Ítem
Acceso Abierto

Desarrollo e implementación de un exoesqueleto de miembro inferior en actividades de la vida diaria

dc.contributor.advisorCifuentes García, Carlos Andrés
dc.contributor.advisorMúnera Ramirez, Marcela Cristina
dc.creatorArciniegas Mayag, Luis Jordy
dc.creator.degreeMagíster en Ingeniería Biomédicaspa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-08-14T22:27:42Z
dc.date.available2020-08-14T22:27:42Z
dc.date.created2019-06-19
dc.descriptionEsta tesis de maestría, muestra el desarrollo e implementación de un exoesqueleto de miembro inferior para el desarrollo de Actividades de la Vida Diaria (ADL). En este documento se muestra la integración mecatrónica, que incluye la implementación y caracterización de los sensores, para tener en cuenta la interacción física entre el humano y el robot (pHRI). El concepto de pHRI, es utilizado en diversas plataformas de rehabilitación para estimular la participación del paciente en las sesiones de terapia. Se expone la implementación del sistema de actuación, que asisten los movimientos de flexión y extensión de las articulaciones de la cadera y la rodilla. Posteriormente, se explica la metodología utilizada para la implementación de las estrategias de control, basados en un control de admitancia y un control de impedancia que tienen en cuenta la pHRI. Finalmente, se muestra el diseño experimental realizado para la caracterización del sistema de actuación; pruebas preliminares de los conceptos de control; y una prueba piloto con un sujeto sano, haciendo uso del exoesqueleto de miembro inferior unilateral, este muestra el desempeño de las estrategias de control aplicadas para la ADL de la marcha. Este proyecto se encuentra dentro del desarrollo de una plataforma robótica adaptable para rehabilitación y asistencia de la marcha denominada AGoRA.spa
dc.description.abstractThis master's thesis shows the development and implementation of a lower limb exoskeleton for the development of Activities of Daily Living (ADL). This paper shows mechatronic integration, including sensor implementation and characterization, to take into account the physical Human Robot Interaction (pHRI). The concept of pHRI is applied in different rehabilitation platforms to promote patient participation in therapy sessions. The implementation of the performance system is presented, which assists the flexion and extension movements of the hip and knee joints. Subsequently, the methodology involved in the implementation of the control strategies is presented, based on an admittance control and an impedance control that takes into account the pHRI.Finally, it is shown the experimental design made for the characterization of the performance system; preliminary tests of the control concepts; and a pilot test with a healthy subject, making use of the unilateral lower limb exoskeleton, this shows the performance of the control strategies applied for ADL as walking. This project is part of the development of an adaptive robotic platform for rehabilitation and walking assistance called AGoRA.spa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación (Minciencias)spa
dc.description.sponsorshipRed REASISTE del Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED)spa
dc.description.sponsorshipEscuela Colombiana deIngeniería Julio Garavitospa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_26599
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/26599
dc.language.isospaspa
dc.publisherUniversidad del Rosario
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programMaestría en Ingeniería Biomédicaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationM. clinic, stroke, 2020. dirección: https://www.mayoclinic.org/es-es/diseasesconditions/stroke/symptoms-causes/syc-20350113.spa
dc.source.bibliographicCitationR. Verma, K. N. Arya, P. Sharma y col., «Understanding gait control in post-stroke: Implications for management», Journal of Bodywork and Movement Therapies, vol. 16, n.o 1, págs. 14-21, 2012, issn: 13608592. dirección: http://dx.doi.org/10.1016/j. jbmt.2010.12.005.spa
dc.source.bibliographicCitationZ. Kiliç, B. Erhan, B. Gunduz y col., «Central Post-Stroke Pain in Stroke Patients: Incidence and the Effect on Quality of Life», Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi, vol. 61, n.o 2, págs. 142-147, 2015, issn: 13020234spa
dc.source.bibliographicCitationK. Kim, Y. M. Kim y E. K. Kim, «Correlation between the activities of daily living of stroke patients in a community setting and their quality of life», Journal of Physical Therapy Science, vol. 26, n.o 3, págs. 417-419, 2014, issn: 09155287.spa
dc.source.bibliographicCitationE. N. Trujillo, «Accidente cerebrovascular en un adulto joven con deficiencia de proteinas y foramen oval patente . Reporte de caso», págs. 46-49, 2016.spa
dc.source.bibliographicCitationS. Lui y M. H. Nguyen, «Elderly Stroke Rehabilitation : Overcoming the Complications», HIndawi, vol. 2018, págs. 1-9, 2018.spa
dc.source.bibliographicCitationT. Truelsen, B. Piechowski-Jozwiak, R. Bonita y col., «Stroke incidence and prevalence in Europe: A review of available data», European Journal of Neurology, vol. 13, n.o 6, págs. 581-598, 2006, issn: 13515101spa
dc.source.bibliographicCitationV. Y. Ma, L. Chan y K. J. Carruthers, «Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the united states: Stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pa», Archives of Physical Medicine and Rehabilitation, vol. 95, n.o 5, 986-995.e1, 2014, issn: 1532821X. dirección: http://dx.doi.org/10. 1016/j.apmr.2013.10.032.spa
dc.source.bibliographicCitationA. A. Divani, S. Majidi, A. M. Barrett y col., «Consequences of stroke in communitydwelling elderly: The health and retirement study, 1998 to 2008», Stroke, vol. 42, n.o 7, págs. 1821-1825, 2011, issn: 00392499.spa
dc.source.bibliographicCitationI. R. Salvador, Hemiparesia: tipos, sintomas, causas y tratamiento, 2020. dirección: https://psicologiaymente.com/clinica/hemiparesia.spa
dc.source.bibliographicCitationU. B. Flansbjer, A. M. Holmback, D. Downham y col., «Reliability of gait performance tests in men and women with hemiparesis after stroke», Journal of Rehabilitation Medicine, vol. 37, n.o 2, págs. 75-82, 2005, issn: 16501977.spa
dc.source.bibliographicCitationM. E. Mlinac y M. C. Feng, «Assessment of Activities of Daily Living, Self-Care, and Independence», Archives of Clinical Neuropsychology, vol. 31, n.o 6, págs. 506-516, 2016, issn: 08876177.spa
dc.source.bibliographicCitationW. Sanngoen, S. Nillnawarad y S. Patchim, «Design and development of low-cost assistive device for lower limb exoskeleton robot», Proceedings - 2017 10th International Conference on Human System Interactions, HSI 2017, págs. 148-153, 2017spa
dc.source.bibliographicCitationH. A. Haghgoo, E. S. Pazuki, A. S. Hosseini y col., «Depression, activities of daily living and quality of life in patients with stroke», Journal of the Neurological Sciences, vol. 328, n.o 1-2, págs. 87-91, 2013, issn: 0022510X.spa
dc.source.bibliographicCitationL. B. Luengo, «“Efectos adversos en la utilizacion de silla de ruedas en mayores”», pág. 14, 2010.spa
dc.source.bibliographicCitationJ. A. Stevens, K. Thomas, L. Teh y col., «Unintentional fall injuries associated with walkers and canes in older adults treated in U.S. emergency departments», Journal of the American Geriatrics Society, vol. 57, n.o 8, págs. 1464-1469, 2009, issn: 00028614spa
dc.source.bibliographicCitationS. Viteckova, P. Kutilek y M. Jirina, «Wearable lower limb robotics: A review», Biocybernetics and Biomedical Engineering, vol. 33, n.o 2, págs. 96-105, 2013, issn: 02085216. dirección: http://dx.doi.org/10.1016/j.bbe.2013.03.005.spa
dc.source.bibliographicCitationH. Kawainot, S. Lee, S. Kanbe y col., «Power Assist Method for HAL-3 using EMGbased Feedback Controller *», págs. 1648-1653, 2003.spa
dc.source.bibliographicCitationN. Aphiratsakun y M. Parnichkun, «Fuzzy based Gains Tuning of PD Controller for Joint Position Control of AIT Leg Exoskeleton-I (ALEX-I)», 2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008, págs. 859-864, 2008.spa
dc.source.bibliographicCitationC Bayon, O Ramirez, F Molla y col., «CPWalker, Robotic Platform for Gait Rehabilitation and Training in patients with Cerebral Palsy», IEEE Transactions on Neural Systems and Rehabilitation Engineering, under review, págs. 3736-3741, 2015.spa
dc.source.bibliographicCitationA. Magazine, «Team ReWalk Ranked First in the Cybathlon 2016 Exoskeleton Final», n.o december, 2017.spa
dc.source.bibliographicCitationY. T. Triana y A. C. Diaz, «Evaluacion de un programa de fisioterapia convencional mas terapia acuatica en niños con paralisis cerebral espastica Evaluation of a conventional physical therapy program plus aquatic therapy in children with spastic cerebral palsy», págs. 21-37, 2007.spa
dc.source.bibliographicCitationK. Shihomi, O. Koji, T. Tadao y col., «Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke», IEEE International Conference on Rehabilitation Robotics, págs. 304-307, 2017, issn: 19457901.spa
dc.source.bibliographicCitationA. M. Alonso, L. Jimenez, J. Sebastian y col., «Rehabilitacion robotica de la marcha con lokomat en Colombia: Estado actual y oportunidades de la robotica social», págs. 1-11, 2017.spa
dc.source.bibliographicCitationS. D. Sierra, J. F. Molina, A. G. Daniel y col., «Development of an Interface for HumanRobot Interaction on a Robotic Platform for Gait Assistance : AGoRA Smart Walker», 2018 IEEE ANDESCON, págs. 1-7spa
dc.source.bibliographicCitationM. Sanchez-Manchola, D. Gomez-Vargas, D. Casas-Bocanegra y col., «Development of a Robotic Lower-Limb Exoskeleton for Gait Rehabilitation: AGoRA Exoskeleton», 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings, págs. 1-6, 2018.spa
dc.source.bibliographicCitationM. Manchola, D. Serrano, G Daniel y col., «T-FLEX : Variable Stiffness Ankle-Foot Orthosis for Gait Assistance», págs. 160-164, 2019.spa
dc.source.bibliographicCitationG. S. Silva, W. J. Koroshetz, R. G. Gonzalez y col., «Causes of Ischemic Stroke», n.o October, 2010.spa
dc.source.bibliographicCitationB. Ovbiagele y M. N. Nguyen-huynh, «Stroke Epidemiology : Advancing Our Understanding of Disease Mechanism and Therapy», págs. 319-329, 2011.spa
dc.source.bibliographicCitationA. A. Divani, G. Vazquez, A. M. Barrett y col., «Risk factors associated with injury attributable to falling among elderly population with history of stroke», Stroke, vol. 40, n.o 10, págs. 3286-3292, 2009, issn: 00392499.spa
dc.source.bibliographicCitationL. Pei, X.-y. Zang, Y. Wang y col., «ScienceDirect Factors associated with activities of daily living among the disabled elders with stroke», International Journal of Nursing Sciences, vol. 3, n.o 1, págs. 29-34, 2016, issn: 2352-0132. dirección: http://dx.doi. org/10.1016/j.ijnss.2016.01.002spa
dc.source.bibliographicCitationG. D. Whitiana y A. Cahyani, «Level of Activity Daily Living in Post Stroke Patients», vol. 4, n.o 2, págs. 261-266, 2017spa
dc.source.bibliographicCitationA. Sunderland, D. Fletcher, L. Bradley y col., «Enhanced physical therapy for arm function after stroke : a one year follow up study», págs. 856-858, 1994.spa
dc.source.bibliographicCitationG Kwakkel, B. J. Kollen y R. C. Wagenaar, «Long term effects of intensity of upper and lower limb training after stroke: a randomised trial», págs. 473-479, 2002.spa
dc.source.bibliographicCitationP. Appelros y A. Tere, «Living setting and utilisation of ADL assistance one year after a stroke with special reference to gender differences», vol. 28, n.o January, págs. 43-49, 2006.spa
dc.source.bibliographicCitationM. clinic, Spinal cord injury, 2019. dirección: https : / / www . mayoclinic . org / diseases-conditions/spinal-cord-injury/symptoms-causes/syc-20377890spa
dc.source.bibliographicCitationW. H. Organization, Spinal Cord Injury, 2013. dirección: https://www.who.int/ news-room/fact-sheets/detail/spinal-cord-injury.spa
dc.source.bibliographicCitationJ. W. McDonald y C. S. More, «Spinal-cord injury», SEMINAR, págs. 417-425, 2002spa
dc.source.bibliographicCitationA. Alizadeh, S. M. Dyck y S. Karimi-Abdolrezaee, «Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms», Frontiers in Neurology, vol. 10, n.o March, págs. 1-25, 2019, issn: 1664-2295.spa
dc.source.bibliographicCitationZ. Zhu, C. Jiang, X. Wang y col., «Design of a wearable lower limb exoskeleton for paralyzed individuals», M2VIP 2016 - Proceedings of 23rd International Conference on Mechatronics and Machine Vision in Practice, 2017.spa
dc.source.bibliographicCitationD. Wolfe, A. McIntyre, K. Ravenek y col., Spinal cord injury rehabilitation evidence, 2011spa
dc.source.bibliographicCitationE. Peter, B. Deb, S. Sukesh y col., Activities of Daily Living (ADLs). dirección: https: //www.ncbi.nlm.nih.gov/books/NBK470404/.spa
dc.source.bibliographicCitationA. Balaguer, Actividades de la vida diaria, 2016. dirección: https://asapmebajoaragon. org/actividades-de-la-vida-diaria/.spa
dc.source.bibliographicCitationC. Blomgren, K. Jood, C. Jern y col., «Long-term performance of instrumental activities of daily living ( IADL ) in young and middle-aged stroke survivors : Results from SAHLSIS outcome», vol. 8128, n.o May, págs. 0-8, 2017.spa
dc.source.bibliographicCitationP. H. Veltink, H. B. Bussmann, W. De Vries y col., «Detection of static and dynamic activities using uniaxial accelerometers», IEEE Transactions on Rehabilitation Engineering, vol. 4, n.o 4, págs. 375-385, 1996, issn: 10636528spa
dc.source.bibliographicCitationS. J. Olney y C. Richardsb, «Hemiparetic gait following stroke . Part I : Characteristics», vol. 4, págs. 136-148, 1996spa
dc.source.bibliographicCitationK. Han, J. Lee y W. K. Song, «Application scenarios for assistive robots based on in-depth focus group interviews and clinical expert meetings», 2013 44th International Symposium on Robotics, ISR 2013, n.o C, 2013spa
dc.source.bibliographicCitationM. A. Laribi y S. Zeghloul, Human lower limb operation tracking via motion capture systems. Elsevier Inc., 2019, págs. 83-107, isbn: 9780128156599. dirección: http:// dx.doi.org/10.1016/B978-0-12-815659-9.00004-4spa
dc.source.bibliographicCitationF. Bionics, The Gait Cycle, 2013. dirección: https : / / www . footbionics . com / Patients/The+Gait+Cycle.html.spa
dc.source.bibliographicCitationY. Xiang, Predicting the Biomechanics of Walking. Elsevier Inc., 2013, págs. 149-186, isbn: 9780124051904. dirección: http://dx.doi.org/10.1016/B978-0-12-405190- 4.00007-6spa
dc.source.bibliographicCitationTekscan, «The Gait Cycle: Phases, Parameters to Evaluate & Technology», 2019. dirección: https://www.tekscan.com/blog/medical/gait-cycle-phases-parametersevaluate-technologyspa
dc.source.bibliographicCitationM. Karadsheh, «Gait Cycle», 2020. dirección: https : / / www . orthobullets . com / foot-and-ankle/7001/gait-cyclespa
dc.source.bibliographicCitationR. S. Sanchez, «Influencia de la carga aplicada sobre bastones de antebrazo en parámetros cinemáticos durante la marcha asistida en sujetos sanos», Tesis doct., Universidad de Sevilla, 2017, pág. 240spa
dc.source.bibliographicCitationD. L. Rudman, «Living in a restricted occupational world: The occupational experiences of stroke survivors who are wheelchair users and their caregivers», págs. 141-152, 2015.spa
dc.source.bibliographicCitationT.-s. Kuan y J.-y. Tsou, «Hemiplegic Gait of Stroke Patients : The Effect of Using a Cane», 1999.spa
dc.source.bibliographicCitationC. M. E. Article, «Effect of a Cane on Sit-to-Stand Transfer in Subjects with Hemiparesis», n.o 1, págs. 191-202, 2013spa
dc.source.bibliographicCitationP. Herrera-Saray, I. Pelaez-Ballestas, L. Ramos-Lira y col., «Problemas con el uso de sillas de ruedas y otras ayudas tecnicas y barreras sociales a las que se enfrentan las personas que las utilizan. Estudio cualitativo desde la perspectiva de la ergonomia en personas discapacitadas por enfermedades reumaticas y otras condiciones», Reumatologia Clinica, vol. 9, n.o 1, págs. 24-30, 2013, issn: 1699258Xspa
dc.source.bibliographicCitationB. J. Makinson, Research and Development Prototype for Machine Augmentation of Human Strength and Endurance. Hardiman I Project, 1971.spa
dc.source.bibliographicCitationH. Kim, Y. J. Shin y J. Kim, «Kinematic-based locomotion mode recognition for power augmentation exoskeleton», International Journal of Advanced Robotic Systems, vol. 14, n.o 5, págs. 1-14, 2017, issn: 17298814spa
dc.source.bibliographicCitationR Ekkelenkamp, J Veneman y H. V. D. Kooij, «LOPES : a lower extremity powered exoskeleton», n.o April, págs. 3132-3133, 2007spa
dc.source.bibliographicCitationS. S. Banala SK, Agrawal SK, «Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. IEEE Int Conf Rehabil Robot 2007, 401–7», Rehabilitation Robotics, vol. 00, n.o c, 2007, issn: 1050-4729.spa
dc.source.bibliographicCitationM. Talaty, A. Esquenazi y J. E. Briceno, «Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics», IEEE International Conference on Rehabilitation Robotics, 2013, issn: 19457898spa
dc.source.bibliographicCitationJ. Choi, B. Na, P.-G. Jung y col., «WalkON Suit», IEEE ROBOTICS & AUTOMATION MAGAZINE, n.o November, págs. 75-86, 2017.spa
dc.source.bibliographicCitationD. S. Miguel, L. J. A. Mayag, M. Munera y col., «Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation», págs. 1-6, 2019.spa
dc.source.bibliographicCitationA. C. Villa-Parra, D. Delisle-Rodriguez, J. S. Lima y col., «Knee impedance modulation to control an active orthosis using insole sensors», Sensors (Switzerland), vol. 17, n.o 12, 2017, issn: 14248220spa
dc.source.bibliographicCitationF. L. Haufe, A. M. Kober, K. Schmidt y col., «User-driven walking assistance : first experimental results using the MyoSuit», 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), págs. 944-949, 2019spa
dc.source.bibliographicCitationS. O. Schrade, K. Datwyler, M. Stucheli y col., «Development of VariLeg, an exoskeleton with variable stiffness actuation: First results and user evaluation from the CYBATHLON 2016 Olivier Lambercy; Roger Gassert», Journal of NeuroEngineering and Rehabilitation, vol. 15, n.o 1, págs. 1-18, 2018, issn: 17430003.spa
dc.source.bibliographicCitationO. Unluhisarcikli, M. Pietrusinski, B. Weinberg y col., «Design and control of a robotic lower extremity exoskeleton for gait rehabilitation», IEEE International Conference on Intelligent Robots and Systems, págs. 4893-4898, 2011spa
dc.source.bibliographicCitationL. E. Alex, S. K. Banala, S. H. Kim y col., «Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)», Rehabilitation, vol. 17, n.o 1, págs. 2-8, 2009.spa
dc.source.bibliographicCitationP Cherelle, V Grosu, P Beyl y col., «The MACCEPA Actuation System as Torque Actuator in the Gait Rehabilitation Robot ALTACRO», págs. 27-32, 2010.spa
dc.source.bibliographicCitationV. Grosu, C. Rodriguez-Guerrero, S. Grosu y col., «Design of Smart Modular Variable Stiffness Actuators for Robotic-Assistive Devices», IEEE/ASME Transactions on Mechatronics, vol. 22, n.o 4, págs. 1777-1785, 2017, issn: 10834435spa
dc.source.bibliographicCitationV. Damme, D. Lefeber, R. V. Ham y col., «MACCEPA , the mechanically adjustable compliance and controllable equilibrium position actuator : Design and implementation in a biped robot», vol. 55, págs. 761-768, 2007.spa
dc.source.bibliographicCitationM. M. Mirbagheri, C Tsao, E Pelosin y col., «Therapeutic Effects of Robotic-Assisted Locomotor Training on Neuromuscular Properties», págs. 561-564, 2005.spa
dc.source.bibliographicCitationB. Brackx, V. Grosu y D. Lefeber, «ALTACRO: Design of the gait rehabilitation robot», English, en Symposium on Robot-Assisted Gait Rehabilitation (ALTACRO). oct. de 2013.spa
dc.source.bibliographicCitationJ. F. Veneman, R. Kruidhof, E. E. G. Hekman y col., «Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, n.o 3, 2007, issn: 07907915spa
dc.source.bibliographicCitationB. Koopman, E. H. F. V. Asseldonk y H. V. D. Kooij, «Selective control of gait subtasks in robotic gait training : foot clearance support in stroke survivors with a powered exoskeleton», págs. 1-21, 2013.spa
dc.source.bibliographicCitationM. Cenciarini y A. M. Dollar, «Biomechanical considerations in the design of lower limb exoskeletons», IEEE International Conference on Rehabilitation Robotics, págs. 10-14, 2011, issn: 19457898.spa
dc.source.bibliographicCitationF. S. Ayachi, H. P. Nguyen, E. Goubault De Brugiere y col., «The Use of Empirical Mode Decomposition-Based Algorithm and Inertial Measurement Units to Auto-Detect Daily Living Activities of Healthy Adults», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 24, n.o 10, págs. 1060-1070, 2016, issn: 15344320spa
dc.source.bibliographicCitationP. Sale, E. F. Russo, M. Russo y col., «Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report», BMC Neurology, vol. 16, n.o 1, págs. 2-9, 2016, issn: 14712377. dirección: http://dx. doi.org/10.1186/s12883-016-0536-0spa
dc.source.bibliographicCitationA. C. Villa-Parra, D. Delisle-Rodriguez, T. Botelho y col., «Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG», Research on Biomedical Engineering, vol. 34, n.o 3, págs. 198-210, 2018, issn: 2446- 4732spa
dc.source.bibliographicCitationJ. M. A. Poveda, J. L. P. Rovira, A. F. Neto y col., «Exoesqueletos Roboticos para Rehabilitacion y Asistencia de Pacientes con Daño Neurologico», en Exoesqueletos Roboticos para Rehabilitacion y Asistencia de Pacientes con Daño Neurologico, 2017, cap. 4. Estruct, págs. 63-82, isbn: 978-84-15413-29-5spa
dc.source.bibliographicCitationK. Schmidt, J. E. Duarte, M. Grimmer y col., «The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers», Frontiers in Neurorobotics, vol. 11, n.o OCT, págs. 1-16, 2017, issn: 16625218spa
dc.source.bibliographicCitationJ. E. Duarte, K. Schmidt, R. Riener y col., «The Myosuit : textile-powered mobility The The Myosuit : Myosuit : textile-powered», IFAC-PapersOnLine, vol. 51, n.o 34, págs. 242-243, 2019, issn: 2405-8963. dirección: https : / / doi . org / 10 . 1016 / j . ifacol.2019.01.046spa
dc.source.bibliographicCitationT. Bacek, M. Moltedo, K. Langlois y col., «BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction», IEEE International Conference on Rehabilitation Robotics, págs. 1666-1671, 2017, issn: 19457901spa
dc.source.bibliographicCitationB. Chen, C. H. Zhong, X. Zhao y col., «A wearable exoskeleton suit for motion assistance to paralysed patients», Journal of Orthopaedic Translation, vol. 11, n.o March, págs. 7-18, 2017, issn: 2214031X.spa
dc.source.bibliographicCitationS. O. Schrade, Y. Nager, A. R. Wu y col., «Bio-inspired Control of Joint Torque and Knee Stiffness in a Robotic Lower Limb Exoskeleton Using a Central Pattern Generator», International Conference on Rehabilitation Robotics, págs. 1387-1394, 2017spa
dc.source.bibliographicCitationA. Esquenazi, M. Talaty, A. Packel y col., «The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level», American Journal of Physical Medicine & Rehabilitation, págs. 911-921, 2012.spa
dc.source.bibliographicCitationJ. T. Meyer, S. O. Schrade, O. Lambercy y col., «User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users», 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), págs. 1159-1166, 2019.spa
dc.source.bibliographicCitationR. O. F. Cybathlon, Chapter 12. WalkON Suit: A Medalist in the Powered Exoskeleton Race of Cybathlon 2016. INC, 2020, págs. 231-250, isbn: 9780128146590. dirección: http://dx.doi.org/10.1016/B978-0-12-814659-0.00012-6.spa
dc.source.bibliographicCitationJ.-M. Belda-Lois, S. M.-d. Horno, I. Bermejo-bosch y col., «Rehabilitation of gait after stroke:a top down approach», Journal of NeuroEngineering and Rehabilitation, vol. 66, n.o December, 2011.spa
dc.source.bibliographicCitationG. E. Frykberg y C. K. Hager, «Movement analysis of sit-to-stand–research informing clinical practice», Physical Therapy Reviews, vol. 20, n.o 3, págs. 156-167, 2015, issn: 1743288X.spa
dc.source.bibliographicCitationJ. L. Pons, «Human-robot cognitive interaction», en Wearable Robots: Biomechatronic Exoskeletons, 2008, cap. 4spa
dc.source.bibliographicCitationM. Beetz, M. Buss y D. Wollherr, «Cognitive technical systems - What is the role of artificial intelligence?», Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4667 LNAI, págs. 19-42, 2007, issn: 03029743.spa
dc.source.bibliographicCitationNeuronUP, Cognitive Functions, 2008. dirección: https://www.neuronup.com/en/ areas/functions.spa
dc.source.bibliographicCitationE. Fosch-Villaronga y B. Ozcan, «The Progressive Intertwinement Between Design, Human Needs and the Regulation of Care Technology: The Case of Lower-Limb Exoskeletons», International Journal of Social Robotics, n.o 0123456789, 2019, issn: 18754805. dirección: https://doi.org/10.1007/s12369-019-00537-8.spa
dc.source.bibliographicCitationA. Costa, R. Salazar-Varas, E. Ianez y col., «Studying Cognitive Attention Mechanisms during Walking from EEG Signals», Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, págs. 882-886, 2016.spa
dc.source.bibliographicCitationL. M. Mooney y H. M. Herr, «Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton», Journal of NeuroEngineering and Rehabilitation, vol. 13, n.o 1, págs. 1-12, 2016, issn: 17430003. dirección: http://dx.doi.org/10.1186/s12984-016-0111-3.spa
dc.source.bibliographicCitationH. V. D. Kooij, «Admittance control for physical human – robot interaction», 2018.spa
dc.source.bibliographicCitation«Active impedance control of a knee-joint orthosis during swing phase», IEEE International Conference on Rehabilitation Robotics, págs. 435-440, 2017, issn: 19457901.spa
dc.source.bibliographicCitationZ. Li, B. Huang, Z. Ye y col., «Physical human-robot interaction of a robotic exoskeleton by admittance control», IEEE Transactions on Industrial Electronics, vol. 65, n.o 12, págs. 9614-9624, 2018, issn: 02780046.spa
dc.source.bibliographicCitationM. D. C. Sanchez-Villamanan, J. Gonzalez-Vargas, D. Torricelli y col., «Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles», Journal of NeuroEngineering and Rehabilitation, vol. 16, n.o 1, pág. 55, 2019, issn: 1743-0003spa
dc.source.bibliographicCitationM. Cempini, S. M. M. De Rossi, T. Lenzi y col., «Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method», IEEE Transactions on Robotics, vol. 29, n.o 1, págs. 236-250, 2013, issn: 15523098.spa
dc.source.bibliographicCitationJ. Beil, C. Marquardt y T. Asfour, «Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint», IEEE International Conference on Rehabilitation Robotics, págs. 1349-1355, 2017, issn: 19457901.spa
dc.source.bibliographicCitationS.-a. E. Axes y T. Decoupling, «Self-Aligning Exoskeleton Axes Through Decoupling of Joint Rotations and Translations», IEEE Transactions on Robotics, vol. 25, págs. 628-633, 2009spa
dc.source.bibliographicCitationTrac, PLA filament, 2020. dirección: https://tractus3d.com/materials/plaspa
dc.source.bibliographicCitationTractus3D, TPU Material, 2020. dirección: https : / / tractus3d . com / materials / tpu/spa
dc.source.bibliographicCitationS. Haddadin y E. Croft, «Physical Human–Robot Interaction», págs. 1835-1874, ene. de 2016.spa
dc.source.bibliographicCitationJ. Schuy, A. Burkl, P. Beckerle y col., «A new device to measure load and motion in lower limb prosthesis - Tested on different prosthetic feet», 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014, págs. 187-192, 2014.spa
dc.source.bibliographicCitationM. Molinari, M. Masciullo, F. Tamburella y col., «Exoskeletons for over-ground gait training in spinal cord injury», Biosystems and Biorobotics, vol. 19, págs. 253-265, 2018spa
dc.source.bibliographicCitationC. A. S. Rodriguez, «Clasificacion Y Seleccion De Strain Gages Y Su Aplicacion En La Industria Mecanica», Tesis doct., UNIVERSIDAD DEL BIO-BIO, 2013, pág. 166.spa
dc.source.bibliographicCitationA. Semiconductor, 24-Bit Analog-to-Digital Converter (ADC) for Weigh Scales.spa
dc.source.bibliographicCitationT. Petric, A. Gams, T. Debevec y col., «Control approaches for robotic knee exoskeleton and their effects on human motion», Advanced Robotics, vol. 27, n.o 13, págs. 993-1002, 2013, issn: 01691864.spa
dc.source.bibliographicCitationA. J. Young y D. P. Ferris, «State of the art and future directions for lower limb robotic exoskeletons», IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, n.o 2, págs. 171-182, 2017, issn: 15344320.spa
dc.source.bibliographicCitationM. N. Victorino, X Jiang y C Menon, Wearable Technologies and Force Myography for Healthcare. Elsevier Inc., 2018, págs. 135-152, isbn: 9780128118108. dirección: http: //dx.doi.org/10.1016/B978-0-12-811810-8.00007-5spa
dc.source.bibliographicCitationN. Abhayasinghe e I. Murray, «Human activity recognition using thigh angle derived from single thigh mounted IMU data», IPIN 2014 - 2014 International Conference on Indoor Positioning and Indoor Navigation, n.o October, págs. 111-115, 2014.spa
dc.source.bibliographicCitationD. Micucci, M. Mobilio y P. Napoletano, «UniMiB SHAR: A dataset for human activity recognition using acceleration data from smartphones», Applied Sciences (Switzerland), vol. 7, n.o 10, 2017, issn: 20763417. arXiv: 1611.07688.spa
dc.source.bibliographicCitationB. Barshan y M. C. Yuksek, «Recognizing daily and sports activities in two open source machine learning environments using body-worn sensor units», Computer Journal, vol. 57, n.o 11, págs. 1649-1667, 2013, issn: 14602067.spa
dc.source.bibliographicCitationS. Chung, J. Lim, K. J. Noh y col., «Sensor Positioning and Data Acquisition for Activity Recognition using Deep Learning», 9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018, págs. 154-159, 2018.spa
dc.source.bibliographicCitationR Alami, A Bicchi, R Bischoff y col., «Safe and Dependable Physical Human-Robot Interaction in Anthropic Domains : State of the Art and Challenges», n.o 1spa
dc.source.bibliographicCitationK. Isik, S. He, J. Ho y col., «Re-Engineering a High Performance Electrical Series Elastic Actuator for Low-Cost Industrial Applications», actuators, págs. 1-16, 2017.spa
dc.source.bibliographicCitationS Arumugom, S Muthuraman y V Ponselvan, «Modeling and Application of Series Elastic Actuators for Force Control Multi Legged Robots», vol. 1, n.o 1, págs. 26-33, 2009.spa
dc.source.bibliographicCitationM. motors, «maxon flat EC motor», 2017spa
dc.source.bibliographicCitationA Ortlieb, M Bouri, R Baud y col., «An assistive lower limb exoskeleton for people with neurological gait disorders BT - 2017 International Conference on Rehabilitation Robotics, ICORR 2017, July 17, 2017 - July 20, 2017», págs. 441-446, 2017. dirección: http://dx.doi.org/10.1109/ICORR.2017.8009287.spa
dc.source.bibliographicCitationROS.org, About ROS. dirección: https://www.ros.org/about-ros/spa
dc.source.bibliographicCitationL. Peppoloni, F. Brizzi, C. A. Avizzano y col., «Immersive ROS-integrated framework for robot teleoperation», en 2015 IEEE Symposium on 3D User Interfaces (3DUI), 2015, págs. 177-178.spa
dc.source.bibliographicCitationY. Pyo, H. Cho, R. Jung y col., ROS Robot Programming, 1.a ed. ROBOTIS Co.,Ltd, 2017, isbn: 9791196230715. dirección: www.robotis.com.spa
dc.source.bibliographicCitationK. Hambuchen, «Exoskeleton control of the robonaut through rapid and ROS», n.o May 2013, 2018spa
dc.source.bibliographicCitationJ. Sales, J. V. Martí, R. Marín y col., «CompaRob: The Shopping Cart Assistance Robot», International Journal of Distributed Sensor Networks, vol. 12, n.o 2, pág. 4 781 280, 2016spa
dc.source.bibliographicCitationY. cruz Gomez y J. E. C. Ramon, «Sistema Nervioso: Fisiologia Sinaptica y Elementos de Neuroanatomia», en Aparato Urogenital. De la biologia a la fisiopatia, cap. 1, pág. 21.spa
dc.source.bibliographicCitationR. S. Calabro, A. Naro, M. Russo y col., «Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial», Journal of neuroengineering and rehabilitation, vol. 15, n.o 1, pág. 35, 2018, issn: 17430003.spa
dc.source.bibliographicCitationT Siebert y C Rode, «Computational modeling of muscle biomechanics», 2014.spa
dc.source.bibliographicCitationD. G. Caldwell, «Bond Graph Modeling Of An Exoskeleton Actuator», n.o April 2019, 2018.spa
dc.source.bibliographicCitationN. Hogan, «Impedance Control: An Approach to Manipulation», 1984 American Control Conference, págs. 304-313, 1984. dirección: https : / / ieeexplore . ieee . org / document/4788393/spa
dc.source.bibliographicCitation] F. R. Cortes, Control de robots manipuladores, 1.a ed., F. J. Rodriguez Cruz, ed. alfaomega, 2011, pág. 592.spa
dc.source.bibliographicCitationP. Corke, Robotics, Vision and control, first edit, S. T. i. A. Robotics, ed., 5. 2011, vol. 73, isbn: 978-3-642-20143-1.spa
dc.source.bibliographicCitationX. Li, Y. Pan, G. Chen y col., «Multi-modal control scheme for rehabilitation robotic exoskeletons», International Journal of Robotics Research, págs. 1-19, 2017, issn: 17413176spa
dc.source.bibliographicCitationK. Lochan y B. K. Roy, «Control of Two-link 2-DOF Robot Manipulator Using Fuzzy Logic Techniques : A Review», págs. 499-511spa
dc.source.bibliographicCitationHarmonic Drive, Speed Reducers for Precision Motion Control, 2018.spa
dc.source.bibliographicCitationF. Monasterio, Motor DC, etapa de potencia y PWM, 2016. dirección: http://www. robolabo.etsit.upm.es/asignaturas/seco/apuntes/motor{\_}dc.pdf.spa
dc.source.bibliographicCitationM. H. Qureshi, Z. Masood, L. Rehman y col., «Biomechanical Design and Control of Lower Limb Exoskeleton for Sit-to-Stand and Stand-to-Sit Movements», 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), págs. 1-6, 2018.spa
dc.source.bibliographicCitationM. motor, EPOS4 control Positioning controllers, 2017spa
dc.source.bibliographicCitationF. R. O. Andres, Alberto Lopez-Delis y Adson Ferreira da Rocha, Upper and lower extremity exoskeletons. Elsevier Inc., 2018, págs. 283-317, isbn: 9780128125397. dirección: http://dx.doi.org/10.1016/B978-0-12-812539-7.00011-8.spa
dc.source.bibliographicCitationI. T. Silva, «Modelo para la estimacion de una frecuencia natural a partir de la respuesta vibratoria de un sistema sometido a un barrido sinusoidal de alta aceleracion,», págs. 54-61spa
dc.source.bibliographicCitationI. Campus, «Variable admittance control of the exoskeleton for gait rehabilitation based on a novel strength metric Ali Taherifar, Gholamreza Vossoughi, and Ali Selk», págs. 1-21, 2017spa
dc.source.bibliographicCitationC. C. Serrano, Sistema masa resorte con movimiento libre amortiguado, casos: Sobreamortiguado, criticamente amortiguado y subamortiguado, 2016spa
dc.source.bibliographicCitationK Wen, D Necsulescu y J Sasiadek, «Haptic force control base don impedance/admittance control», IFAC Proceedings Volumes, vol. 38, n.o 1, págs. 427-432, 2005, issn: 1474-6670. dirección: http://dx.doi.org/10.3182/20050703- 6- CZ1902.01341.spa
dc.source.bibliographicCitationA. Fortin-c, «An admittance control scheme for haptic interfaces based on cable-driven parallel mechanisms An Admittance Control Scheme for Haptic Interfaces Based on Cable-Driven Parallel Mechanisms», n.o February 2017, 2014spa
dc.source.bibliographicCitationM Bortole, A Ama, E Rocon y col., «A Robotic Exoskeleton for Overground Gait Rehabilitation *», págs. 3356-3361, 2013.spa
dc.source.bibliographicCitationG. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin y col., «A 1-DOF assistive exoskeleton with virtual negative damping: Effects on the kinematic response of the lower limbs», IEEE International Conference on Intelligent Robots and Systems, págs. 1938-1944, 2007spa
dc.source.bibliographicCitationS. Srivastava, P.-c. Kao, S. H. Kim y col., «Assist-as-needed Robot-aided Gait Training Improves Walking Function in Individuals Following Stroke .», vol. 4320, n.o c, págs. 1-9, 2014spa
dc.source.bibliographicCitationS. Yao, Y. Zhuang, Z. Li y col., «Adaptive Admittance Control for an Ankle Exoskeleton Using an EMG-Driven Musculoskeletal Model», vol. 12, n.o April, 2018spa
dc.source.bibliographicCitationC. C. D, C. A, D. L y col., ReCAD – Revista electronica de Ciencias Aplicadas al Deporte, 2011spa
dc.source.bibliographicCitationR. J. Farris, H. A. Quintero y M. Goldfarb, «Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals», IEEE transactions on neural systems and rehabilitation engineering, vol. 19, n.o 1142, 2011spa
dc.source.bibliographicCitationJ. Cao, S. Q. Xie, R. Das y col., «Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects», Medical Engineering and Physics, vol. 36, n.o 12, págs. 1555-1566, 2014, issn: 18734030. dirección: http://dx.doi.org/ 10.1016/j.medengphy.2014.08.005spa
dc.source.bibliographicCitationA. L. Jutinico, J. C. Jaimes, F. M. Escalante y col., «Impedance control for robotic rehabilitation: A robust markovian approach», Frontiers in Neurorobotics, vol. 11, n.o AUG, págs. 1-16, 2017, issn: 16625218.spa
dc.source.bibliographicCitationC Bayon, S Lerma, O Ramirez y col., «Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population : short report», Journal of NeuroEngineering and Rehabilitation, págs. 1-6, 2016, issn: 1743-0003. dirección: http: //dx.doi.org/10.1186/s12984-016-0206-xspa
dc.source.bibliographicCitationJ. B. Webster y B. J. Darter, 4 - Principles of Normal and Pathologic Gait, Fifth Edition. Elsevier Inc., 49-62.e1. dirección: https://doi.org/10.1016/B978-0-323- 48323-0.00004-4spa
dc.source.bibliographicCitationV. Meruane, Vibraciones Mecanicasspa
dc.source.bibliographicCitationH. Vivas C., Fisica De Oscilaciones, Ondas Y Optica. Manizales, 2013, pág. 436. dirección: https://core.ac.uk/download/pdf/11058206.pdfspa
dc.source.bibliographicCitationL. Marino, S. Giorgi, C. Camara y col., «Controversias en el tratamiento del movimiento oscilatorio armonico simple en libros de Fisica del nivel basico universitario», Revista de enseñanza de la fisica, vol. 27, n.o 1, págs. 79-87, 2015, issn: 2250-6101spa
dc.source.bibliographicCitationImpedance control of a rotary series elastic actuator for knee rehabilitation, 3. IFAC, 2014, vol. 19, págs. 4801-4806, isbn: 9783902823625. dirección: http://dx.doi.org/ 10.3182/20140824-6-ZA-1003.00987spa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectExoesqueletospa
dc.subjectMiembro inferiorspa
dc.subjectRehabilitaciónspa
dc.subjectADLspa
dc.subject.ddcFarmacología & terapéuticaspa
dc.subject.ddcSistemasspa
dc.subject.keywordLower limbspa
dc.subject.keywordExoskeletonspa
dc.subject.keywordRehabilitation technologyspa
dc.subject.keywordADLspa
dc.subject.keywordpHRIspa
dc.titleDesarrollo e implementación de un exoesqueleto de miembro inferior en actividades de la vida diariaspa
dc.title.TranslatedTitleDevelopment and implementation of a lower limb exoskeleton in activities of daily livingeng
dc.typemasterThesiseng
dc.type.documentTesisspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis de maestríaspa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Desarrollo-e-implementacion-de-un-exoesqueleto-de-miembro-inferior-en-actividades-de-la-vida-diaria.pdf
Tamaño:
10.39 MB
Formato:
Adobe Portable Document Format
Descripción:
Versión actualizada por el autor