Ítem
Acceso Abierto

Efecto de la aplicación intravítrea de células estromales mesenquimales en la respuesta inflamatoria intraocular en un modelo animal experimental de hipertensión ocular
dc.contributor.advisor | De La Torre Cifuentes, Ligia Alejandra | |
dc.contributor.advisor | Ramírez Santana, Heily Carolina | |
dc.creator | Dos Santos Evangelho, Karine | |
dc.creator.degree | Doctor en Ciencias Biomédicas y Biológicas | |
dc.creator.degreeLevel | Doctorado | |
dc.creator.degreetype | Full time | |
dc.date.accessioned | 2025-02-11T20:08:24Z | |
dc.date.available | 2025-02-11T20:08:24Z | |
dc.date.created | 2024-06-24 | |
dc.description | Se proyecta que más de 80 millones de personas padecerán glaucoma al final de esta década. Esta condición, que aún no cuenta con una solución definitiva, requiere el desarrollo de alternativas terapéuticas más eficaces. Recientemente, la investigación sobre la fisiopatología del glaucoma se ha centrado en comprender los efectos de la respuesta inmune en el daño a las células ganglionares de la retina (CGRs) y en su protección. Las CGRs desempeñan un papel crucial, ya que son las neuronas aferentes responsables de transmitir la información visual al cerebro a través de sus axones, los cuales forman el nervio óptico. La muerte de estas células conlleva ceguera irreversible. El estudio de los mecanismos inmunológicos involucrados en el glaucoma podría proporcionar nuevas vías para el tratamiento y la prevención de esta enfermedad, que puede llevar a la discapacidad visual. Se ha encontrado que un desequilibrio en el perfil de citoquinas producidas por las células T puede modificar el microambiente inmunológico en ojos glaucomatosos, influyendo así en la neuropatía óptica. Por lo tanto, las estrategias para bloquear o neutralizar las citoquinas relacionadas con el proceso neurodegenerativo en el glaucoma podrían representar un mecanismo terapéutico prometedor para proteger las neuronas y prevenir una mayor pérdida de la capacidad visual. Este hallazgo sugiere avances hacia tratamientos más efectivos que podrían mejorar la calidad de vida de los pacientes con glaucoma y reducir la gravedad de esta enfermedad. En este contexto neuroprotector, las células estromales mesenquimales (MSCs) están emergiendo como fuertes candidatas para ser utilizadas como terapia celular en el tratamiento de enfermedades neurodegenerativas, dado su considerable potencial regenerativo y su capacidad inmunosupresora. Esta investigación tiene como objetivo principal evaluar el perfil de determinadas citoquinas en el humor acuoso y vítreo en un modelo prospectivo, in vivo, experimental de hipertensión ocular (HO), así como su relación con la respuesta inmune intraocular en ojos tratados con inyección intravítrea de células estromales mesenquimales de gelatina de Wharton humana (WJ-MSCs). Esta investigación se llevó a cabo en el Bioterio y la Sala de Cirugía Experimental de la Escuela Superior de Oftalmología del Instituto Barraquer de América, tras recibir la aprobación del Comité de Ética en Investigación con Animales (CEIA-ESO-IBA). El estudio se dividió en dos etapas experimentales: un estudio piloto y una fase experimental. En el estudio piloto, se realizó la estandarización del modelo de HO para ajustar las dosis del medicamento y la medición de la presión intraocular (PIO). Se utilizaron cuatro conejos machos de la raza Nueva Zelanda, divididos en dos grupos experimentales asignados aleatoriamente durante un período de 4 semanas. Además de estandarizar el modelo de HO mediante la instilación de acetato de prednisolona tópica dos veces al día y la aplicación semanal de acetato de betametasona subconjuntival, se adaptaron técnicas para evaluar la respuesta pupilar fotocromática, realizar estudios histológicos y definir los marcadores inflamatorios utilizados en la investigación. Basándose en los resultados obtenidos en el estudio piloto, se desarrolló la fase experimental. Todos los animales del estudio fueron sometidos a un examen clínico detallado, que incluyó la inspección de mucosas, dentición, piel y anexos, además de un examen oftalmológico completo. Aquellos que presentaron enfermedades de la superficie ocular, opacidad del cristalino, enfermedades inflamatorias sistémicas, lesión retiniana o pérdida de peso severa (≥10% del peso inicial) fueron excluidos del estudio. En la fase experimental, se utilizaron 15 animales, divididos aleatoriamente en tres grupos: grupo 1 (HO), grupo 2 (trasplante intravítreo de WJ-MSCs) y grupo 3 (HO y trasplante intravítreo de WJ-MSCs). Se inyectaron 10⁵/100μL de WJ-MSCs intravítreas en la semana 7 del estudio, asignando el ojo izquierdo como control. En este estudio, se evaluaron los efectos de las WJ-MSCs en la retina mediante Tomografía de Coherencia Óptica (OCT), PEV flash y Respuesta Pupilar Fotocromática (RPF). La retinografía reveló cambios vasculares en la retina, excavación de la copa óptica y alteraciones en la coloración del disco óptico en el grupo 1, mientras que en el grupo 3 se observó una solución de WJ-MSCs localizada sobre el nervio óptico. La OCT mostró una reducción en la capa de células ganglionares de la retina (CCGRs) en el grupo 1, pero un ligero aumento en el grupo 3. Además, los animales tratados con WJ-MSCs presentaron menos alteraciones en la retina y el nervio óptico en comparación con el grupo de HO, incluida una mayor preservación de las CGRs observada mediante histología, lo que indica un efecto beneficioso de la terapia celular. Se observó un posible efecto terapéutico del trasplante celular en la RPF, con un aumento significativo en la respuesta de contracción pupilar a la luz azul solo en las primeras semanas del estudio en el grupo de HO que recibió WJ-MSCs, lo que podría indicar un efecto neuroprotector y axogénico de la terapia celular en la retina. Sin embargo, las WJ-MSCs no lograron restablecer la función de las células ganglionares ni del nervio óptico según el PEV flash. Además, se midieron los niveles de citoquinas en humor acuoso (IL-6, IL-8, factor de necrosis tumoral alfa (TNF-α)) y humor vítreo (interferón (IFN-γ), IL-10 y factor de crecimiento transformante beta (TGF-β)) mediante la técnica de inmunoensayo ELISA. Se evaluó también la expresión de células TCD3+, TCD3+/TCD4+ y TCD3+/TCD8+, así como de la proteína ácida fibrilar glial (GFAP) e inmunohistoquímica en retina y en el nervio óptico después de la aplicación intravítrea de WJ-MSCs, con el fin de analizar el efecto neuroprotector de la terapia celular y su relación con las respuestas inmune e inflamatoria. Se evidenció una disminución en la secreción de citoquinas específicas, como TNF-α, IL-6, IFN-γ, IL-10 e IL-8, en el grupo 3 en comparación con el grupo 1. Además, se observó un aumento en la concentración de TGF-β en humor vítreo después de la aplicación de WJ-MSCs. Al evaluar la infiltración de células TCD3+/TCD4+ en la CCGRs, se observó que el grupo 3 presentaba una infiltración leve, mientras que el grupo 1 no mostró infiltración celular, lo que sugiere un posible efecto inmunomodulador sobre las células TCD4+ mediante la neuroprotección en esta capa de la retina. Por otro lado, la infiltración retiniana de células TCD3+ en todos los grupos tendía a pertenecer más a la subpoblación de células TCD8+ que a las células TCD4+ en varias capas de la retina, lo que indica que la inmunidad celular puede desempeñar un papel en la neuropatía óptica glaucomatosa. Asimismo, se observó una fuerte expresión de GFAP en la retina y en el nervio óptico en todos los grupos del estudio. Además de los resultados descritos, el trasplante de WJ-MSCs de cordón umbilical mostró buenos perfiles de seguridad y pocos eventos adversos en el modelo experimental propuesto. En conjunto, los hallazgos de este estudio sugieren que las células estromales derivadas del cordón umbilical pueden ser una fuente celular prometedora para la neuroprotección en la enfermedad glaucomatosa. | |
dc.description.abstract | It is estimated that more than 80 million people will suffer from glaucoma by the end of this decade. This condition, which still lacks a definitive cure, demands the development of more effective therapeutic alternatives. Recent research on the pathophysiology of glaucoma has focused on understanding the impact of immune responses on retinal ganglion cell (RGC) damage and how these cells can be protected. RGCs play a crucial role as afferent neurons responsible for transmitting visual information to the brain through their axons, which form the optic nerve. The loss of these cells results in irreversible blindness. Studying the immunological mechanisms involved in glaucoma may provide new avenues for treatment and prevention, helping mitigate visual deterioration. An imbalance in the cytokine profile produced by T cells has been shown to alter the immune microenvironment in glaucomatous eyes, thereby influencing optic neuropathy. Strategies to block or neutralize cytokines involved in the neurodegenerative processes of glaucoma could represent a promising therapeutic approach to protect neurons and prevent further vision loss. This insight suggests progress toward more effective treatments that could improve the quality of life for glaucoma patients and help reduce the severity of the disease. In this neuroprotective context, mesenchymal stromal cells (MSCs) have emerged as strong candidates for use in cell therapy for neurodegenerative diseases due to their significant regenerative potential and immunosuppressive properties. This study aims to evaluate the profile of certain cytokines in the aqueous and vitreous humor of a prospective in vivo experimental model of ocular hypertension (OH) and explore their relationship with the intraocular immune response in eyes treated with intravitreal injections of human Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs). The research was conducted at the Animal Facility and Experimental Surgery Room of the Superior School of Ophthalmology at the Barraquer Institute of America, following approval from the Animal Research Ethics Committee (CEIA-ESO-IBA). The study was divided into two experimental stages: a pilot study and the experimental phase. During the pilot phase, the OH model was standardized to adjust drug doses and intraocular pressure (IOP) measurements. Four male New Zealand rabbits were used, randomly assigned to two experimental groups over a four-week period. In addition to standardizing the OH model through the topical application of prednisolone acetate twice daily and weekly subconjunctival injections of betamethasone acetate, techniques were adapted to assess the photopic pupillary response, conduct histological studies, and define the inflammatory markers used in the research. Based on the pilot study’s results, the experimental phase was developed. All animals underwent a detailed clinical examination, including inspection of mucous membranes, teeth, skin, and appendages, along with a comprehensive ophthalmological evaluation. Animals with ocular surface disease, lens opacity, systemic inflammatory conditions, retinal damage, or significant weight loss (≥10% of their initial weight) were excluded from the study. During the experimental phase, 15 animals were randomly divided into three groups: Group 1 (OH), Group 2 (intravitreal transplantation of WJ-MSCs), and Group 3 (OH and intravitreal transplantation of WJ-MSCs). Intravitreal injections of 10⁵/100μL of WJ-MSCs were administered in the seventh week, with the left eye used as a control. The effects of WJ-MSCs on the retina were evaluated using Optical Coherence Tomography (OCT), flash Visual Evoked Potential (VEP), and Photopic Pupillary Response (PPR). Retinography revealed vascular changes, optic nerve cupping, and alterations in optic disc coloration in Group 1, while a localized WJ-MSC solution was observed over the optic nerve in Group 3. OCT showed a reduction in the RGC layer in Group 1 but a slight increase in Group 3. Furthermore, animals treated with WJ-MSCs exhibited fewer retinal and optic nerve alterations compared to the OH group, including better preservation of RGCs, as confirmed through histology. This finding indicates a beneficial effect of cell therapy. A potential therapeutic impact of the cell transplant was also observed in the PPR, with a significant improvement in the contraction response of the pupils. | |
dc.format.extent | 284 pp | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.48713/10336_44970 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/44970 | |
dc.language.iso | spa | |
dc.publisher | Universidad del Rosario | |
dc.publisher.department | Escuela de Medicina y Ciencias de la Salud | |
dc.publisher.program | Doctorado en Ciencias Biomédicas y Biológicas | |
dc.rights | Attribution-NoDerivatives 4.0 International | * |
dc.rights.accesRights | info:eu-repo/semantics/openAccess | |
dc.rights.acceso | Abierto (Texto Completo) | |
dc.rights.licencia | PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | * |
dc.source.bibliographicCitation | 1.,Martin PB, Vila PCF; Estudio de la dinámica del humor acuoso mediante fluorofotometría en el glaucoma de ángulo abierto; | |
dc.source.bibliographicCitation | 2.,Braunger BM, Fuchshofer R, Tamm ER; The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment; | |
dc.source.bibliographicCitation | 3.,Cravioto B, RO, Massieu H G, Izquierdo JJ; Análisis y separación cromatográfica en papel filtro de los componentes del humor acuoso y del plasma desproteinizados de conejo, que dan reacción colorida con la Nihidrina; | |
dc.source.bibliographicCitation | 4.,Sayans Gómez JÁ; Estudio instrumental de la respuesta inflamatoria en la cirugía de la catarata [Internet]; | |
dc.source.bibliographicCitation | 5.,Abad Adán E; Caracterización de la entrada de Ca2+" capacitativa" en células trabeculares; | |
dc.source.bibliographicCitation | 6.,Gómez RG, Martín MG; Vías de drenaje del humor acuoso; | |
dc.source.bibliographicCitation | 7.,Goel M, Picciani RG, Lee RK, Bhattacharya SK; Aqueous humor dynamics: a review; | |
dc.source.bibliographicCitation | 8.,Casson RJ, Chidlow G, Wood JP, Crowston JG, Goldberg I; Definition of glaucoma: clinical and experimental concepts: Definition of glaucoma; | |
dc.source.bibliographicCitation | 9.,Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, et al; Vitreous substitutes: An overview of the properties, importance, and development; | |
dc.source.bibliographicCitation | 10.,Curran JE, Jowett JBM, Elliott KS, Gao Y, Gluschenko K, Wang J, et al; Genetic variation in selenoprotein S influences inflammatory response; | |
dc.source.bibliographicCitation | 11.,Kim TW, Kang KB, Choung HK, Park KH, Kim DM; Elevated glutamate levels in the vitreous body of an in vivo model of optic nerve ischemia; | |
dc.source.bibliographicCitation | 12.,Vorwerk CK, Naskar R, Schuettauf F, Quinto K, Zurakowski D, Gochenauer G, et al; Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death; | |
dc.source.bibliographicCitation | 13.,Jager RD, Aiello LP, Patel SC, Cunningham E; Risks of intravitreous injection: a comprehensive review; | |
dc.source.bibliographicCitation | 14.,Maceira Rozas MC, Cantero Muñoz; Inyecciones intravítreas; | |
dc.source.bibliographicCitation | 15.,David Hubel; Ojo, Cerebro y Vision [Internet]; | |
dc.source.bibliographicCitation | 16.,Mannu GS; Retinal phototransduction; | |
dc.source.bibliographicCitation | 17.,Boll PF; On the anatomy and physiology of the retina; | |
dc.source.bibliographicCitation | 18.,Gelatt Kirk; Veterinary Ophthalmology: Ophthalmic Anatomy [Internet]; | |
dc.source.bibliographicCitation | 19.,Ramı́rez JM, Ramı́rez AI, Salazar JJ, de Hoz R, Triviño A; Changes of astrocytes in retinal ageing and age-related macular degeneration; | |
dc.source.bibliographicCitation | 20.,Febrer AM; Caracterización funcional, estructural y molecular del modelo de glaucoma crónico experimental basado en la inyección intracamerular de ácido hialurónico en la rata [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 21.,António Ramalho; Retina; | |
dc.source.bibliographicCitation | 22.,Dolz-Marco R; Evaluación preclínica de la toxicidad retiniana en la administración intravítrea de ácido docosahexaenoico en modelo experimental de conejo [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 23.,Cristina Nieto Gómez; Efecto de las células mesenquimales sobre el segmento posterior del ojo en un modelo experimental de enfermedad de injerto contra huesped ocular [Internet] [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 24.,Rodríguez L, Herbania Y; Algunas consideraciones sobre la fisiopatología del glaucoma; | |
dc.source.bibliographicCitation | 25.,Luna-Martínez I, Brechtel-Bindel M, de la Fuente-Torres MA; Relación del espesor corneal central y la variación en la presión intraocular con daño al nervio óptico en pacientes mexicanos con glaucoma; | |
dc.source.bibliographicCitation | 26.,Fujitani Y, Fujitani S, Luo H, Qiu F, Burlison J, Long Q, et al; Ptf1a determines horizontal and amacrine cell fates during mouse retinal development; | |
dc.source.bibliographicCitation | 27.,Czeh M, Gressens P, Kaindl AM; The yin and yang of microglia; | |
dc.source.bibliographicCitation | 28.,Gil MAN; Activación de la microglía en la degeneración de la retina y su modulación mediante agentes antiapoptóticos e inflamatorios [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 29.,Schnitzer J, Karschin A; The shape and distribution of astrocytes in the retina of the adult rabbit; | |
dc.source.bibliographicCitation | 30.,Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP; Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge; | |
dc.source.bibliographicCitation | 31.,Streit WJ, Graeber MB, Kreutzberg GW; Functional plasticity of microglia: a review; | |
dc.source.bibliographicCitation | 32.,Aloisi F; Immune function of microglia; | |
dc.source.bibliographicCitation | 33.,Osborne NN; Pathogenesis of ganglion “cell death” in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria; | |
dc.source.bibliographicCitation | 34.,Naydú Acosta Ramírez, Rolando Enrique Peñaloza, Jesús Rodríguez García; Carga de enfermedad colombia 2005: resultados alcanzados; | |
dc.source.bibliographicCitation | 35.,Payne AJ, Kaja S, Sabates NR, Koulen P; Neuroprotection in Eye Disease: Developments in Translational Research; | |
dc.source.bibliographicCitation | 36.,Bailey AJ, Paul RG, Knott L; Mechanisms of maturation and ageing of collagen; | |
dc.source.bibliographicCitation | 37.,Palko JR, Morris HJ, Pan X, Harman CD, Koehl KL, Gelatt KN, et al; Influence of age on ocular biomechanical properties in a canine glaucoma model with ADAMTS10 mutation; | |
dc.source.bibliographicCitation | 38.,Downs JC; Optic nerve head biomechanics in aging and disease; | |
dc.source.bibliographicCitation | 39.,Doucette LP, Rasnitsyn A, Seifi M, Walter MA; The interactions of genes, age, and environment in glaucoma pathogenesis; | |
dc.source.bibliographicCitation | 40.,Liu B, McNally S, Kilpatrick JI, Jarvis SP, O’Brien CJ; Aging and ocular tissue stiffness in glaucoma; | |
dc.source.bibliographicCitation | 41.,Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M; Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial; | |
dc.source.bibliographicCitation | 42.,Casson RJ; Possible role of excitotoxicity in the pathogenesis of glaucoma; | |
dc.source.bibliographicCitation | 43.,Takai Y, Tanito M, Ohira A; Multiplex Cytokine Analysis of Aqueous Humor in Eyes with Primary Open-Angle Glaucoma, Exfoliation Glaucoma, and Cataract; | |
dc.source.bibliographicCitation | 44.,Adio Adedayo Omobolanle, Onua; Economic burden of glaucoma in Rivers State, Nigeria; | |
dc.source.bibliographicCitation | 45.,Ozcan AA, Ozdemir N, Canataroglu A; The aqueous levels of TGF-β2 in patients with glaucoma; | |
dc.source.bibliographicCitation | 46.,Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC; A rat model of chronic pressure-induced optic nerve damage; | |
dc.source.bibliographicCitation | 47.,Garcia-Valenzuela E, Shareef S, Walsh J, Sharma SC; Programmed cell death of retinal ganglion cells during experimental glaucoma; | |
dc.source.bibliographicCitation | 48.,Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK; Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature; | |
dc.source.bibliographicCitation | 49.,Lucas DR, Newhouse JP; The toxic effect of sodium L-glutamate on the inner layers of the retina; | |
dc.source.bibliographicCitation | 50.,Sappington RM, Sidorova T, Long DJ, Calkins DJ; TRPV1: contribution to retinal ganglion cell apoptosis and increased intracellular Ca2+ with exposure to hydrostatic pressure; | |
dc.source.bibliographicCitation | 51.,Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL; Calpain Activation in Experimental Glaucoma; | |
dc.source.bibliographicCitation | 52.,DORADO MARTÍNEZ C, RUGERIO VARGAS C, SELVA RIVAS A; Estrés oxidativo y neurodegeneración; | |
dc.source.bibliographicCitation | 53.,Zanon-Moreno V, Melo P, Mendes-Pinto MM, Alves CJ, Garcia-Medina JJ, Vinuesa-Silva I, et al; Serotonin levels in aqueous humor of patients with primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 54.,Haefliger IO, Dettmann E, Liu R, Meyer P, Prünte C, Messerli J, et al; Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma; | |
dc.source.bibliographicCitation | 55.,Purves D, editor; Neuroscience; | |
dc.source.bibliographicCitation | 56.,Álvarez Bulnes O; Descripción y análisis del grosor de la capa de fibras nerviosas retinianas obtenidos mediante tomografía de coherencia óptica en pacientes sometidos a cirugía combinada de glaucoma [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 57.,Sanz MS; Influencia de la Córnea en la medida de la presión intraocular con distintos sistemas tonométricos; | |
dc.source.bibliographicCitation | 58.,Barrancos Julián C; Cambios biomecánicos de la cabeza del nervio óptico tras esclerectomía profunda no perforante valorados mediante tomografía de dominio espectral con tecnología" Enhanced Depth Imaging" [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 59.,Salinas Navarro MÁ; Efecto de la hipertensión ocular en la población de células ganglionares de la retina de rata y ratón; | |
dc.source.bibliographicCitation | 60.,Ibañez-García A; OCT vs Perimetría Computerizada en Glaucoma [Internet]; | |
dc.source.bibliographicCitation | 61.,Kanski JJ, Fontenla JR; Diagnóstico clínico en oftalmología; | |
dc.source.bibliographicCitation | 62.,Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al; The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 63.,Armaly MF; Ocular pressure and visual fields: A ten-year follow-up study; | |
dc.source.bibliographicCitation | 64.,Pinazo-Durán MD; Genética y algo más; | |
dc.source.bibliographicCitation | 65.,Gonzalez P, Epstein DL, Borrás T; Genes Upregulated in the Human Trabecular Meshwork in Response to Elevated Intraocular Pressure; | |
dc.source.bibliographicCitation | 66.,Gabelt BT, Kaufman PL; Changes in aqueous humor dynamics with age and glaucoma; | |
dc.source.bibliographicCitation | 67.,Li G, Lee C, Agrahari V, Wang K, Navarro I, Sherwood JM, et al; In vivo measurement of trabecular meshwork stiffness in a corticosteroid-induced ocular hypertensive mouse model; | |
dc.source.bibliographicCitation | 68.,Jain A, Wordinger RJ, Yorio T, Clark AF; Role of the Alternatively Spliced Glucocorticoid Receptor Isoform GRβ in Steroid Responsiveness and Glaucoma; | |
dc.source.bibliographicCitation | 69.,Wordinger RJ, Clarka AF; Effects of glucocorticoids on the trabecular meshwork: towards a better understanding of glaucoma; | |
dc.source.bibliographicCitation | 70.,Becker B; Intraocular pressure response to topical corticosteroids; | |
dc.source.bibliographicCitation | 71.,Bernstein HN, Schwartz B; Effects of Long-Term Systemic Steroids on Ocular Pressure and Tonographic Values; | |
dc.source.bibliographicCitation | 72.,Zhang X, Ognibene CM, Clark AF, Yorio T; Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor β; | |
dc.source.bibliographicCitation | 73.,Overby DR, Bertrand J, Tektas OY, Boussommier-Calleja A, Schicht M, Ethier CR, et al; Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice; | |
dc.source.bibliographicCitation | 74.,Qin Y, Lam S, Yam GHF, Choy KW, Liu DTL, Chiu TYH, et al; A rabbit model of age-dependant ocular hypertensive response to topical corticosteroids; | |
dc.source.bibliographicCitation | 75.,Ticho U, Lahav M, Berkowitz S, Yoffe P; Ocular changes in rabbits with corticosteroid-induced ocular hypertension; | |
dc.source.bibliographicCitation | 76.,Kasetti RB, Maddineni P, Patel PD, Searby C, Sheffield VC, Zode GS; Transforming growth factor β2 (TGFβ2) signaling plays a key role in glucocorticoid-induced ocular hypertension; | |
dc.source.bibliographicCitation | 77.,Knepper PA, Farbman AI, Telser AG; Aqueous outflow pathway glycosaminoglycans; | |
dc.source.bibliographicCitation | 78.,Ke TL, Clark AF, Gracy RW; Age-related permeability changes in rabbit corneas; | |
dc.source.bibliographicCitation | 79.,Hohenstein-Blaul NVTU, Bell K, Pfeiffer N, Grus FH; Autoimmune aspects in glaucoma; | |
dc.source.bibliographicCitation | 80.,Mowatt G, Burr JM, Cook JA, Siddiqui MR, Ramsay C, Fraser C, et al; Screening tests for detecting open-angle glaucoma: systematic review and meta-analysis; | |
dc.source.bibliographicCitation | 81.,Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan–Baumrind LA, Kerrigan DF, et al; Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats; | |
dc.source.bibliographicCitation | 82.,M; C; | |
dc.source.bibliographicCitation | 83.,Marvin Barahona; 1; | |
dc.source.bibliographicCitation | 84.,Theodossiades J, Murdoch I; What optic disc parameters are most accurately assessed using the direct ophthalmoscope? Eye; | |
dc.source.bibliographicCitation | 85.,Douglas J; Rhee; | |
dc.source.bibliographicCitation | 86.,Strouthidis NG, Grimm J, Williams GA, Cull GA, Wilson DJ, Burgoyne CF; A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology; | |
dc.source.bibliographicCitation | 87.,Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al; Optical coherence tomography; | |
dc.source.bibliographicCitation | 88.,Tai TYT; Visual Evoked Potentials and Glaucoma; | |
dc.source.bibliographicCitation | 89.,Hood DC, Greenstein VC; Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma; | |
dc.source.bibliographicCitation | 90.,Meigen T; [Electrophysiology in ophthalmology]; | |
dc.source.bibliographicCitation | 91.,Firan AM, Iancu RC, Bujor IA, Ciuluvică RC, Tudosescu R, Ungureanu E, et al; The role of Visual Evoked Potential (VEP) in monitoring the progression and in guiding the treatment of glaucoma patients with poor compliance; | |
dc.source.bibliographicCitation | 92.,Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A; Chromatic Pupil Responses; | |
dc.source.bibliographicCitation | 93.,Yeh CY, Koehl KL, Harman CD, Iwabe S, Guzman JM, Petersen-Jones SM, et al; Assessment of rod, cone, and intrinsically photosensitive retinal ganglion cell contributions to the canine chromatic pupillary response; | |
dc.source.bibliographicCitation | 94.,Berson DM, Dunn FA, Takao M; Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock; | |
dc.source.bibliographicCitation | 95.,Grozdanic SD, Kecova H, Lazic T; Rapid diagnosis of retina and optic nerve abnormalities in canine patients with and without cataracts using chromatic pupil light reflex testing; | |
dc.source.bibliographicCitation | 96.,Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al; Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision; | |
dc.source.bibliographicCitation | 97.,Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, Provencio I, et al; Induction of photosensitivity by heterologous expression of melanopsin; | |
dc.source.bibliographicCitation | 98.,Porciatti V, Di Bartolo E, Nardi M, Fiorentini A; Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study; | |
dc.source.bibliographicCitation | 99.,Abbas AK, Lichtman AH, Pillai S, Baker DL; Cellular and molecular immunology; | |
dc.source.bibliographicCitation | 100.,Gomez-Lucí E, Cutuli MT, Collado VM; El sistema inmune innato; | |
dc.source.bibliographicCitation | 101.,Rojas WM, Juan-Manuel Anaya C, Luz Elena Cano R, Aristizábal B, Luis Miguel Gómes O, Lopera D; Inmunología de Rojas; | |
dc.source.bibliographicCitation | 102.,Torre A de L; Inmunología ocular: síndromes de ojo seco; | |
dc.source.bibliographicCitation | 103.,Muñoz Silvestre A, Corpa Arenas JM, Viana Martín D; Caracterización inmunopatológica de un modelo de infección experimental intradérmica por “Staphylococcus aureus” en conejos / tesis doctoral presentada por Asunción Muñoz Silvestre ; dirigida por [el] Dr; | |
dc.source.bibliographicCitation | 104.,Toche P; Visión panorámica del sistema inmune | Elsevier Enhanced Reader; | |
dc.source.bibliographicCitation | 105.,Marcos Todone; Rol de las proteínas de reconocimiento de peptidoglicanos (PGRPs) en el sistema inmune innato [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 106.,Aparicio P; Respuesta inmune de base celular y mecanismos de activación celular; | |
dc.source.bibliographicCitation | 107.,López-Martínez A, Chávez-Muñoz C, Granados J; Función biológica del complejo principal de histocompatibilidad; | |
dc.source.bibliographicCitation | 108.,Day MJ; Clinical immunology of the dog and cat; | |
dc.source.bibliographicCitation | 109.,Hoecker G; Major Histocompatibility Complex: A System for the Specific Modulation of Differentiated Cells? Scandinavian Journal of Immunology; | |
dc.source.bibliographicCitation | 110.,Anderson MG, Hawes NL, Trantow CM, Chang B, John SWM; Iris phenotypes and pigment dispersion caused by genes influencing pigmentation: Iris phenotypes of mice; | |
dc.source.bibliographicCitation | 111.,Raff MC; T and B Lymphocytes and Immune Responses; | |
dc.source.bibliographicCitation | 112.,Greaves MF, Owen JJ, Raff MC; T and B lymphocytes: origins, properties and roles in immune responses; | |
dc.source.bibliographicCitation | 113.,Hendrix S, Nitsch R; The role of T helper cells in neuroprotection and regeneration; | |
dc.source.bibliographicCitation | 114.,Liang JK, Hu L, Zheng XF; Study of Th1/Th2 balance in peripheral blood of chronic gastritis patients with Pi-Wei damp-heat syndrome; | |
dc.source.bibliographicCitation | 115.,Davis WC, Hamilton MJ; Comparison of the unique characteristics of the immune system in different species of mammals; | |
dc.source.bibliographicCitation | 116.,Streilein JW; Ocular immune privilege: therapeutic opportunities from an experiment of nature; | |
dc.source.bibliographicCitation | 117.,Stein-Streilein J; Immune regulation and the eye; | |
dc.source.bibliographicCitation | 118.,Goslings WR, Prodeus AP, Streilein JW, Carroll MC, Jager MJ, Taylor AW; A small molecular weight factor in aqueous humor acts on C1q to prevent antibody-dependent complement activation; | |
dc.source.bibliographicCitation | 119.,Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY; Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege; | |
dc.source.bibliographicCitation | 120.,Streilein JW; Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation; | |
dc.source.bibliographicCitation | 121.,Taylor AW; Ocular immune privilege; | |
dc.source.bibliographicCitation | 122.,Sugita S, Futagami Y, Smith SB, Naggar H, Mochizuki M; Retinal and ciliary body pigment epithelium suppress activation of T lymphocytes via transforming growth factor beta; | |
dc.source.bibliographicCitation | 123.,Tsukahara R, Takeuchi M, Akiba H, Kezuka T, Takeda K, Usui Y, et al; Critical contribution of CD80 and CD86 to induction of anterior chamber-associated immune deviation; | |
dc.source.bibliographicCitation | 124.,Griffith TS, Yu X, Herndon JM, Green DR, Ferguson TA; CD95-Induced Apoptosis of Lymphocytes in an Immune Privileged Site Induces Immunological Tolerance; | |
dc.source.bibliographicCitation | 125.,Taylor AW; Ocular Immune Privilege and Transplantation; | |
dc.source.bibliographicCitation | 126.,Rj S, Pg M, Pg H; Resident tissue macrophages within the normal rat iris lack immunosuppressive activity and are effective antigen-presenting cells; | |
dc.source.bibliographicCitation | 127.,Steptoe RJ, Holt PG, McMenamin PG; Functional studies of major histocompatibility class II-positive dendritic cells and resident tissue macrophages isolated from the rat iris; | |
dc.source.bibliographicCitation | 128.,Steptoe RJ, McMenamin PG, Holt PG; Resident tissue macrophages within the normal rat iris lack immunosuppressive activity and are effective antigen-presenting cells; | |
dc.source.bibliographicCitation | 129.,A J, B K, G O, A AS, Vg S, Dl H, et al; Plasmacytoid dendritic cells in the eye; | |
dc.source.bibliographicCitation | 130.,Facchetti F, Wolf-Peeters C de, Mason DY, Pulford K, Oord JJ van den, Desmet VJ; Plasmacytoid T cells; | |
dc.source.bibliographicCitation | 131.,Cox K, North M, Burke M, Singhal H, Renton S, Aqel N, et al; Plasmacytoid dendritic cells (PDC) are the major DC subset innately producing cytokines in human lymph nodes; | |
dc.source.bibliographicCitation | 132.,Decalf J, Fernandes S, Longman R, Ahloulay M, Audat F, Lefrerre F, et al; Plasmacytoid dendritic cells initiate a complex chemokine and cytokine network and are a viable drug target in chronic HCV patients; | |
dc.source.bibliographicCitation | 133.,Doyle EH, Rahman A, Aloman C, Klepper AL, El-Shamy A, Eng F, et al; Individual liver plasmacytoid dendritic cells are capable of producing IFNα and multiple additional cytokines during chronic HCV infection; | |
dc.source.bibliographicCitation | 134.,Tokita D, Sumpter TL, Raimondi G, Zahorchak AF, Wang Z, Nakao A, et al; Poor allostimulatory function of liver plasmacytoid DC is associated with pro-apoptotic activity, dependent on regulatory T cells; | |
dc.source.bibliographicCitation | 135.,Pais R, Bhowmick S, Chattopadhyay S, Lemire Y, Sharafieh R, Yadav R, et al; An Intracameral Injection of Antigen Induces In Situ Chemokines and Cytokines Required for the Generation of Circulating Immunoregulatory Monocytes; | |
dc.source.bibliographicCitation | 136.,Martínez MCJ, Carrera I, Seres MP, Jaimes M, Garfias Y; Inmunopatología de la uveítis: conocimientos actuales, correlación clínica y perspectivas de investigación en el área inmuno-ocular; | |
dc.source.bibliographicCitation | 137.,Wang Y, Goldschneider I, Foss D, Wu DY, O’Rourke J, Cone R; Direct thymic involvement in anterior chamber-associated immune deviation: evidence for a nondeletional mechanism of centrally induced tolerance to extrathymic antigens in adult mice; | |
dc.source.bibliographicCitation | 138.,Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K; Immune privilege in corneal transplantation; | |
dc.source.bibliographicCitation | 139.,Niederkorn JY; Role of NKT cells in anterior chamber-associated immune deviation; | |
dc.source.bibliographicCitation | 140.,Sonoda KH, Exley M, Snapper S, Balk SP, Stein-Streilein J; Cd1-Reactive Natural Killer T Cells Are Required for Development of Systemic Tolerance through an Immune-Privileged Site; | |
dc.source.bibliographicCitation | 141.,Jh S, Ps B, Hj S, H M, Hj K, Ns B; Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells; | |
dc.source.bibliographicCitation | 142.,Hm A, Jy N; Expansion of B cells is necessary for the induction of T-cell tolerance elicited through the anterior chamber of the eye; | |
dc.source.bibliographicCitation | 143.,Skelsey M, Mellon J, Niederkorn J; γδ T Cells Are Needed for Ocular Immune Privilege and Corneal Graft Survival1; | |
dc.source.bibliographicCitation | 144.,Ferguson TA, Herndon J, Elzey B, Griffith TS, Schoenberger S, Green DR; Uptake of Apoptotic Antigen-Coupled Cells by Lymphoid Dendritic Cells and Cross-Priming of CD8+ T Cells Produce Active Immune Unresponsiveness; | |
dc.source.bibliographicCitation | 145.,Ramsdell F, Seaman MS, Miller RE, Picha KS, Kennedy MK, Lynch DH; Differential ability of Th1 and Th2 T cells to express Fas ligand and to undergo activation-induced cell death; | |
dc.source.bibliographicCitation | 146.,Xu X, Lai Y, Hua ZC; Apoptosis and apoptotic body: disease message and therapeutic target potentials; | |
dc.source.bibliographicCitation | 147.,Zhao H, Liao X, Kang Y; Tregs: Where We Are and What Comes Next? Front Immunol [Internet]; | |
dc.source.bibliographicCitation | 148.,Abbott NJ, Rönnbäck L, Hansson E; Astrocyte–endothelial interactions at the blood–brain barrier; | |
dc.source.bibliographicCitation | 149.,Rabchevsky AG, Weinitz JM, Coulpier M, Fages C, Tinel M, Junier MP; A Role for Transforming Growth Factor α as an Inducer of Astrogliosis; | |
dc.source.bibliographicCitation | 150.,A B, T P, J G, M F, P W, Sn S, et al; Müller cells in the healthy and diseased retina; | |
dc.source.bibliographicCitation | 151.,J S, J M, K VK, K M, F B, Y C, et al; Mechanisms of photoreceptor death and survival in mammalian retina; | |
dc.source.bibliographicCitation | 152.,Tezel G, Wax MB; Increased production of tumor necrosis factor-α by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells; | |
dc.source.bibliographicCitation | 153.,Vilhardt F; Microglia: phagocyte and glia cell; | |
dc.source.bibliographicCitation | 154.,Kreutzberg GW; Microglia: a sensor for pathological events in the CNS; | |
dc.source.bibliographicCitation | 155.,Tremblay MÈ, Lowery RL, Majewska AK; Microglial interactions with synapses are modulated by visual experience; | |
dc.source.bibliographicCitation | 156.,Rivest S; Regulation of innate immune responses in the brain; | |
dc.source.bibliographicCitation | 157.,Omri S, Behar-Cohen F, de Kozak Y, Sennlaub F, Verissimo LM, Jonet L, et al; Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCζ in the Goto Kakizaki rat model; | |
dc.source.bibliographicCitation | 158.,Giulian D, Li J, Li X, George J, Rutecki PA; The impact of microglia-derived cytokines upon gliosis in the CNS; | |
dc.source.bibliographicCitation | 159.,Vázquez-Chona FR, Swan A, Ferrell WD, Jiang L, Baehr W, Chien WM, et al; Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function; | |
dc.source.bibliographicCitation | 160.,Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak D; Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration; | |
dc.source.bibliographicCitation | 161.,John GR, Lee SC, Brosnan CF; Cytokines: powerful regulators of glial cell activation; | |
dc.source.bibliographicCitation | 162.,Zhang D, Hu X, Qian LI, Wilson B, Lee C, Flood P, et al; Prostaglandin E2 released from activated microglia enhances astrocyte proliferation in vitro; | |
dc.source.bibliographicCitation | 163.,Barnum SR; Inhibition of Complement as a Therapeutic Approach in Inflammatory Central Nervous System (CNS) Disease; | |
dc.source.bibliographicCitation | 164.,Rn A, Pk P, Jr L; Toll-like receptors in defense and damage of the central nervous system; | |
dc.source.bibliographicCitation | 165.,T M, A C, Ra L, Kv T, R G; Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system; | |
dc.source.bibliographicCitation | 166.,Forrester JV, Xu H, Kuffová L, Dick AD, McMenamin PG; Dendritic cell physiology and function in the eye; | |
dc.source.bibliographicCitation | 167.,Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T; Retinal microglia: Just bystander or target for therapy? Progress in Retinal and Eye Research; | |
dc.source.bibliographicCitation | 168.,Wong M, Huang P, Li W, Li Y, Zhang SS, Zhang C; T-Helper1/T-Helper2 Cytokine Imbalance in the Iris of Patients with Glaucoma; | |
dc.source.bibliographicCitation | 169.,Yang J, Patil RV, Yu H, Gordon M, Wax MB; T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma; | |
dc.source.bibliographicCitation | 170.,Streilein JW; Immunoregulatory mechanisms of the eye; | |
dc.source.bibliographicCitation | 171.,Poyomtip T; Role of Toll-Like Receptor 4 for cellular pathogenesis in Open-Angle Glaucoma: A Potential Therapeutic Strategy; | |
dc.source.bibliographicCitation | 172.,Kokubun T, Tsuda S, Kunikata H, Yasuda M, Himori N, Kunimatsu-Sanuki S, et al; Characteristic Profiles of Inflammatory Cytokines in the Aqueous Humor of Glaucomatous Eyes; | |
dc.source.bibliographicCitation | 173.,Barany EH; In vitro studies of the resistance to flow through the angle of the anterior chamber; | |
dc.source.bibliographicCitation | 174.,J CD, Md R, Ia S; Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism; | |
dc.source.bibliographicCitation | 175.,Taurone S, Ripandelli G, Pacella E, Bianchi E, Plateroti AM, De Vito S, et al; Potential regulatory molecules in the human trabecular meshwork of patients with glaucoma: Immunohistochemical profile of a number of inflammatory cytokines; | |
dc.source.bibliographicCitation | 176.,Ha Q, Em A; Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage; | |
dc.source.bibliographicCitation | 177.,Jd P, Aw T, Cs R, I V, Mr H; Transforming growth factor beta isoforms in human optic nerve heads; | |
dc.source.bibliographicCitation | 178.,Oa A, Cs R, M SS, Mr H; Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human optic nerve head astrocytes; | |
dc.source.bibliographicCitation | 179.,L G, Se M, Ra A, Rr A, Fw F, Mf C; Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix; | |
dc.source.bibliographicCitation | 180.,Wein FB, Levin LA; Current understanding of neuroprotection in glaucoma; | |
dc.source.bibliographicCitation | 181.,Serna-Ojeda JC, Flores-Reyes EM, Hartleben-Matkin C; Glaucoma: corrientes en estudio sobre su etiología; | |
dc.source.bibliographicCitation | 182.,Gregory MS, Hackett CG, Abernathy EF, Lee KS, Saff RR, Hohlbaum AM, et al; Opposing Roles for Membrane Bound and Soluble Fas Ligand in Glaucoma-Associated Retinal Ganglion Cell Death; | |
dc.source.bibliographicCitation | 183.,Geyer O, Levo Y; Glaucoma is an autoimmune disease; | |
dc.source.bibliographicCitation | 184.,Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, et al; Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma; | |
dc.source.bibliographicCitation | 185.,Ray K, Mookherjee S; Molecular complexity of primary open angle glaucoma: current concepts; | |
dc.source.bibliographicCitation | 186.,Tezel G, Yang X, Luo C, Kain AD, Powell DW, Kuehn MH, et al; Oxidative stress and the regulation of complement activation in human glaucoma; | |
dc.source.bibliographicCitation | 187.,Huang P, Zhang SSM, Zhang C; The two sides of cytokine signaling and glaucomatous optic neuropathy; | |
dc.source.bibliographicCitation | 188.,Huang P, Zhang SSM, Zhang C; The two sides of cytokine signaling and glaucomatous optic neuropathy; | |
dc.source.bibliographicCitation | 189.,Redondo S, Santos-Gallego CG, Tejerina T; TGF-β1: a novel target for cardiovascular pharmacology; | |
dc.source.bibliographicCitation | 190.,Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggiag S, et al; Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility; | |
dc.source.bibliographicCitation | 191.,Kennedy KJ, Karpus WJ; Role of chemokines in the regulation of Th1/Th2 and autoimmune encephalomyelitis; | |
dc.source.bibliographicCitation | 192.,Agarwal SK, Marshall Jr GD; Stress effects on immunity and its application to clinical immunology; | |
dc.source.bibliographicCitation | 193.,Davis JL, Ruiz P, Shah M, Mandelcorn ED; Evaluation of the Reactive T-Cell Infiltrate in Uveitis and Intraocular Lymphoma with Flow Cytometry of Vitreous Fluid (An American Ophthalmological Society Thesis); | |
dc.source.bibliographicCitation | 194.,Husain S, Abdul Y, Webster C, Chatterjee S, Kesarwani P, Mehrotra S; Interferon-Gamma (IFN-γ)-Mediated Retinal Ganglion Cell Death in Human Tyrosinase T Cell Receptor Transgenic Mouse; | |
dc.source.bibliographicCitation | 195.,Duvesh R, Puthuran G, Srinivasan K, Rengaraj V, Krishnadas SR, Rajendrababu S, et al; Multiplex Cytokine Analysis of Aqueous Humor from the Patients with Chronic Primary Angle Closure Glaucoma; | |
dc.source.bibliographicCitation | 196.,Campos M, Javier F; Implicaciones de la respuesta inmunológica en la retinopatía diabética y cuantificación de los mediadores de la re[s]puesta inflamatoria IL-1[beta], IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL12p70, IL-13, IL-17A, IL-22, IFN-[gamma] y TNF-[alfa], en suero y en pacientes vitrectomizados [Internet] [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 197.,Šedý J, Bekiaris V, Ware CF; Tumor necrosis factor superfamily in innate immunity and inflammation; | |
dc.source.bibliographicCitation | 198.,Dick AD, Forrester JV, Liversidge J, Cope AP; The role of tumour necrosis factor (TNF-α) in experimental autoimmune uveoretinitis (EAU); | |
dc.source.bibliographicCitation | 199.,Fuchs C, Forster V, Balse E, Sahel JA, Picaud S, Tessier LH; Retinal-Cell–Conditioned Medium Prevents TNF-α-Induced Apoptosis of Purified Ganglion Cells; | |
dc.source.bibliographicCitation | 200.,Khalef N, Labib H, Helmy H, El Hamid MA, Moemen L, Fahmy I; Levels of cytokines in the aqueous humor of eyes with primary open angle glaucoma, pseudoexfoliation glaucoma and cataract; | |
dc.source.bibliographicCitation | 201.,Tezel G; TNF-α signaling in glaucomatous neurodegeneration; | |
dc.source.bibliographicCitation | 202.,Egwuagu CE, Mahdi RM, Chan CC, Sztein J, Li W, Smith JA, et al; Expression of interferon-gamma in the lens exacerbates anterior uveitis and induces retinal degenerative changes in transgenic Lewis rats; | |
dc.source.bibliographicCitation | 203.,Streilein JW, Wilbanks GA, Taylor A, Cousins S; Eye-derived cytokines and the immunosuppressive intraocular microenvironment: a review; | |
dc.source.bibliographicCitation | 204.,Wong M, Huang P, Li W, Li Y, Zhang SS, Zhang C; T-helper1/T-helper2 cytokine imbalance in the iris of patients with glaucoma; | |
dc.source.bibliographicCitation | 205.,Peralta-Zaragoza O, Lagunas-Martínez A, Madrid-Marina V; Factor de crecimiento transformante beta-1: estructura, función y mecanismos de regulación en cáncer; | |
dc.source.bibliographicCitation | 206.,Sporn MB, Roberts AB; Transforming growth factor-beta: recent progress and new challenges; | |
dc.source.bibliographicCitation | 207.,Gupta D, Wen JC, Huebner JL, Stinnett S, Kraus VB, Tseng HC, et al; Cytokine biomarkers in tear film for primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 208.,Trivedi RH, Nutaitis M, Vroman D, Crosson CE; Influence of Race and Age on Aqueous Humor Levels of Transforming Growth Factor-Beta 2 in Glaucomatous and Nonglaucomatous Eyes; | |
dc.source.bibliographicCitation | 209.,Pfeiffer N, Voykov B, Renieri G, Bell K, Richter P, Weigel M, et al; First-in-human phase I study of ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in subjects with open-angle glaucoma undergoing glaucoma filtration surgery; | |
dc.source.bibliographicCitation | 210.,Wang J, Harris A, Prendes M, Alshawa L, Gross J, Wentz S, et al; Targeting Transforming Growth Factor-β Signaling in Primary Open-Angle Glaucoma; | |
dc.source.bibliographicCitation | 211.,Inoue-Mochita M, Inoue T, Kojima S, Futakuchi A, Fujimoto T, Sato-Ohira S, et al; Interleukin-6-mediated trans-signaling inhibits transforming growth factor-β signaling in trabecular meshwork cells; | |
dc.source.bibliographicCitation | 212.,Fuchshofer R, Tamm ER; The role of TGF-β in the pathogenesis of primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 213.,Tamm ER, Ethier CR; Biological aspects of axonal damage in glaucoma: a brief review; | |
dc.source.bibliographicCitation | 214.,Fakhraie G, Parvini F, Ghanavi J, Saif S, Farnia P; Association of IL-10 gene promoter polymorphisms with susceptibility to pseudoexfoliation syndrome, pseudoexfoliative and primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 215.,Irkec MT, Bozkurt B, Mesci L, Bulur B, Ersoy F, Sanal O, et al; TNF–alpha and IL–10 Gene Polymorphisms in Turkish Glaucoma Patients; | |
dc.source.bibliographicCitation | 216.,Casas LA, Gutiérrez AG; Asociación de polimorfismos genéticos de TNF-α e IL-10, citocinas reguladoras de la respuesta inmune en enfermedades infecciosas, alérgicas y autoinmunes; | |
dc.source.bibliographicCitation | 217.,Ulhaq ZS, Soraya GV, Hasan YTN, Rachma LN, Rachmawati E, Shodry S, et al; Serum IL-6/IL-10 ratio as a biomarker for the diagnosis and severity assessment of primary-open angle glaucoma; | |
dc.source.bibliographicCitation | 218.,Erta M, Quintana A, Hidalgo J; Interleukin-6, a major cytokine in the central nervous system; | |
dc.source.bibliographicCitation | 219.,Chen KH, Wu CC, Roy S, Lee SM, Liu JH; Increased Interleukin-6 in Aqueous Humor of Neovascular Glaucoma; | |
dc.source.bibliographicCitation | 220.,Echevarria FD, Formichella CR, Sappington RM; Interleukin-6 Deficiency Attenuates Retinal Ganglion Cell Axonopathy and Glaucoma-Related Vision Loss; | |
dc.source.bibliographicCitation | 221.,Chucair-Elliott AJ, Conrady C, Zheng M, Kroll CM, Lane TE, Carr DJJ; Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells; | |
dc.source.bibliographicCitation | 222.,Wang JJ, Williams W, Wang B, Wei J, Lu X, Cheng JW, et al; Cytotoxic effect of interleukin-8 in retinal ganglion cells and its possible mechanisms; | |
dc.source.bibliographicCitation | 223.,Chono I, Miyazaki D, Miyake H, Komatsu N, Ehara F, Nagase D, et al; High interleukin-8 level in aqueous humor is associated with poor prognosis in eyes with open angle glaucoma and neovascular glaucoma; | |
dc.source.bibliographicCitation | 224.,Gadue P, Huber TL, Nostro MC, Kattman S, Keller GM; Germ layer induction from embryonic stem cells; | |
dc.source.bibliographicCitation | 225.,Mol A, van Lieshout MI, Dam-de Veen CG, Neuenschwander S, Hoerstrup SP, Baaijens FP, et al; Fibrin as a cell carrier in cardiovascular tissue engineering applications; | |
dc.source.bibliographicCitation | 226.,Mauricio G, Guadalupe MR; Caracterización y evaluación del potencial terapéutico de células madre mesenquimales obtenidas de tejido adiposo en el tratamiento del infarto agudo de miocardio en modelo porcino [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 227.,Arnalich‐Montiel F, Pastor S, Blazquez‐Martinez A, Fernandez‐Delgado J, Nistal M, Alio JL, et al; Adipose‐Derived Stem Cells Are a Source for Cell Therapy of the Corneal Stroma; | |
dc.source.bibliographicCitation | 228.,Arnalich Montiel F; Terapia celular aplicada a la regeneración del estroma corneal: uso de las células madre del tejdo adiposo en modelos experimentales [Internet] [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 229.,Osathanon T, Linnes ML, Rajachar RM, Ratner BD, Somerman MJ, Giachelli CM; Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering; | |
dc.source.bibliographicCitation | 230.,Linnes MP, Ratner BD, Giachelli CM; A fibrinogen-based precision microporous scaffold for tissue engineering; | |
dc.source.bibliographicCitation | 231.,Itali Marcelly Linero Segrera; Regeneracion osea por implante de celulas madre mesenquimales derivadas de tejido adiposo humano en un modelo animal [Internet] [Tesis Doctoral]; | |
dc.source.bibliographicCitation | 232.,Beltrán BR; Células madre mesenquimales equinas: Obtención y análisis de sus propiedades in vitro; | |
dc.source.bibliographicCitation | 233.,Prósper F, Gavira JJ, Herreros J, Rábago G, Luquin R, Moreno J, et al; Cell transplant and regenerative therapy with stem cells; | |
dc.source.bibliographicCitation | 234.,Sabapathy V, Sundaram B, VM S, Mankuzhy P, Kumar S; Human Wharton’s Jelly Mesenchymal Stem Cells Plasticity Augments Scar-Free Skin Wound Healing with Hair Growth; | |
dc.source.bibliographicCitation | 235.,Kern S, Eichler H, Stoeve J, Klüter H, Bieback K; Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue; | |
dc.source.bibliographicCitation | 236.,Troyer DL, Weiss ML; Wharton’s jelly-derived cells are a primitive stromal cell population; | |
dc.source.bibliographicCitation | 237.,Subramanian A, Fong CY, Biswas A, Bongso A; Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton’s Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells; | |
dc.source.bibliographicCitation | 238.,Van der Garde M, Van Pel M, Millán Rivero JE, Graaf-Dijkstra A, Slot MC, Kleinveld Y, et al; Direct Comparison of Wharton’s Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34(+) Transplants; | |
dc.source.bibliographicCitation | 239.,Drela K, Lech W, Figiel-Dabrowska A, Zychowicz M, Mikula M, Sarnowska A, et al; Enhanced neuro-therapeutic potential of Wharton’s Jelly-derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture; | |
dc.source.bibliographicCitation | 240.,Gutiérrez-Fernández M, Otero-Ortega L, Ramos-Cejudo J, Rodríguez-Frutos B, Fuentes B, Díez-Tejedor E; Adipose tissue-derived mesenchymal stem cells as a strategy to improve recovery after stroke; | |
dc.source.bibliographicCitation | 241.,Colgan SP, Eltzschig HK, Eckle T, Thompson LF; Physiological roles for ecto-5’-nucleotidase (CD73); | |
dc.source.bibliographicCitation | 242.,Kisselbach L, Fusiona M, Bossie A, Boyd A; Expresión de CD90 en células primarias humanas y eliminación de fibroblastos contaminantes de cultivos celulares; | |
dc.source.bibliographicCitation | 243.,Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, et al; Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells; | |
dc.source.bibliographicCitation | 244.,Nielsen JS, McNagny KM; Novel functions of the CD34 family; | |
dc.source.bibliographicCitation | 245.,Caignard G, Leiva-Torres GA, Leney-Greene M, Charbonneau B, Dumaine A, Fodil-Cornu N, et al; Genome-wide mouse mutagenesis reveals CD45-mediated T cell function as critical in protective immunity to HSV-1; | |
dc.source.bibliographicCitation | 246.,Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al; Minimal criteria for defining multipotent mesenchymal stromal cells; | |
dc.source.bibliographicCitation | 247.,Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, et al; Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection; | |
dc.source.bibliographicCitation | 248.,Tropel P, Noël D, Platet N, Legrand P, Benabid AL, Berger F; Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow; | |
dc.source.bibliographicCitation | 249.,Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ; Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential; | |
dc.source.bibliographicCitation | 250.,Lee TC, Lee TH, Huang YH, Chang NK, Lin YJ, Chien PWC, et al; Comparison of surface markers between human and rabbit mesenchymal stem cells; | |
dc.source.bibliographicCitation | 251.,Bakhtina A, Tohfafarosh M, Lichtler A, Arinzeh TL; Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine; | |
dc.source.bibliographicCitation | 252.,Liu ZJ, Zhuge Y, Velazquez OC; Trafficking and differentiation of mesenchymal stem cells; | |
dc.source.bibliographicCitation | 253.,Sottile V, Jackson L, Jones D, Scotting P; Adult mesenchymal stem cells: Differentiation potential and therapeutic applications; | |
dc.source.bibliographicCitation | 254.,Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y; Immunobiology of mesenchymal stem cells; | |
dc.source.bibliographicCitation | 255.,Le Blanc K, Ringdén O; Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation; | |
dc.source.bibliographicCitation | 256.,Uccelli A, Moretta L, Pistoia V; Immunoregulatory function of mesenchymal stem cells; | |
dc.source.bibliographicCitation | 257.,Djouad F, Fritz V, Apparailly F, Louis‐Plence P, Bony C, Sany J, et al; Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor α in collagen‐induced arthritis; | |
dc.source.bibliographicCitation | 258.,Prasanna JS, Gopalakrishnan D, Shankar SR, Vasandan AB; Pro-Inflammatory Cytokines, IFNc and TNFa, Influence Immune Properties of Human Bone Marrow and Whartonb Jelly Mesenchymal Stem Cells Differentially; | |
dc.source.bibliographicCitation | 259.,William TT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC; Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation; | |
dc.source.bibliographicCitation | 260.,Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al; Role for interferon‐γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells; | |
dc.source.bibliographicCitation | 261.,Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al; A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1; | |
dc.source.bibliographicCitation | 262.,Beyth S, Borovsky Z, Mevorach D, Liebergall M, Gazit Z, Aslan H, et al; Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness; | |
dc.source.bibliographicCitation | 263.,Jiang XX, Zhang YI, Liu B, Zhang SX, Wu Y, Yu XD, et al; Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells; | |
dc.source.bibliographicCitation | 264.,Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L; Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2, 3-dioxygenase and prostaglandin E2; | |
dc.source.bibliographicCitation | 265.,Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, et al; Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2–dependent regulatory dendritic cell population; | |
dc.source.bibliographicCitation | 266.,Miranda Rodríguez A, Galván Cabrera JA, de León Delgado J; Propiedades inmunomoduladoras de las células madre mesenquimales; | |
dc.source.bibliographicCitation | 267.,Li H, Guo Z, Jiang X, Zhu H, Li X, Mao N; Mesenchymal stem cells alter migratory property of T and dendritic cells to delay the development of murine lethal acute graft‐versus‐host disease; | |
dc.source.bibliographicCitation | 268.,Rafei M, Hsieh J, Fortier S, Li M, Yuan S, Birman E, et al; Mesenchymal stromal cell–derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction; | |
dc.source.bibliographicCitation | 269.,Asari S, Itakura S, Ferreri K, Liu CP, Kuroda Y, Kandeel F, et al; Mesenchymal stem cells suppress B-cell terminal differentiation; | |
dc.source.bibliographicCitation | 270.,Angoulvant D, Clerc A, Benchalal S, Galambrun C, Farre A, Bertrand Y, et al; Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens; | |
dc.source.bibliographicCitation | 271.,Xu G, Zhang Y, Zhang L, Roberts AI, Shi Y; C/EBPβ mediates synergistic upregulation of gene expression by interferon‐γ and tumor necrosis factor‐α in bone marrow‐derived mesenchymal stem cells; | |
dc.source.bibliographicCitation | 272.,Mareschi K, Castiglia S, Sanavio F, Rustichelli D, Muraro M, Defedele D, et al; Immunoregulatory effects on T lymphocytes by human mesenchymal stromal cells isolated from bone marrow, amniotic fluid, and placenta; | |
dc.source.bibliographicCitation | 273.,Cho PS, Messina DJ, Hirsh EL, Chi N, Goldman SN, Lo DP, et al; Immunogenicity of umbilical cord tissue derived cells; | |
dc.source.bibliographicCitation | 274.,Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al; Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis; | |
dc.source.bibliographicCitation | 275.,Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, et al; Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide; | |
dc.source.bibliographicCitation | 276.,Fuentes Julián S; Estudio de la utilidad y mecanismos de acción de las células madre adultas del tejido adiposo para el tratamiento del rechazo tras trasplante corneal alogénico; | |
dc.source.bibliographicCitation | 277.,Information NC for B, Pike USNL of M 8600 R, MD B, Usa 20894; European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition; | |
dc.source.bibliographicCitation | 278.,Chamling X, Sluch VM, Zack DJ; The Potential of Human Stem Cells for the Study and Treatment of Glaucoma; | |
dc.source.bibliographicCitation | 279.,Yamana T, Kita M, Ozaki S, Negi A, Honda Y; The process of closure of experimental retinal holes in rabbit eyes; | |
dc.source.bibliographicCitation | 280.,Xuqian W, Kanghua L, WeiHong Y, Xi Y, Rongping D, Qin H, et al; Intraocular Transplantation of Human Adipose-Derived Mesenchymal Stem Cells in a Rabbit Model of Experimental Retinal Holes; | |
dc.source.bibliographicCitation | 281.,Gower NJD, Barry RJ, Edmunds MR, Titcomb LC, Denniston AK; Drug discovery in ophthalmology: past success, present challenges, and future opportunities; | |
dc.source.bibliographicCitation | 282.,Nayoun K, Seok-Goo C; Overcoming immunoregulatory plasticity of mesenchymal stem cells for accelerated clinical applications; | |
dc.source.bibliographicCitation | 283.,Sudres M, Norol F, Trenado A, Grégoire S, Charlotte F, Levacher B, et al; Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice; | |
dc.source.bibliographicCitation | 284.,Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, et al; Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-γ; | |
dc.source.bibliographicCitation | 285.,Kicic A, Shen WY, Wilson AS, Constable IJ, Robertson T, Rakoczy PE; Differentiation of marrow stromal cells into photoreceptors in the rat eye; | |
dc.source.bibliographicCitation | 286.,Inoue Y, Iriyama A, Ueno S, Takahashi H, Kondo M, Tamaki Y, et al; Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration; | |
dc.source.bibliographicCitation | 287.,Schäffler A, Büchler C; Concise review: adipose tissue‐derived stromal cells—basic and clinical implications for novel cell‐based therapies; | |
dc.source.bibliographicCitation | 288.,Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C, et al; Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells; | |
dc.source.bibliographicCitation | 289.,Grinnemo KH, Månsson A, Dellgren G, Klingberg D, Wardell E, Drvota V, et al; Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium; | |
dc.source.bibliographicCitation | 290.,Arnberg F, Lundberg J, Olsson A, Samén E, Jaff N, Jussing E, et al; Intra-arterial Administration of Placenta-Derived Decidual Stromal Cells to the Superior Mesenteric Artery in the Rabbit: Distribution of Cells, Feasibility, and Safety; | |
dc.source.bibliographicCitation | 291.,Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR; Neuroprotective Effects of Intravitreal Mesenchymal Stem Cell Transplantation in Experimental Glaucoma; | |
dc.source.bibliographicCitation | 292.,Joe AW, Gregory-Evans K; Mesenchymal Stem Cells and Potential Applications in Treating Ocular Disease; | |
dc.source.bibliographicCitation | 293.,SurveyMonkey [Internet]; [cited 2019 Mar 5]; | |
dc.source.bibliographicCitation | 294.,Fiore T, Iaccher B, Pietrolucc F, Giansanti F, Cavaliere A, Coltella R; Retinal Toxicity of Intravitreal Genistein in a Rabbit Model: Retina; | |
dc.source.bibliographicCitation | 295.,Melena J, Santafé J, Segarra J; The Effect of Topical Diltiazem on the Intraocular Pressure in Betamethasone-Induced Ocular Hypertensive Rabbits; | |
dc.source.bibliographicCitation | 296.,Fuentes Paredes F, Mendoza Yanavilca RA, Rivera Rodríguez R, Vara Márquez MD; Guía de manejo y cuidado de animales de laboratorio: conejos; | |
dc.source.bibliographicCitation | 297.,Gelatt KN, Gelatt JP; Veterinary ophthalmic surgery; | |
dc.source.bibliographicCitation | 298.,Cruz-Barrera ML, Camacho B, Salguero GA; Células estromales mesenquimales de gelatina de Wharton inducen re-programación de macrófagos inflamatorios hacia un fenotipo inmunomodulador; | |
dc.source.bibliographicCitation | 299.,Langevin N, Schafer k, Turner O, McPherson B, Rose R; Historical Data: Histopathology Lesions Observed in the Eyes of Control Rabbits in Topical Ocular Administration and Contact Lens Studies; | |
dc.source.bibliographicCitation | 300.,Zimmerman A, Boyd R, Yekkala k; Correlations Between Retinal Optical Coherence Tomography and Histopathology in Preclinical Safety Assessment of Ocular Therapies; | |
dc.source.bibliographicCitation | 301.,Gibson-Corley KN, Olivier AK, Meyerholz DK; Principles for valid histopathologic scoring in research; | |
dc.source.bibliographicCitation | 302.,García Luna Martínez JEE, Martínez Ibarra AA, Romo Arpio CA, Flores Elizondo LE, González Lugo JD, Díazceballos García AL, et al; El impacto socioeconómico del glaucoma primario de ángulo abierto en México; | |
dc.source.bibliographicCitation | 303.,Allison K, Patel D, Alabi O; Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future; | |
dc.source.bibliographicCitation | 304.,Duggal P, Klein AP, Lee KE, Iyengar SK, Klein R, Bailey-Wilson JE, et al; A Genetic Contribution to Intraocular Pressure: The Beaver Dam Eye Study; | |
dc.source.bibliographicCitation | 305.,Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY; Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis; | |
dc.source.bibliographicCitation | 306.,Burr JM, Mowatt G, Hernández R, Siddiqui MA, Cook J, Lourenco T, et al; The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation; | |
dc.source.bibliographicCitation | 307.,Aguirre M, Barría N, Henríquez E, Valenzuela G; Evaluación de resultados tensionales y visuales post cirugía filtrante en distintos tipos de glaucoma; | |
dc.source.bibliographicCitation | 308.,Uccelli A, Benvenuto F, Laroni A, Giunti D; Neuroprotective features of mesenchymal stem cells; | |
dc.source.bibliographicCitation | 309.,Mrahleh MA, Matar S, Jafar H, Wehaibi S, Aslam N, Awidi A; Human Wharton’s Jelly-Derived Mesenchymal Stromal Cells Primed by Tumor Necrosis Factor-α and Interferon-γ Modulate the Innate and Adaptive Immune Cells of Type 1 Diabetic Patients; | |
dc.source.bibliographicCitation | 310.,Je MR, Fm NN, D GB, P SC, M B, Jm M, et al; Human Wharton’s jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors; | |
dc.source.bibliographicCitation | 311.,Li G, Luna C, Liton PB, Navarro I, Epstein DL, Gonzalez P; Sustained stress response after oxidative stress in trabecular meshwork cells; | |
dc.source.bibliographicCitation | 312.,Nickells RW; From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma; | |
dc.source.bibliographicCitation | 313.,Huang P, Qi Y, Xu YS, Liu J, Liao D, Zhang SSM, et al; Serum cytokine alteration is associated with optic neuropathy in human primary open angle glaucoma; | |
dc.source.bibliographicCitation | 314.,English K, Barry FP, Field-Corbett CP, Mahon BP; IFN-gamma and TNF-alpha differentially regulate immunomodulation by murine mesenchymal stem cells; | |
dc.source.bibliographicCitation | 315.,Bollinger K, Kim J, Lowder CY, Kaiser PK, Smith SD; Intraocular pressure outcome of patients with fluocinolone acetonide intravitreal implant for noninfectious uveitis; | |
dc.source.bibliographicCitation | 316.,Clark AF, Wordinger RJ; The role of steroids in outflow resistance; | |
dc.source.bibliographicCitation | 317.,A; Bouhenni R, Dunmire J, Sewell A, Edward DP; | |
dc.source.bibliographicCitation | 318.,Fini ME, Schwartz SG, Gao X, Jeong S, Patel N, Itakura T, et al; Steroid-induced ocular hypertension/glaucoma: Focus on pharmacogenomics and implications for precision medicine; | |
dc.source.bibliographicCitation | 319.,Brattsand R, Linden M; Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies; | |
dc.source.bibliographicCitation | 320.,Yagi-Yaguchi Y, Yamaguchi T, Higa K, Suzuki T, Yazu H, Aketa N, et al; Preoperative Aqueous Cytokine Levels Are Associated With a Rapid Reduction in Endothelial Cells After Penetrating Keratoplasty; | |
dc.source.bibliographicCitation | 321.,Yamaguchi T, Higa K, Suzuki T, Nakayama N, Yagi-Yaguchi Y, Dogru M, et al; Elevated Cytokine Levels in the Aqueous Humor of Eyes With Bullous Keratopathy and Low Endothelial Cell Density; | |
dc.source.bibliographicCitation | 322.,Cutolo M, Seriolo B, Pizzorni C, Secchi ME, Soldano S, Paolino S, et al; Use of glucocorticoids and risk of infections; | |
dc.source.bibliographicCitation | 323.,Sánchez-Berná I, Santiago-Díaz C, Jiménez-Alonso J; Acción inmunomoduladora de las células madre mesenquimales en las enfermedades autoinmunitarias; | |
dc.source.bibliographicCitation | 324.,Uccelli A, Moretta L, Pistoia V; Mesenchymal stem cells in health and disease; | |
dc.source.bibliographicCitation | 325.,Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A; Mesenchymal Stem Cells from Wharton’s Jelly and Amniotic Fluid; | |
dc.source.bibliographicCitation | 326.,Evangelho K, Mastronardi CA, de-la-Torre A; Experimental Models of Glaucoma: A Powerful Translational Tool for the Future Development of New Therapies for Glaucoma in Humans-A Review of the Literature; | |
dc.source.bibliographicCitation | 327.,Roberti G, Oddone F, Agnifili L, Katsanos A, Michelessi M, Mastropasqua L, et al; Steroid-induced glaucoma: Epidemiology, pathophysiology, and clinical management; | |
dc.source.bibliographicCitation | 328.,Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC; Suppression of allogeneic T-cell proliferation by human marrow stromal cells: Implications in transplantation; | |
dc.source.bibliographicCitation | 329.,Skaggs H, Chellman Gj, Collinge M, Enright B, Fuller Cl, Krayer J, et al; Comparison of Immune System Development in Nonclinical Species and Humans: Closing Information Gaps for Immunotoxicity Testing and Human Translatability; | |
dc.source.bibliographicCitation | 330.,Moore M a; S, Williams N; | |
dc.source.bibliographicCitation | 331.,Jasper PJ, Zhai SK, Kalis SL, Kingzette M, Knight KL; B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis; | |
dc.source.bibliographicCitation | 332.,Fujiwara S, Armstrong RM, Cinader B; Age and organ dependent variations in the number of thymus derived RTLA bearing cells; | |
dc.source.bibliographicCitation | 333.,Sabin FR, Miller FR, Smithburn KC, Thomas RM, Hummel LE; Changes in the bone marrow and blood cells of developing rabbits; | |
dc.source.bibliographicCitation | 334.,Archer OK, Papermaster BW, Good RA; Thymectomy in rabbit and mouse: consideration of time of lymphoid peripheralization; | |
dc.source.bibliographicCitation | 335.,Wang J, Lei C, Tao L, Wu Q, Ke X, Qiu Y, et al; A safety study of high concentration and high frequency intravitreal injection of conbercept in rabbits; | |
dc.source.bibliographicCitation | 336.,Er H, Doganay S, Turkoz Y, Cekmen M, Daglioglu MC, Gunduz A, et al; The Levels of Cytokines and Nitric Oxide in Rabbit Vitreous Humor after Retinal Laser Photocoagulation; | |
dc.source.bibliographicCitation | 337.,Mo JS, Matsukawa A, Ohkawara S, Yoshinaga M; Involvement of TNF α, IL-1β and IL-1 Receptor Antagonist in LPS-induced Rabbit Uveitis; | |
dc.source.bibliographicCitation | 338.,Bilgihan K, Gürelik G, Okur H, Bilgihan A, Hasanreisoğlu B, Imir T; Aqueous Transforming Growth Factor-Beta-I Levels in Rabbit Eyes after Excimer Laser Photoablation; | |
dc.source.bibliographicCitation | 339.,Hostetler JR, Ackerman GA; Lymphopoiesis and lymph node histogenesis in the embryonic and neonatal rabbit; | |
dc.source.bibliographicCitation | 340.,Simpson A, Horton MA; Expression of the vitronectin receptor during embryonic development; an immunohistological study of the ontogeny of the osteoclast in the rabbit; | |
dc.source.bibliographicCitation | 341.,Pospisil R, Mage RG; Rabbit appendix: a site of development and selection of the B cell repertoire; | |
dc.source.bibliographicCitation | 342.,Cooper MD, Perey DY, Gabrielsen AE, Sutherland DER, McKneally MF, Good RA; Production of an antibody deficiency syndrome in rabbits by neonatal removal of organized intestinal lymphoid tissues; | |
dc.source.bibliographicCitation | 343.,Vecino E; Modelos animales en el estudio del glaucoma: pasado, presente y futuro; | |
dc.source.bibliographicCitation | 344.,Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolás FM, Alarcón-Martínez L, Valiente-Soriano FJ, Miralles de Imperial J, et al; Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas; | |
dc.source.bibliographicCitation | 345.,Weinreb RN, Lindsey JD; The importance of models in glaucoma research; | |
dc.source.bibliographicCitation | 346.,Peiffer RL, Armstrong JR, Johnson PT; Animals in Ophthalmic Research: Concepts and Methodologies; | |
dc.source.bibliographicCitation | 347.,Fernandes KA, Harder JM, Williams PA, Rausch RL, Kiernan AE, Nair KS, et al; Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities; | |
dc.source.bibliographicCitation | 348.,Chen L, Zhao Y, Zhang H; Comparative Anatomy of the Trabecular Meshwork, the Optic Nerve Head and the Inner Retina in Rodent and Primate Models Used for Glaucoma Research; | |
dc.source.bibliographicCitation | 349.,Vecino E, Sharma SC; Glaucoma animal models; | |
dc.source.bibliographicCitation | 350.,Borghi V, Bastia E, Guzzetta M, Chiroli V, Toris CB, Batugo MR, et al; A Novel Nitric Oxide Releasing Prostaglandin Analog, NCX 125, Reduces Intraocular Pressure in Rabbit, Dog, and Primate Models of Glaucoma; | |
dc.source.bibliographicCitation | 351.,Ollivier FJ, Brooks DE, Kallberg ME, Sapp HL, Komáromy AM, Stevens GR, et al; Time-specific intraocular pressure curves in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension; | |
dc.source.bibliographicCitation | 352.,Johnson TV, Tomarev SI; Rodent models of glaucoma; | |
dc.source.bibliographicCitation | 353.,Vecino E; Modelos animales en el estudio del glaucoma: pasado, presente y futuro; | |
dc.source.bibliographicCitation | 354.,Ortín Martínez A; Análisis de la degeneración de los fotorreceptoes en modelos experimentales de retinosis pigmentaria, degeneración macular asociada a la edad y glaucoma= Analysis of photoreceptor degeneration in experimental models of retinitis pigmentosa, aging macular degeneration and glaucoma; | |
dc.source.bibliographicCitation | 355.,Perlman I; Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques; | |
dc.source.bibliographicCitation | 356.,Edward DP, Bouhenni R; Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis); | |
dc.source.bibliographicCitation | 357.,Bill A, Stjernschantz J; Cholinergic vasoconstrictor effects in the rabbit eye: Vasomotor effects of pentobarbital anesthesia; | |
dc.source.bibliographicCitation | 358.,Werner L, Chew J, Mamalis N; Experimental evaluation of ophthalmic devices and solutions using rabbit models; | |
dc.source.bibliographicCitation | 359.,Chaudhary V, Hansen R, Lindgren H, Fulton A; Effects of telazol and nembutal on retinal responses; | |
dc.source.bibliographicCitation | 360.,Tremblay F, Parkinson JE; Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population; | |
dc.source.bibliographicCitation | 361.,Gjörloff K, Andréasson S, Ehinger B; Standardized full-field electroretinography in rabbits; | |
dc.source.bibliographicCitation | 362.,Mizota A, Adachi-Usami E; Effect of body temperature on electroretinogram of mice; | |
dc.source.bibliographicCitation | 363.,Lachapelle P, Benoit, J, Guité P; The effect of in vivo retinal cooling on the electroretinogram of the rabbit; | |
dc.source.bibliographicCitation | 364.,Hanna BL, Sawin PB, Sheppard LB; Recessive Buphthalmos in the Rabbit; | |
dc.source.bibliographicCitation | 365.,Rukmini AV, Milea D, Gooley JJ; Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases; | |
dc.source.bibliographicCitation | 366.,Rukmini AV, Milea D, Baskaran M, How AC, Perera SA, Aung T, et al; Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity; | |
dc.source.bibliographicCitation | 367.,Grozdanic SD, Matic M, Sakaguchi DS, Kardon RH; Evaluation of Retinal Status Using Chromatic Pupil Light Reflex Activity in Healthy and Diseased Canine Eyes; | |
dc.source.bibliographicCitation | 368.,Melena J, Santafé J, Segarra J; The Effect of Topical Diltiazem on the Intraocular Pressure in Betamethasone-Induced Ocular Hypertensive Rabbits; | |
dc.source.bibliographicCitation | 369.,Phulke S, Kaushik S, Kaur S, Pandav S; Steroid-induced Glaucoma: An Avoidable Irreversible Blindness; | |
dc.source.bibliographicCitation | 370.,Moore CG, Milne ST, Morrison JC; Noninvasive measurement of rat intraocular pressure with the Tono-Pen; | |
dc.source.bibliographicCitation | 371.,Moore CG, Johnson EC, Morrison JC; Circadian rhythm of intraocular pressure in the rat; | |
dc.source.bibliographicCitation | 372.,Jia L, Cepurna WO, Johnson EC, Morrison JC; Effect of general anesthetics on IOP in rats with experimental aqueous outflow obstruction; | |
dc.source.bibliographicCitation | 373.,Haleem MS, Han L, van Hemert J, Li B; Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review; | |
dc.source.bibliographicCitation | 374.,Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD; I.v; | |
dc.source.bibliographicCitation | 375.,Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al; Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury; | |
dc.source.bibliographicCitation | 376.,Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, et al; Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa; | |
dc.source.bibliographicCitation | 377.,Vilela CAP, Messias A, Calado RT, Siqueira RC, Silva MJL, Covas DT, et al; Retinal function after intravitreal injection of autologous bone marrow-derived mesenchymal stromal cells in advanced glaucoma; | |
dc.source.bibliographicCitation | 378.,Satarian L, Nourinia R, Safi S, Kanavi M, Jarughi N, Daftarian N, et al; Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study; | |
dc.source.bibliographicCitation | 379.,Johnson TV, Bull ND, Martin KR; Identification of Barriers to Retinal Engraftment of Transplanted Stem Cells; | |
dc.source.bibliographicCitation | 380.,Chacko DM, Das AV, Zhao X, James J, Bhattacharya S, Ahmad I; Transplantation of ocular stem cells: the role of injury in incorporation and differentiation of grafted cells in the retina; | |
dc.source.bibliographicCitation | 381.,Johnson TV, Bull ND, Martin KR; Transplantation prospects for the inner retina; | |
dc.source.bibliographicCitation | 382.,Park JH, Choi YJ, Kang SY, Ju H, Min KW, Kim NY, et al; Organ-Specific Differentiation of Human Adipose-Derived Stem Cells in Various Organs of Xenotransplanted Rats: A Pilot Study; | |
dc.source.bibliographicCitation | 383.,Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, et al; Transplantation of Allogeneic and Xenogeneic Placenta-Derived Cells Reduces Bleomycin-Induced Lung Fibrosis; | |
dc.source.bibliographicCitation | 384.,Hui B, Yao-Dong F a; N, Li-Yun GUO, Hua-Lin YU; | |
dc.source.bibliographicCitation | 385.,Stanzel BV, Liu Z, Somboonthanakij S, Wongsawad W, Brinken R, Eter N, et al; Human RPE Stem Cells Grown into Polarized RPE Monolayers on a Polyester Matrix Are Maintained after Grafting into Rabbit Subretinal Space; | |
dc.source.bibliographicCitation | 386.,Bull ND, Limb GA, Martin KR; Human Müller Stem Cell (MIO-M1) Transplantation in a Rat Model of Glaucoma: Survival, Differentiation, and Integration; | |
dc.source.bibliographicCitation | 387.,Park HYL, Jung SH, Park SH, Park CK; Detecting autonomic dysfunction in patients with glaucoma using dynamic pupillometry; | |
dc.source.bibliographicCitation | 388.,Weinreb RN, Khaw PT; Primary open-angle glaucoma; | |
dc.source.bibliographicCitation | 389.,McDougal DH, Gamlin PD; The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex; | |
dc.source.bibliographicCitation | 390.,Marg E, Morgan MW; The pupillary near reflex; the relation of pupillary diameter to accommodation and the various components of convergence; | |
dc.source.bibliographicCitation | 391.,Najjar RP, Sharma S, Atalay E, Rukmini AV, Sun C, Lock JZ, et al; Pupillary Responses to Full-Field Chromatic Stimuli Are Reduced in Patients with Early-Stage Primary Open-Angle Glaucoma; | |
dc.source.bibliographicCitation | 392.,De Monasterio FM; Spectral interactions in horizontal and ganglion cells of the isolated and arterially-perfused rabbit retina; | |
dc.source.bibliographicCitation | 393.,Soukup P, Maloca P, Altmann B, Festag M, Atzpodien EA, Pot S; Interspecies Variation of Outer Retina and Choriocapillaris Imaged With Optical Coherence Tomography; | |
dc.source.bibliographicCitation | 394.,Tzameret A, Kalish SE, Sher I, Twito L, Meir A, Levy I, et al; Long-Term Safety of Transplanting Human Bone Marrow Stromal Cells into the Extravascular Spaces of the Choroid of Rabbits; | |
dc.source.bibliographicCitation | 395.,Adhikari P, Zele AJ, Thomas R, Feigl B; Quadrant Field Pupillometry Detects Melanopsin Dysfunction in Glaucoma Suspects and Early Glaucoma; | |
dc.source.bibliographicCitation | 396.,Lin B, Koizumi A, Tanaka N, Panda S, Masland RH; Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin; | |
dc.source.bibliographicCitation | 397.,Tai TYT; Visual Evoked Potentials and Glaucoma; | |
dc.source.bibliographicCitation | 398.,Mead B, Logan A, Berry M, Leadbeater W, Scheven BA; Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury; | |
dc.source.bibliographicCitation | 399.,Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F; Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice; | |
dc.source.bibliographicCitation | 400.,Firan AM, Istrate S, Iancu R, Tudosescu R, Ciuluvică R, Voinea L; Visual evoked potential in the early diagnosis of glaucoma; | |
dc.source.bibliographicCitation | 401.,Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM; Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography; | |
dc.source.bibliographicCitation | 402.,Fatehee N, Yu P, Morgan W, Cringle S, Yu DY; Correlating morphometric parameters of the porcine optic nerve head in spectral domain optical coherence tomography with histological sections; | |
dc.source.bibliographicCitation | 403.,Kagemann L, Ishikawa H, Wollstein G, Brennen PM, Townsend KA, Gabriele ML, et al; Ultrahigh-resolution spectral domain optical coherence tomography imaging of the lamina cribrosa; | |
dc.source.bibliographicCitation | 404.,Moore DB, Jaffe GJ, Asrani S; Retinal Nerve Fiber Layer Thickness Measurements: Uveitis, A Major Confounding Factor; | |
dc.source.bibliographicCitation | 405.,Taylor AW; Ocular immune privilege; | |
dc.source.bibliographicCitation | 406.,Trible JR, Sergott RC, Spaeth GL, Wilson RP, Katz LJ, Moster MR, et al; Trabeculectomy is associated with retrobulbar hemodynamic changes; | |
dc.source.bibliographicCitation | 407.,Parrish RK, Feuer WJ, Schiffman JC, Lichter PR, Musch DC; Five-year follow-up optic disc findings of the Collaborative Initial Glaucoma Treatment Study; | |
dc.source.bibliographicCitation | 408.,Lesk MR, Spaeth GL, Azuara-Blanco A, Araujo SV, Katz LJ, Terebuh AK, et al; Reversal of optic disc cupping after glaucoma surgery analyzed with a scanning laser tomograph; | |
dc.source.bibliographicCitation | 409.,Mead B, Tomarev S; Bone Marrow‐Derived Mesenchymal Stem Cells‐Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA‐Dependent Mechanisms; | |
dc.source.bibliographicCitation | 410.,Drela K, Lech W, Figiel-Dabrowska A, Zychowicz M, Mikula M, Sarnowska A, et al; Enhanced neuro-therapeutic potential of Wharton’s Jelly–derived mesenchymal stem cells in comparison with bone marrow mesenchymal stem cells culture; | |
dc.source.bibliographicCitation | 411.,Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS; Transplantation of Human Umbilical Mesenchymal Stem Cells from Wharton’s Jelly after Complete Transection of the Rat Spinal Cord; | |
dc.source.bibliographicCitation | 412.,Park HYL, Shin HY, Jung KI, Park CK; Changes in the lamina and prelamina after intraocular pressure reduction in patients with primary open-angle glaucoma and acute primary angle-closure; | |
dc.source.bibliographicCitation | 413.,Dubielzig RR, Ketring K, McLellan GJ, Albert DM; Veterinary ocular pathology: A comparative review; | |
dc.source.bibliographicCitation | 414.,Scott EM, Boursiquot N, Beltran WA, Dubielzig RR; Early histopathologic changes in the retina and optic nerve in canine primary angle-closure glaucoma; | |
dc.source.bibliographicCitation | 415.,Beamer G, Reilly CM, Pizzirani S; Microscopic Lesions in Canine Eyes with Primary Glaucoma; | |
dc.source.bibliographicCitation | 416.,Frank D, Vince JE; Pyroptosis versus necroptosis: similarities, differences, and crosstalk; | |
dc.source.bibliographicCitation | 417.,Zhang Q, Hu X min, Zhao W juan, Ban X xia, Li Y, Huang Y xia, et al; Targeting Necroptosis: A Novel Therapeutic Option for Retinal Degenerative Diseases; | |
dc.source.bibliographicCitation | 418.,He C, Liu Y, Huang Z, Yang Z, Zhou T, Liu S, et al; A specific RIP3+ subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism; | |
dc.source.bibliographicCitation | 419.,Froger N, Matonti F, Roubeix C, Forster V, Ivkovic I, Brunel N, et al; VEGF is an autocrine/paracrine neuroprotective factor for injured retinal ganglion neurons; | |
dc.source.bibliographicCitation | 420.,Dharmasaroja P; Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke; | |
dc.source.bibliographicCitation | 421.,Usategui-Martín R, Puertas-Neyra K, Galindo-Cabello N, Hernández-Rodríguez LA, González-Pérez F, Rodríguez-Cabello JC, et al; Retinal Neuroprotective Effect of Mesenchymal Stem Cells Secretome Through Modulation of Oxidative Stress, Autophagy, and Programmed Cell Death; | |
dc.source.bibliographicCitation | 422.,Dempster AG, Molteno ACB, Bevin TH, Thompson AM; Otago glaucoma surgery outcome study: electron microscopy of capsules around Molteno implants; | |
dc.source.bibliographicCitation | 423.,Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF; Deformation of the Lamina Cribrosa and Anterior Scleral Canal Wall in Early Experimental Glaucoma; | |
dc.source.bibliographicCitation | 424.,Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF; 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping; | |
dc.source.bibliographicCitation | 425.,Wang L, Cioffi GA, Cull G, Dong J, Fortune B; Immunohistologic evidence for retinal glial cell changes in human glaucoma; | |
dc.source.bibliographicCitation | 426.,Tezel G, Wax MB; Glaucoma; | |
dc.source.bibliographicCitation | 427.,Lorber B, Guidi A, Fawcett JW, Martin KR; Activated retinal glia mediated axon regeneration in experimental glaucoma; | |
dc.source.bibliographicCitation | 428.,Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Gallego BI, Salinas-Navarro M, et al; Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma; | |
dc.source.bibliographicCitation | 429.,Van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, et al; Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation; | |
dc.source.bibliographicCitation | 430.,Li L, Eter N, Heiduschka P; The microglia in healthy and diseased retina; | |
dc.source.bibliographicCitation | 431.,Wang JW, Chen SD, Zhang XL, Jonas JB; Retinal Microglia in Glaucoma; | |
dc.source.bibliographicCitation | 432.,Tezel G, Wax MB; The immune system and glaucoma: Current Opinion in Ophthalmology; | |
dc.source.bibliographicCitation | 433.,Serra HA, Roganovich JM, Rizzo LFL; Glucocorticoides: paradigma de medicina traslacional; | |
dc.source.bibliographicCitation | 434.,Liton PB, Luna C, Bodman M, Hong A, Epstein DL, Gonzalez P; Induction of IL-6 expression by mechanical stress in the trabecular meshwork; | |
dc.source.bibliographicCitation | 435.,Newman RE, Yoo D, LeRoux MA, Danilkovitch-Miagkova A; Treatment of inflammatory diseases with mesenchymal stem cells; | |
dc.source.bibliographicCitation | 436.,Genini S, Beltran WA, Stein VM, Aguirre GD; Isolation and Ex Vivo Characterization of the Immunophenotype and Function of Microglia/Macrophage Populations in Normal Dog Retina; | |
dc.source.bibliographicCitation | 437.,Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, et al; Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma; | |
dc.source.bibliographicCitation | 438.,Pantalon A, Obadă O, Constantinescu D, Feraru C, Chiseliţă D; Inflammatory model in patients with primary open angle glaucoma and diabetes; | |
dc.source.bibliographicCitation | 439.,Yang Y, Abdulatef ASWA, Zhang L, Jiang H, Zeng Z, Li H, et al; Cross-talk between MYOC p; | |
dc.source.bibliographicCitation | 440.,Dheen ST, Kaur C, Ling EA; Microglial activation and its implications in the brain diseases; | |
dc.source.bibliographicCitation | 441.,Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, et al; Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism; | |
dc.source.bibliographicCitation | 442.,Yang X, Zeng Q, Göktaş E, Gopal K, Al-Aswad L, Blumberg DM, et al; T-Lymphocyte Subset Distribution and Activity in Patients With Glaucoma; | |
dc.source.bibliographicCitation | 443.,Meisel R, Zibert A, Laryea MD, Göbel U, Däubener W, Dilloo D; Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation; | |
dc.source.bibliographicCitation | 444.,Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF; Neuroprotection in glaucoma – Is there a future role? Experimental Eye Research; | |
dc.source.bibliographicCitation | 445.,Hou Y, Ryu CH, Jun JA, Kim SM, Jeong CH, Jeun SS; IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor; | |
dc.source.bibliographicCitation | 446.,Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, et al; The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population; | |
dc.source.bibliographicCitation | 447.,Goshi N, Morgan RK, Lein PJ, Seker E; A primary neural cell culture model to study neuron, astrocyte, and microglia interactions in neuroinflammation; | |
dc.source.bibliographicCitation | 448.,Shao M, Xu Q, Wu Z, Chen Y, Shu Y, Cao X, et al; Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p; | |
dc.source.bibliographicCitation | 449.,Wang L, Wei X; T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration; | |
dc.source.bibliographicCitation | 450.,Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M; Neuroprotective autoimmunity: Naturally occurring CD4+CD25+ regulatory T cells suppress the ability to withstand injury to the central nervous system; | |
dc.source.bibliographicCitation | 451.,Luz-Crawford P, Kurte M, Bravo-Alegría J, Contreras R, Nova-Lamperti E, Tejedor G, et al; Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells; | |
dc.source.bibliographicCitation | 452.,Cohan BE, Bohr DF; Goldmann Applanation Tonometry in the Conscious Rat; | |
dc.source.bibliographicCitation | 453.,Shinozaki Y, Koizumi S; Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma; | |
dc.source.instname | instname:Universidad del Rosario | |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | |
dc.subject | Celulas madre | |
dc.subject | Glaucoma | |
dc.subject | Citocinas | |
dc.subject | Respuesta inmune | |
dc.subject | Células estromales mesenquimales | |
dc.subject.keyword | Stem cells | |
dc.subject.keyword | Glaucoma | |
dc.subject.keyword | Cytokines | |
dc.subject.keyword | Immune response | |
dc.subject.keyword | Mesenchymal stromal cells | |
dc.title | Efecto de la aplicación intravítrea de células estromales mesenquimales en la respuesta inflamatoria intraocular en un modelo animal experimental de hipertensión ocular | |
dc.title.TranslatedTitle | Effect of intravitreal application of mesenchymal stroma cells on the intraocular inflammatory response in an experimental animal model of ocular hypertension | |
dc.type | doctoralThesis | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | |
dc.type.spa | Tesis de doctorado | |
local.department.report | Escuela de Medicina y Ciencias de la Salud | |
local.regiones | Bogotá |