
dc.source.bibliographicCitationHeisenberg, Martin (2003) Mushroom body memoir: From maps to models. En: Nature Reviews Neuroscience. Vol. 4; No. 4; pp. 266 - 275; Disponible en: 10.1038/nrn1074.
dc.source.bibliographicCitationBarron, A. B.; Schulz, D. J.; Robinson, G. E. (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 188; No. 8; pp. 603 - 610; Disponible en: 10.1007/s00359-002-0335-5.
dc.source.bibliographicCitationHaberkern, Hannah; Jayaraman, Vivek (2016) Studying small brains to understand the building blocks of cognition. En: Current Opinion in Neurobiology. Vol. 37; pp. 59 - 65; Elsevier Ltd; Disponible en: http://dx.doi.org/10.1016/j.conb.2016.01.007. Disponible en: 10.1016/j.conb.2016.01.007.
dc.source.bibliographicCitationTerao, Kanta; Mizunami, Makoto (2017) Roles of dopamine neurons in mediating the prediction error in aversive learning in insects. En: Scientific Reports. Vol. 7; No. 1; pp. 1 - 9; Springer US; 4159801714473; Disponible en: http://dx.doi.org/10.1038/s41598-017-14473-y. Disponible en: 10.1038/s41598-017-14473-y.
dc.source.bibliographicCitationRössler, Wolfgang (2023) Multisensory navigation and neuronal plasticity in desert ants. En: Trends in Neurosciences. Vol. 46; No. 6; pp. 415 - 417; The Author(s); Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0166223623000826. Disponible en: 10.1016/j.tins.2023.03.008.
dc.source.bibliographicCitationHebets, Eileen A.; Papaj, Daniel R. (2005) Complex signal function: Developing a framework of testable hypotheses. En: Behavioral Ecology and Sociobiology. Vol. 57; No. 3; pp. 197 - 214; Disponible en: 10.1007/s00265-004-0865-7.
dc.source.bibliographicCitationPhillips, R. G.; LeDoux, J. E. (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. En: Behavioral Neuroscience. Vol. 106; No. 2; pp. 274 - 285; Disponible en: 10.1037//0735-7044.106.2.274.
dc.source.bibliographicCitationBalkenius, Anna; Rosén, Wenqi; Kelber, Almut (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. En: Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Vol. 192; No. 4; pp. 431 - 437; 4646222442; Disponible en: 10.1007/s00359-005-0081-6.
dc.source.bibliographicCitationVandbakk, Monica; Olaff, Heidi Skorge; Holth, Per (2020) Blocking of Stimulus Control and Conditioned Reinforcement. En: Psychological Record. Vol. 70; No. 2; pp. 279 - 292; The Psychological Record; Disponible en: 10.1007/s40732-020-00393-3.
dc.source.bibliographicCitationCassaday, H.J. (2010) Blocking, Overshadowing and Related Concepts. En: Encyclopedia of Psychopharmacology. pp. 295 - 302; Berlin: Springer, Berlin, Heidelberg; 978-3-540-68698-9; Disponible en: 978-3-540-68706-1.
dc.source.bibliographicCitationSchmajuk, Nestor (2010) Mechanisms in classical conditioning. A computational approach. pp. 467 - 467; Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo: Cambridge University Press; 978-0-511-71238-8;
dc.source.bibliographicCitationMarr, David (1982) Vision. San Francisco, CA, USA
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectIntegracion multimodal
dc.subjectPrincipio de Efectividad Inversa (PoIE)
dc.subjectRegla Temporal de Integración
dc.subjectAminas biogénicas
dc.subjectNeuromodulación
dc.subjectSeñales bimodales
dc.subjectReflejo de extensión de la Proboscide
dc.subjectAprendizaje asociativo
dc.subjectIntegración cros-modal
dc.subjectApis mellifera
dc.subjectBombus impatiens
dc.subjectCondicionamiento absoluto
dc.subjectOrden temporal de los elementos bimodales
dc.subjectCondicionamiento Clásico
dc.subject.keywordMultimodal integration
dc.subject.keywordPrinciple of inverse effectiveness (PoIE)
dc.subject.keywordTemporal rule of integration
dc.subject.keywordTemporal order of bimodal elements
dc.subject.keywordBiogenic amines
dc.subject.keywordNeuromodulation
dc.subject.keywordBimodal signals
dc.subject.keywordProboscis extension reflex (PER)
dc.subject.keywordAssociative learning
dc.subject.keywordCross modal integration
dc.subject.keywordApis mellifera
dc.subject.keywordBombus impatiens
dc.subject.keywordAbsolute conditioning
dc.subject.keywordClassic conditioning
dc.titleThe role of intensity, temporal synchrony, and biogenic amines for unimodal and multimodal integration during learning and memory of honey bees and bumble bees
dc.title.TranslatedTitleEl papel de la intensidad, la sincronía temporal y las aminas biógenas en la integración unimodal y multimodal durante el aprendizaje y la memoria de abejas melíferas y abejorros
dc.typedoctoralThesis
dc.type.documentTesis
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de doctorado
local.department.reportEscuela de Medicina y Ciencias de la Salud
local.regionesBogotá
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
The_role_of_intensity_temporal.pdf
Tamaño:
2.66 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
OswaldoGilG_PhD_Thesis_References.ris
Tamaño:
215.2 KB
Formato:
Descripción: