Ítem
Acceso Abierto

Isolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)

dc.contributor.advisorBello García, Felio Jesús
dc.contributor.advisorPatarroyo, Manuel A.
dc.creatorDíaz Roa, Andrea
dc.creator.degreeDoctor en Ciencias Biomédicas y Biológicasspa
dc.creator.degreetypeFull timespa
dc.date.accessioned2019-10-18T16:50:35Z
dc.date.available2019-10-18T16:50:35Z
dc.date.created2019-08-28
dc.description.abstractLarval therapy (LT) is an alternative treatment which uses fly larvae to heal chronic wounds; its action is based on debridement, bacterial removal and stimulating granulation tissue. The most important mechanism for fighting infection with LT depends on larval excretions and secretions (ES). The larvae are protected by an antimicrobial peptide (1) spectrum. Sarconesiopsis magellanica is a promising necrophagous fly for use in medicine. This study was thus aimed at identifying and characterizing S. magellanica AMPs contained in ES, for the first time. ES were fractionated by RP-HPLC using C18 columns. The products were lyophilized, and their antimicrobial activity characterized. The sequences were determined by mass spectrometry. The mechanism of action was evaluated by fluorescence and electronic microscopy. Toxicity was tested on HeLA cells and human erythrocytes; the physicochemical properties of the identified peptides were evaluated. Two molecules in the ES were characterized: sarconesin (a new peptide having antibacterial activity against Gram-negative (Escherichia coli D31, Pseudomonas aeruginosa 27853) and Gram-positive (Staphylococcus aureus ATCC 29213, Micrococcus luteus A270) bacteria and sarconsesin II, having activity against Gram-negative (E. coli MG1655, P. aeruginosa ATCC 27853) and Gram-positive (S. aureus ATCC 29213, M. luteus A270) bacteria. The minimum inhibitory concentrations ranged from 1.2 μM upwards; the AMPs did not have toxicity in any tested cells and their action on bacterial membrane and DNA was confirmed. Sarconesin had similarity with the CDC42 protein belonging to the Rho-family of GTPases which are important in organelle development and wound repair. Sarconesin II was seen to be a conserved domain of the ATP synthase protein belonging to the FliI superfamily. The data reported here indicates that the peptides could be alternative therapeutic candidates for use in infections against Gram-negative and Gram-positive microorganisms and as new resources to combat resistance against antimicrobial agents.eng
dc.description.sponsorshipColcienciasspa
dc.description.sponsorshipButantan Institutespa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_20460
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/20460
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programDoctorado en Ciencias Biomédicas y Biológicasspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaPARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.
dc.source.bibliographicCitation1. Classamp. 2019 [March 7th 2019]. Available from: http://www.bicnirrh.res.in/classamp/predict.php.spa
dc.source.bibliographicCitation2. Nigam Y, Dudley E, Bexfield A, Bond AE, Evans J, James J. The Physiology of Wound Healing by the Medicinal Maggot, Lucilia sericata. In: Simpson SJ, editor. Advances in Insect Physiology, Vol 39. Advances in Insect Physiology. 39. London: Academic Press Ltd-Elsevier Science Ltd; 2010. p. 39-81.spa
dc.source.bibliographicCitation3. Bexfield A, Nigam Y, Thomas S, Ratcliffe NA. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. 2004;6(14):1297-304.spa
dc.source.bibliographicCitation4. Mumcuoglu KY. Clinical applications for maggots in wound care. American journal of clinical dermatology. 2001;2(4):219-27.spa
dc.source.bibliographicCitation5. Robinson W. Stimulation of healing in non-healing wounds: By Allantoin Occurring in Maggot Secretions and of Wide Biological Distribution. The Journal of Bone & Joint Surgery JBJS. 1935;17(2):267-71.spa
dc.source.bibliographicCitation6. Gottrup F, Jorgensen B. Maggot debridement: an alternative method for debridement. Eplasty. 2011;11:e33.spa
dc.source.bibliographicCitation7. Cazander G, van Veen KE, Bernards AT, Jukema GN. Do maggots have an influence on bacterial growth? A study on the susceptibility of strains of six different bacterial species to maggots of Lucilia sericata and their excretions/secretions. J Tissue Viability. 2009;18(3):80-7.spa
dc.source.bibliographicCitation8. van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, et al. Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. The Journal of antimicrobial chemotherapy. 2008;61(1):117-22.spa
dc.source.bibliographicCitation9. Church JC. The traditional use of maggots in wound healing, and the development of larva therapy (biosurgery) in modern medicine. J Altern Complement Med. 1996;2(4):525-7. 10. Thomas AM, Harding KG, Moore K. The structure and composition of chronic wound eschar. Journal of wound care. 1999;8(6):285-7.spa
dc.source.bibliographicCitation11. Sherman RA, Hall MJ, Thomas S. Medicinal maggots: an ancient remedy for some contemporary afflictions. Annual review of entomology. 2000;45:55-81.spa
dc.source.bibliographicCitation12. Wolff H, Hansson C. Rearing larvae of Lucilia sericata for chronic ulcer treatment--an improved method. Acta dermato-venereologica. 2005;85(2):126-31.spa
dc.source.bibliographicCitation13. Spilsbury K, Cullum N, Dumville J, O'Meara S, Petherick E, Thompson C. Exploring patient perceptions of larval therapy as a potential treatment for venous leg ulceration. Health expectations : an international journal of public participation in health care and health policy. 2008;11(2):148-59.spa
dc.source.bibliographicCitation14. Baer WS. The treatment of chronic osteomyelitis with the maggot (larva of the Blowfly). J Bone Joint Surg. 1931;13:438-75.spa
dc.source.bibliographicCitation15. Robinson W, Norwood VH. The role of surgical maggots in the disinfection of osteomyelitis and other infected wounds. J Bone Joint Surg Am. 1933;15:409-12.spa
dc.source.bibliographicCitation16. Weil GC, Simon RJ, Sweadner WR. A biological, bacteriological and clinical study of larval or maggot therapy in the treatment of acute and chronic pyogenic infections. Am J Surg. 1933;19(1):36-48.spa
dc.source.bibliographicCitation17. Kerridge A, Lappin-Scott H, Stevens JR. Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Medical and veterinary entomology. 2005;19(3):333-7.spa
dc.source.bibliographicCitation18. Cazander G, Pritchard DI, Nigam Y, Jung W, Nibbering PH. Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. BioEssays : news and reviews in molecular, cellular and developmental biology. 2013;35(12):1083-92.spa
dc.source.bibliographicCitation19. Hardy MA. The biology of scar formation. Physical therapy. 1989;69(12):1014-24.spa
dc.source.bibliographicCitation20. Morgan C, Nigam Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis. 2013;16(3):493-502.spa
dc.source.bibliographicCitation21. Nigam Y, Bexfield A, Thomas S, Ratcliffe NA. Maggot therapy: the science and implication for CAM part II-maggots combat infection. Evidence-based complementary and alternative medicine : eCAM. 2006;3(3):303-8.spa
dc.source.bibliographicCitation22. Alexiadou K, Doupis J. Management of diabetic foot ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. 2012;3(1):4-.spa
dc.source.bibliographicCitation23. Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clinical microbiology reviews. 2001;14(2):244-69.spa
dc.source.bibliographicCitation24. Jaklic D, Lapanje A, Zupancic K, Smrke D, Gunde-Cimerman N. Selective antimicrobial activity of maggots against pathogenic bacteria. Journal of medical microbiology. 2008;57(Pt 5):617-25.spa
dc.source.bibliographicCitation25. Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, et al. Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol. 2003;148(1):14-23.spa
dc.source.bibliographicCitation26. Prete PE. Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life sciences. 1997;60(8):505-10.spa
dc.source.bibliographicCitation27. Telford G, Brown AP, Seabra RA, Horobin AJ, Rich A, English JS, et al. Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata. Br J Dermatol. 2010;163(3):523-31.spa
dc.source.bibliographicCitation28. van der Plas MJ, van Dissel JT, Nibbering PH. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PloS one. 2009;4(11):e8071.spa
dc.source.bibliographicCitation29. Thomas S, Wynn K, Fowler T, Jones M. The effect of containment on the properties of sterile maggots. British journal of nursing (Mark Allen Publishing). 2002;11(12 Suppl):S21-2, S4, S6 passim.spa
dc.source.bibliographicCitation30. Young AR, Meeusen EN, Bowles VM. Characterization of ES products involved in wound initiation by Lucilia cuprina larvae. Int J Parasitol. 1996;26(3):245-52.spa
dc.source.bibliographicCitation31. Giglioti R, Guimarães S, C.G. Oliveira-Sequeira T, David E, Brito L, Funes-Huacca M, et al. Proteolytic activity of excretory/secretory products of Cochliomyia hominivorax larvae (Diptera: Calliphoridae)2016. 711-8 p.spa
dc.source.bibliographicCitation32. Muharsini S, Sukarsih, Riding G, Partoutomo S, Hamilton S, Willadsen P, et al. Identification and characterisation of the excreted/secreted serine proteases of larvae of the Old World Screwworm Fly, Chrysomya bezziana. International Journal for Parasitology. 2000;30(6):705-14.spa
dc.source.bibliographicCitation33. Schmidtchen A, Wolff H, Rydengard V, Hansson C. Detection of serine proteases secreted by Lucilia sericata in vitro and during treatment of a chronic leg ulcer. Acta dermato-venereologica. 2003;83(4):310-1.spa
dc.source.bibliographicCitation34. Buchman J, Blair JE. Maggots and their use in the treatment of chronic osteomyelitis1932. 177-90 p.spa
dc.source.bibliographicCitation35. Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D. Biosurgery supports granulation and debridement in chronic wounds--clinical data and remittance spectroscopy measurement. International journal of dermatology. 2002;41(10):635-9.spa
dc.source.bibliographicCitation36. Robinson W. Stimulation of healing in non-healing wounds by allantoin in maggot secretions and of wide biological distribution. J Bone Joint Surg Am. 1935;17(2):267-71.spa
dc.source.bibliographicCitation37. Harris LG, Nigam Y, Sawyer J, Mack D, Pritchard DI. Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Applied and environmental microbiology. 2013;79(4):1393-5.spa
dc.source.bibliographicCitation38. Horobin AJ, Shakesheff KM, Woodrow S, Robinson C, Pritchard DI. Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon interactions between human dermal fibroblasts and extracellular matrix components. Br J Dermatol. 2003;148(5):923-33.spa
dc.source.bibliographicCitation39. Simmons SW. A Bactericidal Principle in Excretions of Surgical Maggots which Destroys Important Etiological Agents of Pyogenic Infections. Journal of bacteriology. 1935;30(3):253-67.spa
dc.source.bibliographicCitation40. Pavillard ER, Wright EA. An antibiotic from maggots. Nature. 1957;180(4592):916-7.spa
dc.source.bibliographicCitation41. Parnes A, Lagan KM. Larval therapy in wound management: a review. International journal of clinical practice. 2007;61(3):488-93.spa
dc.source.bibliographicCitation42. Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, et al. Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Medical and veterinary entomology. 2007;21(2):127-31.spa
dc.source.bibliographicCitation43. Hoffmann JA, Hetru C. Insect defensins: inducible antibacterial peptides. Immunology today. 1992;13(10):411-5.spa
dc.source.bibliographicCitation44. Bulet P, Stocklin R. Insect antimicrobial peptides: structures, properties and gene regulation. Protein and peptide letters. 2005;12(1):3-11.spa
dc.source.bibliographicCitation45. Cerovsky V, Zdarek J, Fucik V, Monincova L, Voburka Z, Bem R. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cellular and molecular life sciences : CMLS. 2010;67(3):455-66.spa
dc.source.bibliographicCitation46. Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, et al. The antibacterial activity against MRSA strains and other bacteria of a <500Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect. 2008;10(4):325-33.spa
dc.source.bibliographicCitation47. Arora S, Baptista C, Lim CS. Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2011;10:6.spa
dc.source.bibliographicCitation48. Daeschlein G, Mumcuoglu KY, Assadian O, Hoffmeister B, Kramer A. In vitro antibacterial activity of Lucilia sericata maggot secretions. Skin pharmacology and physiology. 2007;20(2):112-5.spa
dc.source.bibliographicCitation49. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother. 2010;65(8):1646-54.spa
dc.source.bibliographicCitation50. El Shazely B, Veverka V, Fucik V, Voburka Z, Zdarek J, Cerovsky V. Lucifensin II, a defensin of medicinal maggots of the blowfly Lucilia cuprina (Diptera: Calliphoridae). Journal of medical entomology. 2013;50(3):571-8.spa
dc.source.bibliographicCitation51. Chernysh S, Gordya N, Suborova T. Insect Antimicrobial Peptide Complexes Prevent Resistance Development in Bacteria. PloS one. 2015;10(7):e0130788.spa
dc.source.bibliographicCitation52. Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, et al. A novel approach to the antimicrobial activity of maggot debridement therapy. The Journal of antimicrobial chemotherapy. 2010;65(8):1646-54.spa
dc.source.bibliographicCitation53. Cerovsky V, Bem R. Lucifensins, the Insect Defensins of Biomedical Importance: The Story behind Maggot Therapy. Pharmaceuticals. 2014;7(3):251-64.spa
dc.source.bibliographicCitation54. Yakovlev AY, Nesin AP, Simonenko NP, Gordya NA, Tulin DV, Kruglikova AA, et al. Fat body and hemocyte contribution to the antimicrobial peptide synthesis in Calliphora vicina R.-D. (Diptera: Calliphoridae) larvae. In vitro cellular & developmental biology Animal. 2017;53(1):33-42.spa
dc.source.bibliographicCitation55. Gordya N, Yakovlev A, Kruglikova A, Tulin D, Potolitsina E, Suborova T, et al. Natural antimicrobial peptide complexes in the fighting of antibiotic resistant biofilms: Calliphora vicina medicinal maggots. PloS one. 2017;12(3):e0173559.spa
dc.source.bibliographicCitation56. Chernysh S, Gordya N, Tulin D, Yakovlev A. Biofilm infections between Scylla and Charybdis: interplay of host antimicrobial peptides and antibiotics. Infect Drug Resist. 2018;11:501-14.spa
dc.source.bibliographicCitation57. Cowan LJ, Stechmiller JK, Phillips P, Yang Q, Schultz G. Chronic Wounds, Biofilms and Use of Medicinal Larvae. Ulcers. 2013;2013:7.spa
dc.source.bibliographicCitation58. Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(1):23-9.spa
dc.source.bibliographicCitation59. James GA, Swogger E, Wolcott R, Pulcini E, Secor P, Sestrich J, et al. Biofilms in chronic wounds. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008;16(1):37-44.spa
dc.source.bibliographicCitation60. Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years?(*). International wound journal. 2012;9 Suppl 2:1-19.spa
dc.source.bibliographicCitation61. Harris LG, Bexfield A, Nigam Y, Rohde H, Ratcliffe NA, Mack D. Disruption of Staphylococcus epidermidis biofilms by medicinal maggot Lucilia sericata excretions/secretions. The International journal of artificial organs. 2009;32(9):555-64.spa
dc.source.bibliographicCitation62. Cazander G, van de Veerdonk MC, Vandenbroucke-Grauls CM, Schreurs MW, Jukema GN. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res. 2010;468(10):2789-96.spa
dc.source.bibliographicCitation63. van der Plas MJ, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, Nibbering PH. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. The Journal of antimicrobial chemotherapy. 2010;65(5):917-23.spa
dc.source.bibliographicCitation64. Pritchard DI, Brown AP. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. International wound journal. 2015;12(4):414-21.spa
dc.source.bibliographicCitation65. Jiang K-c, Sun X-j, Wang W, Liu L, Cai Y, Chen Y-c, et al. Excretions/Secretions from Bacteria-Pretreated Maggot Are More Effective against Pseudomonas aeruginosa Biofilms. PloS one. 2012;7(11):e49815.spa
dc.source.bibliographicCitation66. Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S. Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Medical and veterinary entomology. 2010;24(4):375-81.spa
dc.source.bibliographicCitation67. Dumville JC, Worthy G, Soares MO, Bland JM, Cullum N, Dowson C, et al. VenUS II: a randomised controlled trial of larval therapy in the management of leg ulcers. Health technology assessment. 2009;13(55):1-182, iii-iv.spa
dc.source.bibliographicCitation68. Mariluis J, Mulieri P. The distribution of the Calliphoridae in Argentina (Diptera). Revista de la Sociedad Entomológica Argentina. 2003;62(1):85 - 97.spa
dc.source.bibliographicCitation69. Pape T, Wolff M, Amat E. Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae y Sarcophagidae) de Colombia. Biota Colombiana. 2004;5:201 - 8.spa
dc.source.bibliographicCitation70. Figueroa-Roa L, Linhares AX. Sinantropia de los Calliphoridae (Diptera) de Valdívia, Chile. Neotropical entomology. 2002;31:233-9.spa
dc.source.bibliographicCitation71. Mariluis JC, Peris SV. Datos para una sinopsis de los Calliphoridae neotropicales. EOS– Revista Española de Entomología. 1984;40:67–86.spa
dc.source.bibliographicCitation72. James M. Catalogue of the diptera of the Americas South of United States, Sao Paulo, Museu de Zoologia da USP. Secretaria da Agricultura. Departamento de Zoologia.: S.N.; 1970. 88 p.spa
dc.source.bibliographicCitation73. Goff ML. A fly for the prosecution: how insect evidence helps solve crimes. Harvard University Press. 2001:225.spa
dc.source.bibliographicCitation74. Segura NA, Usaquen W, Sanchez MC, Chuaire L, Bello F. Succession pattern of cadaverous entomofauna in a semi-rural area of Bogota, Colombia. Forensic science international. 2009;187(1-3):66-72.spa
dc.source.bibliographicCitation75. Segura N, Usaquén W, Sánchez M, Sánchez R, Chuaire L, Camacho G, et al. Curvas de crecimiento y desarrollo de los primeros insectos colonizadores (Diptera: Calliphoridae) sobre cadáveres de cerdo Sus scrofa en Bogotá (Colombia). Revista de Investigación Universidad de La Salle 2005;5:129 - 40.spa
dc.source.bibliographicCitation76. Diaz-Roa A, Gaona MA, Segura NA, Suarez D, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. Acta tropica. 2014;136:37-43.spa
dc.source.bibliographicCitation77. Cruz-Saavedra L, Diaz-Roa A, Gaona MA, Cruz ML, Ayala M, Cortes-Vecino JA, et al. The effect of Lucilia sericata- and Sarconesiopsis magellanica-derived larval therapy on Leishmania panamensis. Acta Trop. 2016;164:280-9.spa
dc.source.bibliographicCitation78. Kuhn-Nentwig L, Nentwig W. The Immune System of Spiders. 2013. p. 81-91.spa
dc.source.bibliographicCitation79. Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA, et al. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasites & vectors. 2014;7:232.spa
dc.source.bibliographicCitation80. Wirkner C, Huckstorf K. The Circulatory System of Spiders. 2013. p. 15-27.spa
dc.source.bibliographicCitation81. Lackie AM. Immune mechanisms in insects. Parasitology today. 1988;4(4):98-105.spa
dc.source.bibliographicCitation82. Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect biochemistry and molecular biology. 2002;32(10):1295-309.spa
dc.source.bibliographicCitation83. Brooks GT. Comprehensive insect physiology, biochemistry and pharmacology: Edited by G. A. Kerkut and L. I. Gilbert. Pergamon Press, Oxford. 1985. 13 Volumes. 8200 pp approx. £1700.00/$2750.00. ISBN 0 08 026850 1. Insect Biochemistry. 1985;15(5):i-xiv.spa
dc.source.bibliographicCitation84. Ratcliffe NA, Gagen SJ. Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue & cell. 1977;9(1):73-85.spa
dc.source.bibliographicCitation85. Satyavathi VV, Minz A, Nagaraju J. Nodulation: an unexplored cellular defense mechanism in insects. Cellular signalling. 2014;26(8):1753-63.spa
dc.source.bibliographicCitation86. Aguilar-Díaz H, Cossío-Bayúgar R. Immune System and Its Relationships with Pathogens: Structure, Physiology, and Molecular Biology. 2018.spa
dc.source.bibliographicCitation87. Ratcliffe NA, Rowley AF. Cellular defense reactions of insect hemocytes in vitro: Phagocytosis in a new suspension culture system. Journal of Invertebrate Pathology. 1975;26(2):225-33.spa
dc.source.bibliographicCitation88. Ratcliffe NA, Götz P. Functional studies on insect haemocytes, including non-self recognition. Research in Immunology. 1990;141(9):919-23.spa
dc.source.bibliographicCitation89. Nappi AJ, Vass E, Frey F, Carton Y. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European journal of cell biology. 1995;68(4):450-6.spa
dc.source.bibliographicCitation90. Gillespie JP, Kanost MR, Trenczek T. Biological mediators of insect immunity. Annual review of entomology. 1997;42:611-43.spa
dc.source.bibliographicCitation91. Soderhall K, Cerenius L. Role of the prophenoloxidase-activating system in invertebrate immunity. Current opinion in immunology. 1998;10(1):23-8.spa
dc.source.bibliographicCitation92. Dunn PE. Humoral Immunity in Insects. BioScience. 1990;40(10):738-44.spa
dc.source.bibliographicCitation93. Iwanaga S, Lee B. Recent Advances in the Innate Immunity of Invertebrate Animals2005. 128-50 p.spa
dc.source.bibliographicCitation94. Binggeli O, Neyen C, Poidevin M, Lemaitre B. Prophenoloxidase Activation Is Required for Survival to Microbial Infections in Drosophila. PLOS Pathogens. 2014;10(5):e1004067.spa
dc.source.bibliographicCitation95. Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, et al. Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect biochemistry and molecular biology. 2004;34(1):29-41.spa
dc.source.bibliographicCitation96. Gorman MJ, Wang Y, Jiang H, Kanost MR. Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. The Journal of biological chemistry. 2007;282(16):11742-9.spa
dc.source.bibliographicCitation97. Shrestha S, Kim Y. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect biochemistry and molecular biology. 2008;38(1):99-112.spa
dc.source.bibliographicCitation98. Hillyer JF, Christensen BM. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and cell biology. 2002;117(5):431-40.spa
dc.source.bibliographicCitation99. Rizki TM, Rizki RM, Bellotti RA. Genetics of a Drosophila phenoloxidase. Molecular & general genetics : MGG. 1985;201(1):7-13.spa
dc.source.bibliographicCitation100. Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife. 2017;6:e25496.spa
dc.source.bibliographicCitation101. Fujita AI. Lysozymes in insects: What role do they play in nitrogen metabolism?2004. 305-10 p.spa
dc.source.bibliographicCitation102. Zdybicka-Barabas A, Staczek S, Mak P, Skrzypiec K, Mendyk E, Cytrynska M. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. Biochimica et biophysica acta. 2013;1828(6):1449-56.spa
dc.source.bibliographicCitation103. Whitten M, Sun F, Tew I, Schaub G, Soukou C, Nappi A, et al. Differential modulation of Rhodnius prolixus nitric oxide activities following challenge with Trypanosoma rangeli, T. cruzi and bacterial cell wall components. Insect biochemistry and molecular biology. 2007;37(5):440-52.spa
dc.source.bibliographicCitation104. Wu D, Cederbaum AI. Alcohol, oxidative stress, and free radical damage. Alcohol research & health : the journal of the National Institute on Alcohol Abuse and Alcoholism. 2003;27(4):277-84.spa
dc.source.bibliographicCitation105. Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative medicine and cellular longevity. 2016;2016:3164734-.spa
dc.source.bibliographicCitation106. Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology. 1982;47(5):412-26.spa
dc.source.bibliographicCitation107. Rivero A. Nitric oxide: an antiparasitic molecule of invertebrates. Trends in parasitology. 2006;22(5):219-25.spa
dc.source.bibliographicCitation108. Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, et al. A model of bacterial intestinal infections in Drosophila melanogaster. PLoS pathogens. 2007;3(11):e173-e.spa
dc.source.bibliographicCitation109. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nature reviews Immunology. 2014;14(12):796-810.spa
dc.source.bibliographicCitation110. Kleino A, Silverman N. The Drosophila IMD pathway in the activation of the humoral immune response. Developmental and comparative immunology. 2014;42(1):25-35.spa
dc.source.bibliographicCitation111. Valanne S, Wang J-H, Rämet M. The &lt;em&gt;Drosophila&lt;/em&gt; Toll Signaling Pathway. The Journal of Immunology. 2011;186(2):649.spa
dc.source.bibliographicCitation112. Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018;8(1).spa
dc.source.bibliographicCitation113. Elhag O, Zhou D, Song Q, Soomro AA, Cai M, Zheng L, et al. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.). PloS one. 2017;12(1):e0169582.spa
dc.source.bibliographicCitation114. Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2016;371(1695).spa
dc.source.bibliographicCitation115. Zhang L, Wang YW, Lu ZQ. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori. Journal of Zhejiang University Science B. 2015;16(10):875-82.spa
dc.source.bibliographicCitation116. Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14(12):796-810.spa
dc.source.bibliographicCitation117. Romoli O, Saviane A, Bozzato A, D'Antona P, Tettamanti G, Squartini A, et al. Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin. Scientific reports. 2017;7(1):1048.spa
dc.source.bibliographicCitation118. Mishra AK, Choi J, Moon E, Baek KH. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides. Molecules (Basel, Switzerland). 2018;23(4).spa
dc.source.bibliographicCitation119. Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006;24(12):1551-7.spa
dc.source.bibliographicCitation120. Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends in biotechnology. 2011;29(9):464-72.spa
dc.source.bibliographicCitation121. Yi HY, Chowdhury M, Huang YD, Yu XQ. Insect antimicrobial peptides and their applications. Applied microbiology and biotechnology. 2014;98(13):5807-22.spa
dc.source.bibliographicCitation122. Manzo G, Ferguson PM, Gustilo VB, Hind CK, Clifford M, Bui TT, et al. Minor sequence modifications in temporin B cause drastic changes in antibacterial potency and selectivity by fundamentally altering membrane activity. Scientific reports. 2019;9(1):1385.spa
dc.source.bibliographicCitation123. Minamino T, Kazetani K-i, Tahara A, Suzuki H, Furukawa Y, Kihara M, et al. Oligomerization of the Bacterial Flagellar ATPase FliI is Controlled by its Extreme N-terminal Region2006. 510-9 p.spa
dc.source.bibliographicCitation124. Leon-Calvijo MA, Leal-Castro AL, Almanzar-Reina GA, Rosas-Perez JE, Garcia-Castaneda JE, Rivera-Monroy ZJ. Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212. Biomed Res Int. 2015;2015:453826.spa
dc.source.bibliographicCitation125. Yazici A, Ortucu S, Taskin M, Marinelli L. Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current topics in medicinal chemistry. 2018;18(24):2102-7.spa
dc.source.bibliographicCitation126. Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic acids research. 2009;37(Database issue):D933-7.spa
dc.source.bibliographicCitation127. Matsuyama K, Natori S. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. The Journal of biological chemistry. 1988;263(32):17112-6.spa
dc.source.bibliographicCitation128. Lambert J, Keppi E, Dimarcq JL, Wicker C, Reichhart JM, Dunbar B, et al. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci U S A. 1989;86(1):262-6.spa
dc.source.bibliographicCitation129. Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends in parasitology. 2006;22(6):262-8.spa
dc.source.bibliographicCitation130. Lehane MJ, Wu D, Lehane SM. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A. 1997;94(21):11502-7.spa
dc.source.bibliographicCitation131. Rees JA, Moniatte M, Bulet P. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect biochemistry and molecular biology. 1997;27(5):413-22.spa
dc.source.bibliographicCitation132. Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Dev Comp Immunol. 1999;23(4-5):329-44.spa
dc.source.bibliographicCitation133. Hanzawa H, Shimada I, Kuzuhara T, Komano H, Kohda D, Inagaki F, et al. 1H nuclear magnetic resonance study of the solution conformation of an antibacterial protein, sapecin. FEBS letters. 1990;269(2):413-20.spa
dc.source.bibliographicCitation134. Cornet B, Bonmatin JM, Hetru C, Hoffmann JA, Ptak M, Vovelle F. Refined three-dimensional solution structure of insect defensin A. Structure. 1995;3(5):435-48.spa
dc.source.bibliographicCitation135. Landon C, Sodano P, Hetru C, Hoffmann J, Ptak M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein science : a publication of the Protein Society. 1997;6(9):1878-84.spa
dc.source.bibliographicCitation136. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. The Journal of biological chemistry. 1990;265(19):11333-7.spa
dc.source.bibliographicCitation137. Cerovsky V, Slaninova J, Fucik V, Monincova L, Bednarova L, Malon P, et al. Lucifensin, a novel insect defensin of medicinal maggots: synthesis and structural study. Chembiochem. 2011;12(9):1352-61.spa
dc.source.bibliographicCitation138. Zhang Z, Wang J, Zhang B, Liu H, Song W, He J, et al. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo. International journal of molecular medicine. 2013;31(5):1159-65.spa
dc.source.bibliographicCitation139. Valachova I, Bohova J, Palosova Z, Takac P, Kozanek M, Majtan J. Expression of lucifensin in Lucilia sericata medicinal maggots in infected environments. Cell and tissue research. 2013;353(1):165-71.spa
dc.source.bibliographicCitation140. Valachova I, Prochazka E, Bohova J, Novak P, Takac P, Majtan J. Antibacterial properties of lucifensin in Lucilia sericata maggots after septic injury. Asian Pacific journal of tropical biomedicine. 2014;4(5):358-61.spa
dc.source.bibliographicCitation141. Kruglikova A, Chernysh S. Antimicrobial compounds from the excretions of surgical maggots, Lucilia sericata (Meigen) (Diptera, Calliphoridae). Entomol Rev. 2011;91:813-9.spa
dc.source.bibliographicCitation142. Pinilla YT, Patarroyo MA, Velandia ML, Segura NA, Bello FJ. The effects of Sarconesiopsis magellanica larvae (Diptera: Calliphoridae) excretions and secretions on fibroblasts. Acta tropica. 2015;142:26-33.spa
dc.source.bibliographicCitation143. Sherman RA. Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here? Evidence-based complementary and alternative medicine : eCAM. 2014;2014:592419.spa
dc.source.bibliographicCitation144. Poppel AK, Vogel H, Wiesner J, Vilcinskas A. Antimicrobial peptides expressed in medicinal maggots of the blow fly Lucilia sericata show combinatorial activity against bacteria. Antimicrobial agents and chemotherapy. 2015;59(5):2508-14.spa
dc.source.bibliographicCitation145. Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q. Insect antimicrobial peptides and their applications. Applied microbiology and biotechnology. 2014;98(13):5807-22.spa
dc.source.bibliographicCitation146. Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Frontiers in chemistry. 2018;6:204-.spa
dc.source.bibliographicCitation147. Aoki W, Ueda M. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel, Switzerland). 2013;6(8):1055-81.spa
dc.source.bibliographicCitation148. Zhang L-j, Gallo RL. Antimicrobial peptides. Current Biology. 2016;26(1):R14-R9.spa
dc.source.bibliographicCitation149. Leandro LF, Mendes CA, Casemiro LA, Vinholis AHC, Cunha WR, Almeida Rd, et al. Antimicrobial activity of apitoxin, melittin and phospholipase A2 of honey bee (Apis mellifera) venom against oral pathogens. Anais da Academia Brasileira de Ciências. 2015;87:147-55.spa
dc.source.bibliographicCitation150. Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. Journal of experimental botany. 2005;56(416):1685-95.spa
dc.source.bibliographicCitation151. Findlay F, Proudfoot L, Stevens C, Barlow PG. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathogens and global health. 2016;110(4-5):137-47.spa
dc.source.bibliographicCitation152. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006;18(1):24-30.spa
dc.source.bibliographicCitation153. Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. Journal of dental research. 2017;96(3):254-60.spa
dc.source.bibliographicCitation154. Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers. 2005;80(6):717-35.spa
dc.source.bibliographicCitation155. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews. 2003;55(1):27-55.spa
dc.source.bibliographicCitation156. Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Current Medicinal Chemistry. 2006;2(1):2449-66.spa
dc.source.bibliographicCitation157. Sani MA, Separovic F. How Membrane-Active Peptides Get into Lipid Membranes. Accounts of chemical research. 2016;49(6):1130-8.spa
dc.source.bibliographicCitation158. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-95.spa
dc.source.bibliographicCitation159. Ebenhan T, Gheysens O, Kruger HG, Zeevaart JR, Sathekge MM. Antimicrobial peptides: their role as infection-selective tracers for molecular imaging. BioMed research international. 2014;2014:867381-.spa
dc.source.bibliographicCitation160. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews Microbiology. 2005;3(3):238-50.spa
dc.source.bibliographicCitation161. Lee MT, Chen FY, Huang HW. Energetics of pore formation induced by membrane active peptides. Biochemistry. 2004;43(12):3590-9.spa
dc.source.bibliographicCitation162. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3(3):238-50.spa
dc.source.bibliographicCitation163. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical journal. 2001;81(3):1475-85.spa
dc.source.bibliographicCitation164. Yamaguchi S, Huster D, Waring A, Lehrer RI, Kearney W, Tack BF, et al. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy. Biophysical journal. 2001;81(4):2203-14.spa
dc.source.bibliographicCitation165. Matsuzaki K, Murase O, Fujii N, Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996;35(35):11361-8.spa
dc.source.bibliographicCitation166. Hallock KJ, Lee D-K, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical journal. 2003;84(5):3052-60.spa
dc.source.bibliographicCitation167. Subbalakshmi C, Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS microbiology letters. 1998;160(1):91-6.spa
dc.source.bibliographicCitation168. Otvos L, Jr. Antibacterial peptides and proteins with multiple cellular targets. Journal of peptide science : an official publication of the European Peptide Society. 2005;11(11):697-706.spa
dc.source.bibliographicCitation169. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013;6(12):1543-75.spa
dc.source.bibliographicCitation170. Brogden KA, Ackermann M, McCray PB, Jr., Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003;22(5):465-78.spa
dc.source.bibliographicCitation171. Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491-511.spa
dc.source.bibliographicCitation172. Roudi R, Syn NL, Roudbary M. Antimicrobial Peptides As Biologic and Immunotherapeutic Agents against Cancer: A Comprehensive Overview. Frontiers in Immunology. 2017;8(1320).spa
dc.source.bibliographicCitation173. Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci. 2009;10(6):585-606.spa
dc.source.bibliographicCitation174. Otvos L, Jr. Antibacterial peptides isolated from insects. Journal of peptide science : an official publication of the European Peptide Society. 2000;6(10):497-511.spa
dc.source.bibliographicCitation175. Vilcinskas A. Anti-infective therapeutics from the Lepidopteran model host Galleria mellonella. Current pharmaceutical design. 2011;17(13):1240-5.spa
dc.source.bibliographicCitation176. Pretzel J, Mohring F, Rahlfs S, Becker K. Antiparasitic peptides. Advances in biochemical engineering/biotechnology. 2013;135:157-92.spa
dc.source.bibliographicCitation177. Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Applied microbiology and biotechnology. 2016;100(17):7397-405.spa
dc.source.bibliographicCitation178. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS. Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. The Journal of biological chemistry. 2005;280(13):12316-29.spa
dc.source.bibliographicCitation179. Bhattacharjya S, Ramamoorthy A. Multifunctional host defense peptides: functional and mechanistic insights from NMR structures of potent antimicrobial peptides. The FEBS journal. 2009;276(22):6465-73.spa
dc.source.bibliographicCitation180. Marshall SH, Arenas G. Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology2003.spa
dc.source.bibliographicCitation181. WHO. 2018 [March 7th 2019]. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.spa
dc.source.bibliographicCitation182. Mishra B, Reiling S, Zarena D, Wang G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Current opinion in chemical biology. 2017;38:87-96.spa
dc.source.bibliographicCitation183. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG. Antibiotics and antiseptics for venous leg ulcers. The Cochrane database of systematic reviews. 2010(1):CD003557.spa
dc.source.bibliographicCitation184. Pinilla YT, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) life-cycle, reproductive and population parameters using different diets under laboratory conditions. Forensic science international. 2013;233(1-3):380-6.spa
dc.source.bibliographicCitation185. Pinilla YT, Moreno-Perez DA, Patarroyo MA, Bello FJ. Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions. Acta tropica. 2013;128(3):686-91.spa
dc.source.bibliographicCitation186. Cruz M, Bello FJ. Establishment and characterization of an embryonic cell line from Sarconesiopsis magellanica. Journal of insect science. 2013;13:130.spa
dc.source.bibliographicCitation187. Cruz M, Bello F. Características de cultivos celulares primarios derivados de Sarconesiopsis magellanica (Le Guillou, 1842) (Diptera: Calliphoridae). Revista UDCA Actualidad & Divulgación Científica. 2012;15(2):313 - 21.spa
dc.source.bibliographicCitation188. Diaz-Roa A, Gaona MA, Segura NA, Suarez D, Patarroyo MA, Bello FJ. Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. Acta Trop. 2014;136:37-43.spa
dc.source.bibliographicCitation189. Góngora J, Díaz-Roa A, Gaona MA, Corts-Vecino J, Bello F. Evaluación de la actividad antibacterial de los extractos de cuerpos grasos y hemolinfa derivados de la mosca Sarconesiopsis magellanica (Diptera: Calliphoridae). Infectio. 2015;19:3-9.spa
dc.source.bibliographicCitation190. Góngora J, Díaz-Roa A, Ramírez-Hernández A, Cortés-Vecino J, Gaona MA, Patarroyo MA, et al. Evaluating the effect of Sarconesiopsis magellanica (diptera: Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. Journal of diabetes research. 2015:270253.spa
dc.source.bibliographicCitation191. Rueda LC, Ortega LG, Segura NA, Acero VM, Bello F. Lucilia sericata strain from Colombia: Experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogota, Colombia strain. Biological research. 2010;43(2):197-203.spa
dc.source.bibliographicCitation192. Choi H, Aldrich JV. Comparison of methods for the Fmoc solid-phase synthesis and cleavage of a peptide containing both tryptophan and arginine. Int J Pept Protein Res. 1993;42(1):58-63.spa
dc.source.bibliographicCitation193. Riciluca KC, Sayegh RS, Melo RL, Silva PI, Jr. Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph. Results in immunology. 2012;2:66-71.spa
dc.source.bibliographicCitation194. Silva PI, Jr., Daffre S, Bulet P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. The Journal of biological chemistry. 2000;275(43):33464-70.spa
dc.source.bibliographicCitation195. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30(10):918-20.spa
dc.source.bibliographicCitation196. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551-67.spa
dc.source.bibliographicCitation197. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10.spa
dc.source.bibliographicCitation198. Jarnuczak AF, Lee DC, Lawless C, Holman SW, Eyers CE, Hubbard SJ. Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics. Journal of proteome research. 2016;15(9):2945-59.spa
dc.source.bibliographicCitation199. Eyers CE, Lawless C, Wedge DC, Lau KW, Gaskell SJ, Hubbard SJ. CONSeQuence: prediction of reference peptides for absolute quantitative proteomics using consensus machine learning approaches. Molecular & cellular proteomics : MCP. 2011;10(11):M110.003384.spa
dc.source.bibliographicCitation200. Fusaro VA, Mani DR, Mesirov JP, Carr SA. Prediction of high-responding peptides for targeted protein assays by mass spectrometry. Nature biotechnology. 2009;27(2):190-8.spa
dc.source.bibliographicCitation201. Tang K, Smith RD. Physical/chemical separations in the break-up of highly charged droplets from electrosprays. Journal of the American Society for Mass Spectrometry. 2001;12(3):343-7.spa
dc.source.bibliographicCitation202. Gucinski AC, Dodds ED, Li W, Wysocki VH. Understanding and exploiting Peptide fragment ion intensities using experimental and informatic approaches. Methods in molecular biology (Clifton, NJ). 2010;604:73-94.spa
dc.source.bibliographicCitation203. Ghosh S, Challamalla P, Banji D. Negative ion mode mass spectrometry- an overview2012. 1462-71 p.spa
dc.source.bibliographicCitation204. Raposio E, Bortolini S, Maistrello L, Grasso DA. Larval Therapy for Chronic Cutaneous Ulcers: Historical Review and Future Perspectives. Wounds : a compendium of clinical research and practice. 2017;29(12):367-73.spa
dc.source.bibliographicCitation205. Bulet P, Hetru C, Dimarcq JL, Hoffmann D. Antimicrobial peptides in insects; structure and function. Developmental and comparative immunology. 1999;23(4-5):329-44.spa
dc.source.bibliographicCitation206. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Current opinion in immunology. 2006;18(1):24-30.spa
dc.source.bibliographicCitation207. O'Meara S, Al-Kurdi D, Ologun Y, Ovington LG, Martyn-St James M, Richardson R. Antibiotics and antiseptics for venous leg ulcers. The Cochrane database of systematic reviews. 2014(1):Cd003557.spa
dc.source.bibliographicCitation208. Various-authors. A Catalogue of the Diptera of the Americas south of the United States. Museu de Zoologia, Departamento de Zoologia, Universidade de São Paulo. São Paulo: Departamento de Zoologia, Secretaria da Agricultura do Estado de São Paulo; 1966.spa
dc.source.bibliographicCitation209. Hou F, Li J, Pan P, Xu J, Liu L, Liu W, et al. Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis. Int J Antimicrob Agents. 2011;38(6):510-5.spa
dc.source.bibliographicCitation210. Merrifield RB. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society. 1963;85(14):2149-54.spa
dc.source.bibliographicCitation211. Houghten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A. 1985;82(15):5131-5.spa
dc.source.bibliographicCitation212. Jiang Z, Vasil AI, Vasil ML, Hodges RS. "Specificity Determinants" Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals. 2014;7(4):366-91.spa
dc.source.bibliographicCitation213. Bulet P. Strategies for the discovery, isolation, and characterization of natural bioactive peptides from the immune system of invertebrates. Methods in molecular biology (Clifton, NJ). 2008;494:9-29.spa
dc.source.bibliographicCitation214. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols. 2008;3(2):163-75.spa
dc.source.bibliographicCitation215. Hetru C, Bulet P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods in molecular biology (Clifton, NJ). 1997;78:35-49.spa
dc.source.bibliographicCitation216. Lorenzini DM, da Silva PI, Jr., Fogaca AC, Bulet P, Daffre S. Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Developmental and comparative immunology. 2003;27(9):781-91.spa
dc.source.bibliographicCitation217. Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Frontiers in microbiology. 2015;6:165.spa
dc.source.bibliographicCitation218. Velema WA, van der Berg JP, Hansen MJ, Szymanski W, Driessen AJM, Feringa BL. Optical control of antibacterial activity. Nature Chemistry. 2013;5:924.spa
dc.source.bibliographicCitation219. Sayegh RS, Batista IF, Melo RL, Riske KA, Daffre S, Montich G, et al. Longipin: An Amyloid Antimicrobial Peptide from the Harvestman Acutisoma longipes (Arachnida: Opiliones) with Preferential Affinity for Anionic Vesicles. PloS one. 2016;11(12).spa
dc.source.bibliographicCitation220. NCBI. 2019 [March 7th 2019]. Available from: https://www.ncbi.nlm.nih.gov/protein/?term=.spa
dc.source.bibliographicCitation221. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research. 1997;25(17):3389-402.spa
dc.source.bibliographicCitation222. Gouy M, Guindon S, Gascuel O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution. 2010;27(2):221-4.spa
dc.source.bibliographicCitation223. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111(20):E2100-E9.spa
dc.source.bibliographicCitation224. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Ahmed M, Ansari SM, et al. Cobalt oxide nanoparticles aggravate DNA damage and cell death in eggplant via mitochondrial swelling and NO signaling pathway. Biological research. 2016;49(1):20.spa
dc.source.bibliographicCitation225. Nocker A, Caspers M, Esveld-Amanatidou A, van der Vossen J, Schuren F, Montijn R, et al. Multiparameter viability assay for stress profiling applied to the food pathogen Listeria monocytogenes F2365. Applied and environmental microbiology. 2011;77(18):6433-40.spa
dc.source.bibliographicCitation226. Yang N, Liu X, Teng D, Li Z, Wang X, Mao R, et al. Antibacterial and detoxifying activity of NZ17074 analogues with multi-layers of selective antimicrobial actions against Escherichia coli and Salmonella enteritidis. Scientific reports. 2017;7(1):3392.spa
dc.source.bibliographicCitation227. Carretero GPB, Saraiva GKV, Cauz ACG, Rodrigues MA, Kiyota S, Riske KA, et al. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Biochimica et biophysica acta. 2018;1860(8):1502-16.spa
dc.source.bibliographicCitation228. Teng D, Wang X, Xi D, Mao R, Zhang Y, Guan Q, et al. A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377. Applied microbiology and biotechnology. 2014;98(19):8313-25.spa
dc.source.bibliographicCitation229. Landry BS, Dextraze L, Boivin G. Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome. 1993;36(3):580-7.spa
dc.source.bibliographicCitation230. Chaparro E, da Silva PIJ. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis. Int J Antimicrob Agents. 2016;48(3):277-85.spa
dc.source.bibliographicCitation231. Nan YH, Bang J-K, Jacob B, Park I-S, Shin SY. Prokaryotic selectivity and LPS-neutralizing activity of short antimicrobial peptides designed from the human antimicrobial peptide LL-37. Peptides. 2012;35(2):239-47.spa
dc.source.bibliographicCitation232. Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, et al. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering2018. 599-607 p.spa
dc.source.bibliographicCitation233. Torres MT, Pedron CN, da Silva Lima JA, da Silva PIJ, da Silva FD, Oliveira VXJ. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. Journal of peptide science : an official publication of the European Peptide Society. 2017;23(11):818-23.spa
dc.source.bibliographicCitationPettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004;25(13):1605-12.spa
dc.source.bibliographicCitationBochicchio B, Tamburro AM. Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality. 2002;14(10):782-92.spa
dc.source.bibliographicCitationBerova NP, P.; Nakanishi, K.; Woody, R. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules2012.spa
dc.source.bibliographicCitationFazio MA, Jouvensal L, Vovelle F, Bulet P, Miranda MT, Daffre S, et al. Biological and structural characterization of new linear gomesin analogues with improved therapeutic indices. Biopolymers. 2007;88(3):386-400.spa
dc.source.bibliographicCitationCézard C, Silva-Pires V, Mullié C, Sonnet P. Antibacterial peptides: a review2011. 926-37 p.spa
dc.source.bibliographicCitationGiacometti A, Cirioni O, Barchiesi F, Fortuna M, Scalise G. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. The Journal of antimicrobial chemotherapy. 1999;44(5):641-5.spa
dc.source.bibliographicCitationChay Pak Ting BP, Mine Y, Juneja LR, Okubo T, Gauthier SF, Pouliot Y. Comparative composition and antioxidant activity of Peptide fractions obtained by ultrafiltration of egg yolk protein enzymatic hydrolysates. Membranes. 2011;1(3):149-61.spa
dc.source.bibliographicCitationSandeman RM, Feehan JP, Chandler RA, Bowles VM. Tryptic and chymotryptic proteases released by larvae of the blowfly, Lucilia cuprina. Int J Parasitol. 1990;20(8):1019-23.spa
dc.source.bibliographicCitationTelford G, Brown AP, Kind A, English JS, Pritchard DI. Maggot chymotrypsin I from Lucilia sericata is resistant to endogenous wound protease inhibitors. Br J Dermatol. 2011;164(1):192-6.spa
dc.source.bibliographicCitationSze SH, Dunham JP, Carey B, Chang PL, Li F, Edman RM, et al. A de novo transcriptome assembly of Lucilia sericata (Diptera: Calliphoridae) with predicted alternative splices, single nucleotide polymorphisms and transcript expression estimates. Insect molecular biology. 2012;21(2):205-21.spa
dc.source.bibliographicCitationAnstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, et al. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nature communications. 2015;6:7344.spa
dc.source.bibliographicCitationFranta Z, Vogel H, Lehmann R, Rupp O, Goesmann A, Vilcinskas A. Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BioMed Research International. 2016;2016:8285428.spa
dc.source.bibliographicCitationErdmann GR. Antibacterial action of Myiasis-causing flies. Parasitology today. 1987;3(7):214-6.spa
dc.source.bibliographicCitationThomas S, Andrews AM, Hay NP, Bourgoise S. The anti-microbial activity of maggot secretions: results of a preliminary study. Journal of tissue viability. 1999;9(4):127-32.spa
dc.source.bibliographicCitationShaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein science : a publication of the Protein Society. 2001;10(6):1206-15.spa
dc.source.bibliographicCitationPhoenix DA, Dennison SR, Harris F. Anionic Antimicrobial Peptides. Antimicrobial Peptides. 2013:doi: 10.1002/9783527652853.ch3.spa
dc.source.bibliographicCitationDiamond G, Beckloff N, Weinberg A, Kisich KO. The roles of antimicrobial peptides in innate host defense. Current pharmaceutical design. 2009;15(21):2377-92.spa
dc.source.bibliographicCitationWennerberg K, Der CJ. Rho-family GTPases: it's not only Rac and Rho (and I like it). Journal of Cell Science. 2004;117(8):1301.spa
dc.source.bibliographicCitationHiguchi M, Masuyama N, Fukui Y, Suzuki A, Gotoh Y. Akt mediates Rac/Cdc42-regulated cell motility in growth factor-stimulated cells and in invasive PTEN knockout cells. Current Biology. 2001;11(24):1958-62.spa
dc.source.bibliographicCitationJohnson DI. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiology and molecular biology reviews : MMBR. 1999;63(1):54-105.spa
dc.source.bibliographicCitationKhamis AM, Essack M, Gao X, Bajic VB. Distinct profiling of antimicrobial peptide families. Bioinformatics. 2015;31(6):849-56.spa
dc.source.bibliographicCitationNagao T, Mishima D, Javkhlantugs N, Wang J, Ishioka D, Yokota K, et al. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. Biochimica et biophysica acta. 2015;1848(11 Pt A):2789-98.spa
dc.source.bibliographicCitationHyde AJ, Parisot J, McNichol A, Bonev BB. Nisin-induced changes in Bacillus morphology suggest a paradigm of antibiotic action. Proc Natl Acad Sci U S A. 2006;103(52):19896-901.spa
dc.source.bibliographicCitationOren Z, Shai Y. Mode of action of linear amphipathic α-helical antimicrobial peptides. Peptide Science. 1998;47(6):451-63.spa
dc.source.bibliographicCitationShi W, Li C, Li M, Zong X, Han D, Chen Y. Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Applied microbiology and biotechnology. 2016;100(11):5059-67.spa
dc.source.bibliographicCitationPolakovicova S, Polak S, Kuniakova M, Cambal M, Caplovicova M, Kozanek M, et al. The effect of salivary gland extract of Lucilia sericata maggots on human dermal fibroblast proliferation within collagen/hyaluronan membrane in vitro: transmission electron microscopy study. Advances in skin & wound care. 2015;28(5):221-6.spa
dc.source.bibliographicCitationTitulaer MK. Candidate biomarker discovery for angiogenesis by automatic integration of Orbitrap MS1 spectral- and X!Tandem MS2 sequencing information. Genomics, proteomics & bioinformatics. 2013;11(3):182-94.spa
dc.source.bibliographicCitationVan Aelst L, Symons M. Role of Rho family GTPases in epithelial morphogenesis. Genes & development. 2002;16(9):1032-54.spa
dc.source.bibliographicCitationLee K, Boyd KL, Parekh DV, Kehl-Fie TE, Baldwin HS, Brakebusch C, et al. Cdc42 promotes host defenses against fatal infection. Infection and immunity. 2013;81(8):2714-23.spa
dc.source.bibliographicCitationRatcliffe N, Azambuja P, Mello CB. Recent advances in developing insect natural products as potential modern day medicines. Evidence-based complementary and alternative medicine : eCAM. 2014;2014:904958.spa
dc.source.bibliographicCitationRyan MA, Akinbi HT, Serrano AG, Perez-Gil J, Wu H, McCormack FX, et al. Antimicrobial activity of native and synthetic surfactant protein B peptides. Journal of immunology (Baltimore, Md : 1950). 2006;176(1):416-25.spa
dc.source.bibliographicCitationTavares LS, Rettore JV, Freitas RM, Porto WF, Duque AP, Singulani Jde L, et al. Antimicrobial activity of recombinant Pg-AMP1, a glycine-rich peptide from guava seeds. Peptides. 2012;37(2):294-300.spa
dc.source.bibliographicCitationGaussier H, Morency H, Lavoie MC, Subirade M. Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect. Applied and environmental microbiology. 2002;68(10):4803-8.spa
dc.source.bibliographicCitationSikora K, Jaskiewicz M, Neubauer D, Bauer M, Bartoszewska S, Baranska-Rybak W, et al. Counter-ion effect on antistaphylococcal activity and cytotoxicity of selected antimicrobial peptides. Amino Acids. 2018;50(5):609-19.spa
dc.source.bibliographicCitationBai L, Sheeley S, Sweedler J. Analysis of Endogenous C-Amino Acid-Containing Peptides in Metazoa2009. 7-24 p.spa
dc.source.bibliographicCitationGriffiths J. Hunting the elusive D-amino acid. Analytical Chemistry. 2008;80(9):3070-.spa
dc.source.bibliographicCitationVega Chaparro SC, Valencia Salguero JT, Martinez Baquero DA, Rosas Perez JE. Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. Biomed Res Int. 2018;2018:5252891.spa
dc.source.bibliographicCitationXin P, Sun Y, Kong H, Wang Y, Tan S, Guo J, et al. A unimolecular channel formed by dual helical peptide modified pillar[5]arene: correlating transmembrane transport properties with antimicrobial activity and haemolytic toxicity. Chemical communications (Cambridge, England). 2017;53(83):11492-5.spa
dc.source.bibliographicCitationYeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cellular and molecular life sciences : CMLS. 2011;68(13):2161-76.spa
dc.source.bibliographicCitationJiang Z, Vasil AI, Vasil ML, Hodges RS. "Specificity Determinants" Improve Therapeutic Indices of Two Antimicrobial Peptides Piscidin 1 and Dermaseptin S4 Against the Gram-negative Pathogens Acinetobacter baumannii and Pseudomonas aeruginosa. Pharmaceuticals (Basel, Switzerland). 2014;7(4):366-91.spa
dc.source.bibliographicCitationSaravanan R, Bhunia A, Bhattacharjya S. Micelle-bound structures and dynamics of the hinge deleted analog of melittin and its diastereomer: implications in cell selective lysis by D-amino acid containing antimicrobial peptides. Biochimica et biophysica acta. 2010;1798(2):128-39.spa
dc.source.bibliographicCitationOren Z, Hong J, Shai Y. A repertoire of novel antibacterial diastereomeric peptides with selective cytolytic activity. The Journal of biological chemistry. 1997;272(23):14643-9.spa
dc.source.bibliographicCitationWang G. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. Biochimica et biophysica acta. 2007;1768(12):3271-81.spa
dc.source.bibliographicCitationMolchanova N, Hansen PR, Franzyk H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules (Basel, Switzerland). 2017;22(9).spa
dc.source.bibliographicCitationDi Grazia A, Cappiello F, Cohen H, Casciaro B, Luca V, Pini A, et al. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids. 2015;47(12):2505-19.spa
dc.source.bibliographicCitationYoshida M, Hinkley T, Tsuda S, Abul-Haija YM, McBurney RT, Kulikov V, et al. Using Evolutionary Algorithms and Machine Learning to Explore Sequence Space for the Discovery of Antimicrobial Peptides. Chem. 2018;4(3):533-43.spa
dc.source.bibliographicCitationGiuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Central European Journal of Biology. 2007;2(1):1-33.spa
dc.source.bibliographicCitationKasetty G, Papareddy P, Kalle M, Rydengard V, Morgelin M, Albiger B, et al. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin. Antimicrobial agents and chemotherapy. 2011;55(6):2880-90.spa
dc.source.bibliographicCitationOliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, et al. Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific reports. 2018;8(1):8888.spa
dc.source.bibliographicCitationManabe T, Kawasaki K. D-form KLKLLLLLKLK-NH2 peptide exerts higher antimicrobial properties than its L-form counterpart via an association with bacterial cell wall components. Scientific reports. 2017;7:43384.spa
dc.source.bibliographicCitationHuang J, Hao D, Chen Y, Xu Y, Tan J, Huang Y, et al. Inhibitory effects and mechanisms of physiological conditions on the activity of enantiomeric forms of an alpha-helical antibacterial peptide against bacteria. Peptides. 2011;32(7):1488-95.spa
dc.source.bibliographicCitationPorto W, Silva O, Franco O. Prediction and rational design of antimicrobial peptides, in Protein Structure2019.spa
dc.source.bibliographicCitationTorres M, Pedron C, de Araujo I, da Silva Junior P, D. Silva F, Junior V. Decoralin Analogs with Increased Resistance to Degradation and Lower Hemolytic Activity2017. 18-23 p.spa
dc.source.bibliographicCitationLata S, Sharma BK, Raghava GPS. Analysis and prediction of antibacterial peptides. BMC bioinformatics. 2007;8:263-.spa
dc.source.bibliographicCitationSitaram N, Nagaraj R. Host-defense antimicrobial peptides: importance of structure for activity. Current pharmaceutical design. 2002;8(9):727-42.spa
dc.source.bibliographicCitationMatsuzaki K, Nakamura A, Murase O, Sugishita K, Fujii N, Miyajima K. Modulation of magainin 2-lipid bilayer interactions by peptide charge. Biochemistry. 1997;36(8):2104-11.spa
dc.source.bibliographicCitationTorrent M, Nogues VM, Boix E. A theoretical approach to spot active regions in antimicrobial proteins. BMC bioinformatics. 2009;10:373.spa
dc.source.bibliographicCitationPinilla Beltran YT, Segura NA, Bello FJ. Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in Bogota, Colombia. Neotropical entomology. 2012;41(3):237-42.spa
dc.source.bibliographicCitationGongora J, Diaz-Roa A, Ramirez-Hernandez A, Cortes-Vecino JA, Gaona MA, Patarroyo MA, et al. Evaluating the effect of Sarconesiopsis magellanica (Diptera: Calliphoridae) larvae-derived haemolymph and fat body extracts on chronic wounds in diabetic rabbits. J Diabetes Res. 2015;2015:270253.spa
dc.source.bibliographicCitationDiaz-Roa A, Gaona MA, Segura NA, Ramirez-Hernandez A, Cortes-Vecino JA, Patarroyo MA, et al. Evaluating Sarconesiopsis magellanica blowfly-derived larval therapy and comparing it to Lucilia sericata-derived therapy in an animal model. Acta Trop. 2016;154:34-41.spa
dc.source.bibliographicCitationLaverde-Paz MJ, Echeverry MC, Patarroyo MA, Bello FJ. Evaluating the anti-leishmania activity of Lucilia sericata and Sarconesiopsis magellanica blowfly larval excretions/secretions in an in vitro model. Acta tropica. 2018;177:44-50.spa
dc.source.bibliographicCitationDiaz-Roa A, Patarroyo MA, Bello FJ, Da Silva PI, Jr. Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Front Microbiol. 2018;9:2249.spa
dc.source.bibliographicCitationCLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 9th ed., CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA. 2012.spa
dc.source.bibliographicCitationHetru C, Bulet P. Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods in molecular biology. 1997;78:35-49.spa
dc.source.bibliographicCitationUmerska A, Strandh M, Cassisa V, Matougui N, Eveillard M, Saulnier P. Synergistic Effect of Combinations Containing EDTA and the Antimicrobial Peptide AA230, an Arenicin-3 Derivative, on Gram-Negative Bacteria. Biomolecules. 2018;8(4).spa
dc.source.bibliographicCitationBulet P. Strategies for the discovery, isolation, and characterization of natural bioactive peptides from the immune system of invertebrates. Methods in molecular biology. 2008;494:9-29.spa
dc.source.bibliographicCitationMoghaddam MM, Barjini KA, Ramandi MF, Amani J. Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells. World journal of microbiology & biotechnology. 2014;30(5):1533-40.spa
dc.source.bibliographicCitationSegura-Ramírez PJ, Silva Júnior PI. Loxosceles gaucho Spider Venom: An Untapped Source of Antimicrobial Agents. Toxins. 2018;10(12):522.spa
dc.source.bibliographicCitationUniprot. 2019 [March 7th 2019]. Available from: www.uniprot.org.spa
dc.source.bibliographicCitationBlast. 2019 [March 7th 2019]. Available from: https://blast.ncbi.nlm.nih.gov/Blast.cgi.spa
dc.source.bibliographicCitationAltschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.spa
dc.source.bibliographicCitationAntimicrobial-peptide-database. 2019 [April 7th 2019]. Available from: http://aps.unmc.edu/AP/prediction/prediction_main.php.spa
dc.source.bibliographicCitationExpasy. [March 7th 2019]. Available from: http://web.expasy.org/protparam/.spa
dc.source.bibliographicCitationi-Tasser. 2019 [March 7th 2019]. Available from: http://zhanglab.ccmb.med.umich.edu/I-TASSER/.spa
dc.source.bibliographicCitationYang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8.spa
dc.source.bibliographicCitationLopes Alves F, Oliva M, Miranda A. Conformational and biological properties of Bauhinia bauhinioides kallikrein inhibitor fragments with bradykinin-like activities2015.spa
dc.source.bibliographicCitationCarretero GPB, Saraiva GKV, Cauz ACG, Rodrigues MA, Kiyota S, Riske KA, et al. Synthesis, biophysical and functional studies of two BP100 analogues modified by a hydrophobic chain and a cyclic peptide. Biochim Biophys Acta Biomembr. 2018;1860(8):1502-16.spa
dc.source.bibliographicCitationLi L, Song X, Yin Z, Jia R, Li Z, Zhou X, et al. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro. Microbiological research. 2016;186-187:139-45.spa
dc.source.bibliographicCitationZou L, Lu J, Wang J, Ren X, Zhang L, Gao Y, et al. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO molecular medicine. 2017;9(8):1165-78.spa
dc.source.bibliographicCitationYamamoto D, Hernandes RT, Liberatore AM, Abe CM, Souza RB, Romao FT, et al. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. PloS one. 2017;12(2):e0171385.spa
dc.source.bibliographicCitationAnstead CA, Korhonen PK, Young ND, Hall RS, Jex AR, Murali SC, et al. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions. Nat Commun. 2015;6:7344.spa
dc.source.bibliographicCitationWang H, Yu Z, Hu Y, Li F, Liu L, Zheng H, et al. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis. Peptides. 2012;35(2):285-90.spa
dc.source.bibliographicCitationLemaire S, Trinh TT, Le HT, Tang SC, Hincke M, Wellman-Labadie O, et al. Antimicrobial effects of H4-(86-100), histogranin and related compounds--possible involvement of DNA gyrase. The FEBS journal. 2008;275(21):5286-97.spa
dc.source.bibliographicCitationLI Shang-Wei ZB-S, DU Juan. Isolation, purification, and detection of the antimicrobial activity of the antimicrobial peptide CcAMP1 from <em>Coridius chinensis</em> (Hemiptera: Dinidoridae). Acta Entomologica Sinica. 2015;58(6):610-6.spa
dc.source.bibliographicCitationLv X, Lin Y, Jie Y, Sun M, Bolin Z, Bai F, et al. Purification, characterization, and action mechanism of plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai2017.spa
dc.source.bibliographicCitationRamirez-Carreto S, Quintero-Hernandez V, Jimenez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. 2012;34(2):290-5.spa
dc.source.bibliographicCitationWebb RL. Circular Dichroism and the Conformational Analysis of Biomolecules Edited by Gerald D. Fasman. Plenum Press, New York and London. 1996. ix + 738 pp. 17 × 25.5 cm. ISBN 0-306-45152-5. $125.00. Journal of Medicinal Chemistry. 1996;39(26):5285-6.spa
dc.source.bibliographicCitationHeliquest. 2019 [March 7th 2019]. Available from: http://heliquest.ipmc.cnrs.fr.spa
dc.source.bibliographicCitationPapareddy P, Kasetty G, Kalle M, Bhongir RK, Morgelin M, Schmidtchen A, et al. NLF20: an antimicrobial peptide with therapeutic potential against invasive Pseudomonas aeruginosa infection. The Journal of antimicrobial chemotherapy. 2016;71(1):170-80.spa
dc.source.bibliographicCitationYu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. Proceedings Biological sciences. 2018;285(1874).spa
dc.source.bibliographicCitationNagarajan D, Nagarajan T, Roy N, Kulkarni O, Ravichandran S, Mishra M, et al. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. The Journal of biological chemistry. 2018;293(10):3492-509.spa
dc.source.bibliographicCitationAeschlimann JR. The role of multidrug efflux pumps in the antibiotic resistance of Pseudomonas aeruginosa and other gram-negative bacteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2003;23(7):916-24.spa
dc.source.bibliographicCitationRodriguez-Rojas A, Moreno-Morales J, Mason AJ, Rolff J. Cationic antimicrobial peptides do not change recombination frequency in Escherichia coli. Biology letters. 2018;14(3).spa
dc.source.bibliographicCitationDuvick JP, Rood T, Rao AG, Marshak DR. Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem. 1992;267(26):18814-20.spa
dc.source.bibliographicCitationSousa DA, Porto WF, Silva MZ, da Silva TR, Franco OL. Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize alpha-Hairpinin Antimicrobial Peptide. Molecules (Basel, Switzerland). 2016;21(8).spa
dc.source.bibliographicCitationYan J, Wang K, Dang W, Chen R, Xie J, Zhang B, et al. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrobial agents and chemotherapy. 2013;57(1):220-8.spa
dc.source.bibliographicCitationHancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000;3(4):247-55.spa
dc.source.bibliographicCitationDosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32-7.spa
dc.source.bibliographicCitationZhu X, Ma Z, Wang J, Chou S, Shan A. Importance of Tryptophan in Transforming an Amphipathic Peptide into a Pseudomonas aeruginosa-Targeted Antimicrobial Peptide. PloS one. 2014;9(12):e114605.spa
dc.source.bibliographicCitationGiacometti A, Cirioni O, Barchiesi F, Fortuna M, Scalise G. In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa. J Antimicrob Chemother. 1999;44(5):641-5.spa
dc.source.bibliographicCitationHirt H, Gorr SU. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2013;57(10):4903-10.spa
dc.source.bibliographicCitationWnorowska U, Niemirowicz K, Myint M, Diamond SL, Wróblewska M, Savage PB, et al. Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58. Antimicrobial agents and chemotherapy. 2015;59(7):3808-15.spa
dc.source.bibliographicCitationLin P, Li Y, Dong K, Li Q. The Antibacterial Effects of an Antimicrobial Peptide Human beta-Defensin 3 Fused with Carbohydrate-Binding Domain on Pseudomonas aeruginosa PA14. Current microbiology. 2015;71(2):170-6.spa
dc.source.bibliographicCitationMallapragada S, Wadhwa A, Agrawal P. Antimicrobial peptides: The miraculous biological molecules. Journal of Indian Society of Periodontology. 2017;21(6):434-8.spa
dc.source.bibliographicCitationNijnik A, Hancock R. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerging health threats journal. 2009;2:e1.spa
dc.source.bibliographicCitationChernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. Antiviral and antitumor peptides from insects. Proc Natl Acad Sci U S A. 2002;99(20):12628-32.spa
dc.source.bibliographicCitationOh D, Sun J, Nasrolahi Shirazi A, LaPlante KL, Rowley DC, Parang K. Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Molecular pharmaceutics. 2014;11(10):3528-36.spa
dc.source.bibliographicCitationRichter MF, Hergenrother PJ. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Annals of the New York Academy of Sciences. 2019;1435(1):18-38.spa
dc.source.bibliographicCitationPooi Yin C, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multi-drug resistant bacteria2017.spa
dc.source.bibliographicCitationHirt H, Gorr S-U. Antimicrobial Peptide GL13K Is Effective in Reducing Biofilms of Pseudomonas aeruginosa2013.spa
dc.source.bibliographicCitationHenriksen JR, Etzerodt T, Gjetting T, Andresen TL. Side chain hydrophobicity modulates therapeutic activity and membrane selectivity of antimicrobial peptide mastoparan-X. PloS one. 2014;9(3):e91007.spa
dc.source.bibliographicCitationAlmaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Devel Ther. 2017;11:3159-70.spa
dc.source.bibliographicCitationCardoso MH, Ribeiro SM, Nolasco DO, de la Fuente-Nunez C, Felicio MR, Goncalves S, et al. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep. 2016;6:21385.spa
dc.source.bibliographicCitationRudilla H, merlos A, Sans E, Fusté E, Sierra J, Zalacain A, et al. New and old tools to evaluate new antimicrobial peptides2018. 522 p.spa
dc.source.bibliographicCitationMisra R, Sahoo SK. Antibacterial activity of doxycycline-loaded nanoparticles. Methods in enzymology. 2012;509:61-85.spa
dc.source.bibliographicCitationBarnes KM, Gennard DE, Dixon RA. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res. 2010;100(6):635-40.spa
dc.source.bibliographicCitationLi Z, Mao R, Teng D, Hao Y, Chen H, Wang X, et al. Antibacterial and immunomodulatory activities of insect defensins-DLP2 and DLP4 against multidrug-resistant Staphylococcus aureus. Scientific reports. 2017;7(1):12124.spa
dc.source.bibliographicCitationHu F, Wu Q, Song S, She R, Zhao Y, Yang Y, et al. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC microbiology. 2016;16(1):287.spa
dc.source.bibliographicCitationHe J, Luo X, Jin D, Wang Y, Zhang T. Identification, Recombinant Expression, and Characterization of LHG2, a Novel Antimicrobial Peptide of Lactobacillus casei HZ1. Molecules (Basel, Switzerland). 2018;23(9).spa
dc.source.bibliographicCitationLiang S-S, Wang T-N, Tsai E-M. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes2014. 20770-88 p.spa
dc.source.bibliographicCitationYuan X, Zhu M, Tian G, Zhao Y, Zhao L, Ng TB, et al. Biochemical characteristics of a novel protease from the basidiomycete Amanita virgineoides. Biotechnology and applied biochemistry. 2017;64(4):532-40.spa
dc.source.bibliographicCitationHoffmann JA. The immune response of Drosophila. Nature. 2003;426(6962):33-8.spa
dc.source.bibliographicCitationPedron CN, Andrade GP, Sato RH, Torres MT, Cerchiaro G, Ribeiro AO, et al. Anticancer activity of VmCT1 analogs against MCF-7 cells. Chemical biology & drug design. 2018;91(2):588-96.spa
dc.source.bibliographicCitationRamírez-Carreto S, Quintero-Hernandez V, María Jiménez-Vargas J, Corzo G, Possani L, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae2012. 290-5 p.spa
dc.source.bibliographicCitationFormaggio F, Toniolo C. Electronic and vibrational signatures of peptide helical structures: A tribute to Anton Mario Tamburro. Chirality. 2010;22 Suppl 1:E30-9.spa
dc.source.bibliographicCitationJuba M, Porter D, Dean S, Gillmor S, Bishop B. Characterization and Performance of Short Cationic Antimicrobial Peptide Isomers2013.spa
dc.source.bibliographicCitationDa F, Joo H-S, Cheung G, E. Villaruz A, Rohde H, Luo X-X, et al. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus2017.spa
dc.source.bibliographicCitationFernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. Journal of molecular biology. 2007;370(3):459-70.spa
dc.source.bibliographicCitationGiangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 2001;268(21):5589-600.spa
dc.source.bibliographicCitationTossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 2000;55(1):4-30.spa
dc.source.bibliographicCitationIwai H, Nakajima Y, Natori S, Arata Y, Shimada I. Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. European journal of biochemistry. 1993;217(2):639-44.spa
dc.source.bibliographicCitationBuhroo Z, Ma Kashmir I, Bhat, Na Kashmir I, Ganai, And Kashmir J, et al. Antimicrobial peptides from insects with special reference to silkworm Bombyx mori L: A review2018.spa
dc.source.bibliographicCitationMemarpoor-Yazdi M, Zardini H, Asoodeh A. A Novel Antimicrobial Peptide Derived from the Insect Paederus dermatitis2012.spa
dc.source.bibliographicCitationJ. Betts M, Russell R. Amino‐Acid Properties and Consequences of Substitutions. Bioinformatics for Geneticists: A Bioinformatics Primer for the Analysis of Genetic Data: Second Edition2007. p. 311-42.spa
dc.source.bibliographicCitationKristian Erlin Nygaard M, Schou Andersen A, Kristensen H-H, Krogfelt KA, Fojan P, Wimmer R. The insect defensin lucifensin from Lucilia sericata2012. 277-82 p.spa
dc.source.bibliographicCitationKainz K, Tadic J, Zimmermann A, Pendl T, Carmona-Gutierrez D, Ruckenstuhl C, et al. Methods to Assess Autophagy and Chronological Aging in Yeast. Methods in enzymology. 2017;588:367-94.spa
dc.source.bibliographicCitationDiaz-Achirica P, Prieto S, Ubach J, Andreu D, Rial E, Rivas L. Permeabilization of the mitochondrial inner membrane by short cecropin-A-melittin hybrid peptides. Eur J Biochem. 1994;224(1):257-63.spa
dc.source.bibliographicCitationChen HM, Chan SC, Lee JC, Chang CC, Murugan M, Jack RW. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli. Microsc Res Tech. 2003;62(5):423-30.spa
dc.source.bibliographicCitationBahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543-75.spa
dc.source.bibliographicCitationHamley IW. Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chem Rev. 2017;117(24):14015-41.spa
dc.source.bibliographicCitationMalanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel, Switzerland). 2016;9(3):59.spa
dc.source.bibliographicCitationKohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797-810.spa
dc.source.bibliographicCitationHwang D, Lim Y-H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Scientific reports. 2015;5:10029.spa
dc.source.bibliographicCitationKumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free radical biology & medicine. 2011;51(10):1872-81.spa
dc.source.bibliographicCitationVirdi AS, Singh N. Antimicrobial Peptides and Polyphenols: Implications in Food Safety and Preservation. In: Juneja VK, Dwivedi HP, Sofos JN, editors. Microbial Control and Food Preservation: Theory and Practice. New York, NY: Springer New York; 2017. p. 117-52.spa
dc.source.bibliographicCitationHsu C-H, Chen C, Jou M-L, Lee AY-L, Lin Y-C, Yu Y-P, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA2005. 4053-64 p.spa
dc.source.bibliographicCitationHale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther. 2007;5(6):951-9.spa
dc.source.bibliographicCitationShai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66(4):236-48.spa
dc.source.bibliographicCitationEl-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Frontiers in microbiology. 2015;6:309-.spa
dc.source.bibliographicCitationPoole K. Bacterial stress responses as determinants of antimicrobial resistance. The Journal of antimicrobial chemotherapy. 2012;67(9):2069-89.spa
dc.source.bibliographicCitationShapiro RS. Antimicrobial-induced DNA damage and genomic instability in microbial pathogens. PLoS pathogens. 2015;11(3):e1004678-e.spa
dc.source.bibliographicCitationN Walters R, Piddock L, Wise R. The effect of mutations in the SOS response on the kinetics of quinolone killing1990. 863-73 p.spa
dc.source.bibliographicCitationKawarai T, Wachi M, Ogino H, Furukawa S, Suzuki K, Ogihara H, et al. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Applied microbiology and biotechnology. 2004;64(2):255-62.spa
dc.source.bibliographicCitationHill TM, Sharma B, Valjavec-Gratian M, Smith J. sfi-independent filamentation in Escherichia coli Is lexA dependent and requires DNA damage for induction. J Bacteriol. 1997;179(6):1931-9.spa
dc.source.bibliographicCitationLutkenhaus J. Regulation of cell division in E. coli. Trends in genetics : TIG. 1990;6(1):22-5.spa
dc.source.bibliographicCitationGutsmann T. Interaction between antimicrobial peptides and mycobacteria. Biochim Biophys Acta. 2016;1858(5):1034-43.spa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectAntimicrobial peptidespa
dc.subjectLarval therapyspa
dc.subjectSarconesiopsis magellanicaspa
dc.subject.ddcCiencias médicas, Medicinaspa
dc.subject.lembMedicinaspa
dc.subject.lembPeptidosspa
dc.titleIsolating and characterizing antimicrobial peptides derived from larvae of the blowfly Sarconesiopsis magellanica (diptera: Calliphoridae)spa
dc.typedoctoralThesiseng
dc.type.documentTesisspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de doctoradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
DiazRoa-Andrea-2019.pdf
Tamaño:
2.74 MB
Formato:
Adobe Portable Document Format
Descripción: