Show simple item record

dc.contributor.advisorBaldion Elorza, Ana Margarita 
dc.contributor.advisorBuitrago, Andres Felipe 
dc.creatorYepes Velasco, Andres Felipe 
dc.date.accessioned2020-02-13T22:01:01Z
dc.date.available2020-02-13T22:01:01Z
dc.date.created2020-01-27
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/20873
dc.descriptionEl uso de antibióticos y de dispositivos médicos invasivos contribuye a la aparición de microorganismos resistentes a medicamentos, lo cual dificultan el tratamiento. La neumonía nosocomial, especialmente aquella asociada a ventilación mecánica, es una de las infecciones asociadas a la atención en salud (IAAS) más frecuente en la unidad de cuidado intensivo (UCI). Las IAAS están ligadas a la hospitalización principalmente en UCIs, y son causa importante de morbilidad y mortalidad. La microbiota de las vías aéreas en pacientes que requieren ventilación mecánica es un grave problema debido a que colonizan y forman biopelículas rápidamente sobre los tubos orotraqueales, donde persisten y pueden contribuir al deterioro del paciente. Dichas comunidades están compuestas por microorganismos de la flora normal del paciente así como de contaminación cruzada con la microbiota del ambiente hospitalario. Las bacterias más prevalentes se encuentran Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii entre otros. Previo estudio de los mecanismos de resistencia en estado planctónico y en biopelícula de K. pneumoniae a partir de aislados nativos de pacientes colombianos, conscientes de la importancia y la necesidad de generar estrategias de prevención y tratamientos alternativos o nuevos específicamente en las infecciones generadas alrededor de los dispositivos médicos de uso común a nivel hospitalario, en este proyecto se pretende generar conocimiento nuevo y brindar información útil para el desenlace y pronóstico de los pacientes de las comunidades microbianas en biopelícula sobre el tubo orotraqueal en dos UCIs Médico-Quirúrgicas, un tema que si bien ha sido estudiado a nivel mundial, en Colombia sería uno de los pioneros específicamente en el área de biopelículas sobre dispositivos médicos invasivos usados de rutina a nivel hospitalario. En este estudio de corte prospectiva se realizó la caracterización de las comunidades microbianas de las biopeliculas formadas sobre el tubo endotraqueal obtenidos por cultivo y por secuenciación de la región V3-V4 del gen 16S rRNA, en los pacientes de 2 unidades de cuidado intensivo en Bogotá- Colombia en el periodo comprendido entre diciembre de 2016 y diciembre de 2017, recolectándose 116 muestras de tuos orotraqueales, Aproximadamente la mitad de las muestras correspondieron a microorganismos pertencientes al grupo ESKAPE, K.pneumonia fue el microorganismo mas prevalente en las dos unidades de cuidado intensivo en la evaluación de formación de biopelicula y asi mismo es el de mayor capacidad de formación de la misma seguido por P. aeruginosa. Se realizó la evaluación de la concentración minima de erradicación en biopelicula (MBEC) en 4 cepas ( 2 de cada UCI) y en estado plantónico fueron sensibles a carbapenemico sin embargo en estado de biopelícula aumentan su resistencia hasta 8 veces . Los hallazgos aquí presentados generan un base de información sobe la microbiota en pacientes en UCI que aporta a la comunidad científica y a estudios futuros orientados a generar mejoras en la terapia antibiótica que pueda beneficiar la calidad de vida del paciente y reducir la carga de la enfermedad para el sistema de salud.
dc.description.abstractEl uso de antibióticos y de dispositivos médicos invasivos contribuye a la aparición de microorganismos resistentes a medicamentos, lo cual dificultan el tratamiento. La neumonía nosocomial, especialmente aquella asociada a ventilación mecánica, es una de las infecciones asociadas a la atención en salud (IAAS) más frecuente en la unidad de cuidado intensivo (UCI). Las IAAS están ligadas a la hospitalización principalmente en UCIs, y son causa importante de morbilidad y mortalidad. La microbiota de las vías aéreas en pacientes que requieren ventilación mecánica es un grave problema debido a que colonizan y forman biopelículas rápidamente sobre los tubos orotraqueales, donde persisten y pueden contribuir al deterioro del paciente. Dichas comunidades están compuestas por microorganismos de la flora normal del paciente así como de contaminación cruzada con la microbiota del ambiente hospitalario. Las bacterias más prevalentes se encuentran Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanii entre otros. Previo estudio de los mecanismos de resistencia en estado planctónico y en biopelícula de K. pneumoniae a partir de aislados nativos de pacientes colombianos, conscientes de la importancia y la necesidad de generar estrategias de prevención y tratamientos alternativos o nuevos específicamente en las infecciones generadas alrededor de los dispositivos médicos de uso común a nivel hospitalario, en este proyecto se pretende generar conocimiento nuevo y brindar información útil para el desenlace y pronóstico de los pacientes de las comunidades microbianas en biopelícula sobre el tubo orotraqueal en dos UCIs Médico-Quirúrgicas, un tema que si bien ha sido estudiado a nivel mundial, en Colombia sería uno de los pioneros específicamente en el área de biopelículas sobre dispositivos médicos invasivos usados de rutina a nivel hospitalario. En este estudio de corte prospectiva se realizó la caracterización de las comunidades microbianas de las biopeliculas formadas sobre el tubo endotraqueal obtenidos por cultivo y por secuenciación de la región V3-V4 del gen 16S rRNA, en los pacientes de 2 unidades de cuidado intensivo en Bogotá- Colombia en el periodo comprendido entre diciembre de 2016 y diciembre de 2017, recolectándose 116 muestras de tuos orotraqueales, Aproximadamente la mitad de las muestras correspondieron a microorganismos pertencientes al grupo ESKAPE, K.pneumonia fue el microorganismo mas prevalente en las dos unidades de cuidado intensivo en la evaluación de formación de biopelicula y asi mismo es el de mayor capacidad de formación de la misma seguido por P. aeruginosa. Se realizó la evaluación de la concentración minima de erradicación en biopelicula (MBEC) en 4 cepas ( 2 de cada UCI) y en estado plantónico fueron sensibles a carbapenemico sin embargo en estado de biopelícula aumentan su resistencia hasta 8 veces . Los hallazgos aquí presentados generan un base de información sobe la microbiota en pacientes en UCI que aporta a la comunidad científica y a estudios futuros orientados a generar mejoras en la terapia antibiótica que pueda beneficiar la calidad de vida del paciente y reducir la carga de la enfermedad para el sistema de salud.
dc.description.sponsorshipCorpogen - Colciencias
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsAtribución-SinDerivadas 2.5 Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectBiofilm
dc.subjectCuidado Intensivo
dc.subjectNeumonia asociada a la ventilacion
dc.subjectMicrobioma
dc.subject.ddcIncidencia & prevención de la enfermedad 
dc.subject.lembMicrobiología médica
dc.subject.lembInfecciones nosocomiales-investigaciones
dc.subject.lembMedicina-Aparatos e instrumentos
dc.subject.lembRespiración artificial-Análisis microbiológico
dc.subject.lembBiofilms-Análisis de laboratorio
dc.subject.lembEnfermedades iatrogénicas
dc.subject.lembUnidades de cuidados intensivos-Agentes infecciosos
dc.titleBiopelículas bacterianas de tubo-orotraqueal y su sensibilidad antimicrobiana en dos ucis en Bogotá, Colombia
dc.typebachelorThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeEspecialista en Medicina Crítica y Cuidado Intensivo
dc.publisher.programEspecialización en Medicina Crítica y Cuidado Intensivo
dc.publisher.departmentFacultad de Medicina
dc.title.alternativeBacterial tube-orotracheal biofilms and their antimicrobial sensitivity in two ucis in Bogotá, Colombia
dc.subject.keywordBiofilm
dc.subject.keywordCuidado intensivo
dc.subject.keywordNeumonia asociada a la ventilacion
dc.subject.keywordMicrobioma
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTrabajo de grado
dc.rights.accesoAbierto (Texto Completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationS. Fukigai, J. Alba, S. Kimura, T. Iida, N. Nishikura, Y. Ishii, and K. Yamaguchi, “Nosocomial outbreak of genetically related IMP-1 beta-lactamase-producing Klebsiella pneumoniae in a general hospital in Japan.,” Int. J. Antimicrob. Agents, vol. 29, no. 3, pp. 306–10, Mar. 2007
dc.source.bibliographicCitationH. Hanberger, L. G. Burman, O. Cars, M. Erlandsson, H. Gill, L. E. Nilsson, D. Nordlinder, and S. M. Walther, “Low antibiotic resistance rates in Staphylococcus aureus, Escherichia coli and Klebsiella spp but not in Enterobacter spp and Pseudomonas aeruginosa: a prospective observational study in 14 Swedish ICUs over a 5-year period.,” Acta Anaesthesiol. Scand., vol. 51, no. 7, pp. 937–41, Aug. 2007
dc.source.bibliographicCitationS. D. Perkins, K. F. Woeltje, and L. T. Angenent, “Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens,” Int. J. Med. Microbiol., vol. 300, no. 7, pp. 503–511, 2010.
dc.source.bibliographicCitationJ. W. Costerton, Springer Series on Biofilms Series Editor : J . William Costerton. 2007
dc.source.bibliographicCitationM. E. Davey and G. A. O’toole, “Microbial biofilms: from ecology to molecular genetics.,” Microbiol. Mol. Biol. Rev., vol. 64, no. 4, pp. 847–67, Dec. 2000.
dc.source.bibliographicCitationR. M. Donlan and J. W. Costerton, “Biofilms: survival mechanisms of clinically relevant microorganisms.,” Clin. Microbiol. Rev., vol. 15, pp. 167–193, 2002.
dc.source.bibliographicCitationR. M. Donlan, “Biofilms and device-associated infections.,” Emerg. Infect. Dis., vol. 7, no. 2, pp. 277–81, Jan. .
dc.source.bibliographicCitationP. S. Stewart and J. William Costerton, “Antibiotic resistance of bacteria in biofilms,” Lancet, vol. 358, no. 9276, pp. 135–138, Jul. 2001
dc.source.bibliographicCitationL. Izquierdo, “Biosíntesis del lipopolisacárido de Klebsiella pneumoniae,” 2003.
dc.source.bibliographicCitationJ. L. Del Pozo, M. Alonso, C. R. Arciola, R. Gonzalez, J. Leiva, I. Lasa, and J. Penades, “Biotechnological war against biofilms. Could phages mean the end of device-related infections?,” Int. J. Artif. Organs, vol. 30, no. 9, pp. 805–12, Sep. 2007.
dc.source.bibliographicCitationJ. C. Post, P. Stoodley, L. Hall-Stoodley, and G. D. Ehrlich, “The role of biofilms in otolaryngologic infections.,” Curr. Opin. Otolaryngol. Head Neck Surg., vol. 12, no. 3, pp. 185–90, Jun. 2004.
dc.source.bibliographicCitationA. Jayaraman and T. K. Wood, “Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease.,” Annu. Rev. Biomed. Eng., vol. 10, pp. 145–67, Jan. 2008.
dc.source.bibliographicCitationH.-S. Joo and M. Otto, “Molecular basis of in vivo biofilm formation by bacterial pathogens.,” Chem. Biol., vol. 19, no. 12, pp. 1503–13, Dec. 2012.
dc.source.bibliographicCitationJ. Chandra, L. Long, M. A. Ghannoum, and P. K. Mukherjee, “A rabbit model for evaluation of catheter-associated fungal biofilms.,” Virulence, vol. 2, no. 5, pp. 466–74, 2011.
dc.source.bibliographicCitationJ. A. Sanclement, P. Webster, J. Thomas, and H. H. Ramadan, “Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis.,” Laryngoscope, vol. 115, no. 4, pp. 578–82, Apr. 2005
dc.source.bibliographicCitationA. S. Lynch and G. T. Robertson, “Bacterial and fungal biofilm infections.,” Annu. Rev. Med., vol. 59, pp. 415–28, Jan. 2008
dc.source.bibliographicCitationJ. L. del Pozo and R. Patel, “The challenge of treating biofilm-associated bacterial infections.,” Clin. Pharmacol. Ther., vol. 82, no. 2, pp. 204–9, Aug. 2007
dc.source.bibliographicCitationA. Kramer, I. Schwebke, and G. Kampf, “How long do nosocomial pathogens persist on inanimate surfaces? A systematic review.,” BMC Infect. Dis., vol. 6, p. 130, Jan. 2006
dc.source.bibliographicCitationT. F. Mah and G. A. O’Toole, “Mechanisms of biofilm resistance to antimicrobial agents.,” Trends Microbiol., vol. 9, no. 1, pp. 34–9, Jan. 2001
dc.source.bibliographicCitationI. Vandecandelaere and T. Coenye, “Biofilm-based Healthcare-associated Infections,” in Biofilm-based Healthcare-associated Infections, vol. 830, 2015, pp. 137–155
dc.source.bibliographicCitationP. Di Martino, N. Cafferini, B. Joly, and A. Darfeuille-Michaud, “Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces.,” Res. Microbiol., vol. 154, no. 1, pp. 9–16, Jan.
dc.source.bibliographicCitationC. Loo, W. Lee, P. M. Young, R. Cavaliere, and C. B. Whitchurch, “Implications and emerging control strategies for ventilator-associated infections,” Expert Rev. Anti. Infect. Ther., vol. 13, no. 3, pp. 379–393, 2015
dc.source.bibliographicCitationS. Cairns, J. G. Thomas, S. J. Hooper, M. P. Wise, P. J. Frost, M. J. Wilson, M. A. O. Lewis, and D. W. Williams, “Molecular analysis of microbial communities in endotracheal tube biofilms,” PLoS One, vol. 6, no. 3, 2011
dc.source.bibliographicCitationI. Vandecandelaere, N. Matthijs, F. van Nieuwerburgh, D. Deforce, P. Vosters, L. de Bus, H. J. Nelis, P. Depuydt, and T. Coenye, “Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches,” PLoS One, vol. 7, no. 6, pp. 11–14, 2012
dc.source.bibliographicCitationa Abdollahi, S. Shoar, and N. Shoar, “Microorganisms’ colonization and their antibiotic resistance pattern in oro - tracheal tube.,” Iran J Microbiol, vol. 5, no. 2, pp. 102–107, 2013
dc.source.bibliographicCitationL. R. Peterson, “Bad bugs, no drugs: no ESCAPE revisited.,” Clin. Infect. Dis., vol. 49, no. 6, pp. 992–3, Sep. 2009
dc.source.bibliographicCitationR. M. Donlan and J. W. Costerton, “Biofilms: survival mechanisms of clinically relevant microorganisms.,” Clin. Microbiol. Rev., vol. 15, no. 2, pp. 167–93, Apr. 2002
dc.source.bibliographicCitationP. Watnick and R. Kolter, “Biofilm, city of microbes.,” J. Bacteriol., vol. 182, no. 10, pp. 2675–9, May 2000
dc.source.bibliographicCitationM. A. Cooper and D. Shlaes, “Fix the antibiotics pipeline.,” Nature, vol. 472, no. 7341, p. 32, Apr. 2011
dc.source.bibliographicCitationM. A. Sze, J. C. Hogg, and D. D. Sin, “Bacterial microbiome of lungs in COPD.,” Int. J. Chron. Obstruct. Pulmon. Dis., vol. 9, pp. 229–38, Jan. 2014
dc.source.bibliographicCitationL. M. Proctor, “The Human Microbiome Project in 2011 and beyond.,” Cell Host Microbe, vol. 10, no. 4, pp. 287–91, Oct. 2011
dc.source.bibliographicCitationJ. R. Erb-Downward, D. L. Thompson, M. K. Han, C. M. Freeman, L. McCloskey, L. A. Schmidt, V. B. Young, G. B. Toews, J. L. Curtis, B. Sundaram, F. J. Martinez, and G. B. Huffnagle, “Analysis of the lung microbiome in the ‘healthy’ smoker and in COPD.,” PLoS One, vol. 6, no. 2, p. e16384, Jan. 2011
dc.source.bibliographicCitationG. B. Rogers, D. Shaw, R. L. Marsh, M. P. Carroll, D. J. Serisier, and K. D. Bruce, “Respiratory microbiota: addressing clinical questions, informing clinical practice.,” Thorax, vol. 70, no. 1, pp. 74–81, Jan. 2015
dc.source.bibliographicCitationC. M. Bassis, J. R. Erb-Downward, R. P. Dickson, C. M. Freeman, T. M. Schmidt, V. B. Young, J. M. Beck, J. L. Curtis, and G. B. Huffnagle, “Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals.,” MBio, vol. 6, no. 2, p. e00037, Jan. 2015.
dc.source.bibliographicCitationT. T. Bauer, a. Torres, R. Ferrer, C. M. Heyer, G. Schultze-Werninghaus, and K. Rasche, “Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens,” Monaldi Arch. Chest Dis. - Pulm. Ser., vol. 57, no. 1, pp. 84–87, 2002.
dc.source.bibliographicCitationJ. M. Beck, V. B. Young, and G. B. Huffnagle, “The microbiome of the lung.,” Transl. Res., vol. 160, no. 4, pp. 258–66, Oct. 2012.
dc.source.bibliographicCitationA. T. Society, “Guidelines for the Management of Adults with Hospital-acquired, Ventilator-associated, and Healthcare-associated Pneumonia,” Am J Respir Crit Care Med, vol. 171, pp. 388–416, 2005
dc.source.bibliographicCitationJ.-E. Berdal, J. Bjørnholt, A. Blomfeldt, N. Smith-Erichsen, and G. Bukholm, “Patterns and dynamics of airway colonisation in mechanically-ventilated patients.,” Clin. Microbiol. Infect., vol. 13, no. 5, pp. 476–80, May 2007.
dc.source.bibliographicCitationE. Giantsou, N. Liratzopoulos, E. Efraimidou, M. Panopoulou, E. Alepopoulou, S. Kartali-Ktenidou, and K. Manolas, “De-escalation therapy rates are significantly higher by bronchoalveolar lavage than by tracheal aspirate.,” Intensive Care Med., vol. 33, no. 9, pp. 1533–40, Sep. 2007.
dc.source.bibliographicCitationS. Nseir and C.-H. Marquette, “Diagnosis of hospital-acquired pneumonia: postmortem studies.,” Infect. Dis. Clin. North Am., vol. 17, no. 4, pp. 707–16, Dec. 2003
dc.source.bibliographicCitationD. J. Cook, S. D. Walter, R. J. Cook, L. E. Griffith, G. H. Guyatt, D. Leasa, R. Z. Jaeschke, and C. Brun-Buisson, “Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients.,” Ann. Intern. Med., vol. 129, no. 6, pp. 433–40, Sep. 1998
dc.source.bibliographicCitationN. N. I. S. (NNIS), “National Nosocomial Infections Surveillance (NNIS) System Report, Data Summary from January 1990-May 1999, issued June 1999. A report from the NNIS System.,” Am. J. Infect. Control, vol. 27, no. 6, pp. 520–32, Dec. 1999.
dc.source.bibliographicCitationJ. L. Vincent, D. J. Bihari, P. M. Suter, H. A. Bruining, J. White, M. H. Nicolas-Chanoin, M. Wolff, R. C. Spencer, and M. Hemmer, “The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee.,” JAMA, vol. 274, no. 8, pp. 639–44, Jan. 1975
dc.source.bibliographicCitationS. Chevret, M. Hemmer, J. Carlet, and M. Langer, “Incidence and risk factors of pneumonia acquired in intensive care units. Results from a multicenter prospective study on 996 patients. European Cooperative Group on Nosocomial Pneumonia.,” Intensive Care Med., vol. 19, no. 5, pp. 256–64, Jan. 1993
dc.source.bibliographicCitationM. Leone, F. Garcin, J. Bouvenot, I. Boyadjev, P. Visintini, J. Albanèse, and C. Martin, “Ventilator-associated pneumonia: breaking the vicious circle of antibiotic overuse.,” Crit. Care Med., vol. 35, no. 2, pp. 379–85; quizz 386, Mar. 2007.
dc.source.bibliographicCitationJ. Rello, D. A. Ollendorf, G. Oster, M. Vera-Llonch, L. Bellm, R. Redman, and M. H. Kollef, “Epidemiology and outcomes of ventilator-associated pneumonia in a large US database.,” Chest, vol. 122, no. 6, pp. 2115–21, Dec. 2002.
dc.source.bibliographicCitationC. H. Marquette, M. C. Copin, F. Wallet, R. Neviere, F. Saulnier, D. Mathieu, A. Durocher, P. Ramon, and A. B. Tonnel, “Diagnostic tests for pneumonia in ventilated patients: prospective evaluation of diagnostic accuracy using histology as a diagnostic gold standard.,” Am. J. Respir. Crit. Care Med., vol. 151, no. 6, pp. 1878–88, Jun. 1995.
dc.source.bibliographicCitationJ. Vallés, A. Pobo, O. García-Esquirol, D. Mariscal, J. Real, and R. Fernández, “Excess ICU mortality attributable to ventilator-associated pneumonia: the role of early vs late onset.,” Intensive Care Med., vol. 33, no. 8, pp. 1363–8, Aug. 2007
dc.source.bibliographicCitationM. H. Kollef, “Ventilator-associated pneumonia. A multivariate analysis.,” JAMA, vol. 270, no. 16, pp. 1965–70, Oct. 1993.
dc.source.bibliographicCitationJ.-Y. Fagon, “Nosocomial Pneumonia and Mortality Among Patients in Intensive Care Units,” JAMA J. Am. Med. Assoc., vol. 275, no. 11, p. 866, Mar. 1996.
dc.source.bibliographicCitationA. Tejada Artigas, S. Bello Dronda, E. Chacón Vallés, J. Muñoz Marco, M. C. Villuendas Usón, P. Figueras, F. J. Suarez, and A. Hernández, “Risk factors for nosocomial pneumonia in critically ill trauma patients.,” Crit. Care Med., vol. 29, no. 2, pp. 304–9, Mar. 2001
dc.source.bibliographicCitationD. K. Heyland, D. J. Cook, L. Griffith, S. P. Keenan, and C. Brun-Buisson, “The attributable morbidity and mortality of ventilator-associated pneumonia in the critically ill patient. The Canadian Critical Trials Group.,” Am. J. Respir. Crit. Care Med., vol. 159, no. 4 Pt 1, pp. 1249–56, Apr. 1999
dc.source.bibliographicCitationN. Bercault and T. Boulain, “Mortality rate attributable to ventilator-associated nosocomial pneumonia in an adult intensive care unit: a prospective case-control study.,” Crit. Care Med., vol. 29, no. 12, pp. 2303–9, Dec. 2001
dc.source.bibliographicCitationR. Celis, A. Torres, J. M. Gatell, M. Almela, R. Rodríguez-Roisin, and A. Agustí-Vidal, “Nosocomial pneumonia. A multivariate analysis of risk and prognosis.,” Chest, vol. 93, no. 2, pp. 318–24, Mar. 1988
dc.source.bibliographicCitationA. Villalobos, L. Barrero, S. Rivera, M. Ovalle, and D. Valera, “Vigilancia de infecciones asociadas a la atención en salud , resistencia bacteriana y consumo de antibióticos en hospitales de alta complejidad , Colombia , 2011,” Biomédica Rev. del Inst. Nac. Salud, vol. 34, no. Supl 1, pp. 67–80, 2014
dc.source.bibliographicCitationDirección de Salud Pública, “Criterios Diagnósticos de Infecciones Asociadas al Cuidado de la Salud a ser utilizados para la notificación al subsistema de vigilancia epidemiológica de IACS en Bogotá D.C,” pp. 2–76, 2010
dc.source.bibliographicCitationC. A. Moreno, V. D. Rosenthal, N. Olarte, W. V. Gomez, O. Sussmann, J. G. Agudelo, C. Rojas, L. Osorio, C. Linares, A. Valderrama, P. G. Mercado, P. H. A. Bernate, G. R. Vergara, A. M. Pertuz, B. E. Mojica, M. del P. T. Navarrete, A. S. A. Romero, and D. Henriquez, “Device-associated infection rate and mortality in intensive care units of 9 Colombian hospitals: findings of the International Nosocomial Infection Control Consortium.,” Infect. Control Hosp. Epidemiol., vol. 27, no. 4, pp. 349–56, Apr. 2006
dc.source.bibliographicCitationG. Ortiz, N. Fonseca, F. Molina, M. Garay, A. Lara, and C. Dueñas, “Epidemiología de la neumonía asociada a ventilador en 39 unidades de cuidados intensivos de Colombia ( 2007-2009 ). Informe año 2010,” Grup. Nac. Vigil. Epidemiol., vol. 11, no. 1, pp. 12–19, 2011
dc.source.bibliographicCitationRed Nacional de la Vigilancia de la resistencia Bacteriana y de las Infecciones Asociadas al Cuidado de la salud and (Colombia), “Estado Del Arte De La Resistencia Bacteriana Y La Vigilancia Epidemiológica De Las Infecciones Asociadas Al Cuidado De La Salud En Colombia,” pp. 1–31, 2010
dc.source.bibliographicCitationR. McEachern and G. D. Campbell, “Hospital-acquired pneumonia: epidemiology, etiology, and treatment.,” Infect. Dis. Clin. North Am., vol. 12, no. 3, pp. 761–79, x, Sep. 1998
dc.source.bibliographicCitationD. L. George, “Epidemiology of nosocomial pneumonia in intensive care unit patients.,” Clin. Chest Med., vol. 16, no. 1, pp. 29–44, Mar. 1995
dc.source.bibliographicCitationJ. M. Boyce, G. Potter-Bynoe, L. Dziobek, and S. L. Solomon, “Nosocomial pneumonia in Medicare patients. Hospital costs and reimbursement patterns under the prospective payment system.,” Arch. Intern. Med., vol. 151, no. 6, pp. 1109–14, Jun. 1991
dc.source.bibliographicCitationE. S. Dietrich, M. Demmler, G. Schulgen, K. Fekec, O. Mast, K. Pelz, and F. D. Daschner, “Nosocomial pneumonia: a cost-of-illness analysis.,” Infection, vol. 30, no. 2, pp. 61–7, Apr. 2002
dc.source.bibliographicCitationJ. Chastre and J.-Y. Fagon, “Ventilator-associated pneumonia.,” Am. J. Respir. Crit. Care Med., vol. 165, no. 7, pp. 867–903, Apr. 2002
dc.source.bibliographicCitationD. K. Warren, S. J. Shukla, M. A. Olsen, M. H. Kollef, C. S. Hollenbeak, M. J. Cox, M. M. Cohen, and V. J. Fraser, “Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center.,” Crit. Care Med., vol. 31, no. 5, pp. 1312–7, May 2003
dc.source.bibliographicCitationN. Safdar, C. Dezfulian, H. R. Collard, and S. Saint, “Clinical and economic consequences of ventilator-associated pneumonia: a systematic review.,” Crit. Care Med., vol. 33, no. 10, pp. 2184–93, Oct. 2005
dc.source.bibliographicCitationA. M. Baker, J. W. Meredith, and E. F. Haponik, “Pneumonia in intubated trauma patients. Microbiology and outcomes.,” Am. J. Respir. Crit. Care Med., vol. 153, no. 1, pp. 343–9, Jan. 1996
dc.source.bibliographicCitationL. Papazian, F. Bregeon, X. Thirion, R. Gregoire, P. Saux, J. P. Denis, G. Perin, J. Charrel, J. F. Dumon, J. P. Affray, and F. Gouin, “Effect of ventilator-associated pneumonia on mortality and morbidity.,” Am. J. Respir. Crit. Care Med., vol. 154, no. 1, pp. 91–7, Jul. 1996
dc.source.bibliographicCitationA. F. Shorr and P. G. O’Malley, “Continuous subglottic suctioning for the prevention of ventilator-associated pneumonia : potential economic implications.,” Chest, vol. 119, no. 1, pp. 228–35, Jan. 2001
dc.source.bibliographicCitationC. S. Cocanour, L. Ostrosky-Zeichner, M. Peninger, D. Garbade, T. Tidemann, B. D. Domonoske, T. Li, S. J. Allen, and K. M. Luther, “Cost of a ventilator-associated pneumonia in a shock trauma intensive care unit.,” Surg. Infect. (Larchmt)., vol. 6, no. 1, pp. 65–72, Jan. 2005
dc.source.bibliographicCitationA. García, N. Fonseca, N. Giraldo, B. Gil, A. Pamplona, and A. Diaz, “Hospital direct costs of ventilator-associated pneumonia,” Acta Medica Colomb., vol. 39, no. 3, pp. 238–243, 2014
dc.source.bibliographicCitationJ. Kuczynski, C. L. Lauber, W. a. Walters, L. W. Parfrey, J. C. Clemente, D. Gevers, and R. Knight, “Experimental and analytical tools for studying the human microbiome,” Nat. Rev. Genet., vol. 13, no. 1, pp. 47–58, 2011
dc.source.bibliographicCitationG. A. O’Toole and R. Kolter, “Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis.,” Mol. Microbiol., vol. 28, no. 3, pp. 449–61, May 1998
dc.source.bibliographicCitationA. V. Suescún, J. R. Cubillos, and M. M. Zambrano, “Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae,” Biomédica, vol. 26, no. 4, pp. 528–537, 2006
dc.source.bibliographicCitationP. Knezevic and O. Petrovic, “A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm.,” J. Microbiol. Methods, vol. 74, no. 2–3, pp. 114–8, Aug. 2008
dc.source.bibliographicCitationJ. J. Harrison, C. A. Stremick, R. J. Turner, N. D. Allan, M. E. Olson, and H. Ceri, “Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening.,” Nat. Protoc., vol. 5, no. 7, pp. 1236–54, Jul. 2010
dc.source.bibliographicCitationS. Singla, K. Harjai, and S. Chhibber, “Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics.,” J. Antibiot. (Tokyo)., vol. 66, no. 2, pp. 61–6, Mar. 2013
dc.source.bibliographicCitationMilena S, Vargas R. INFORME DE EVENTO INFECCIONES ASOCIADAS A DISPOSITIVOS EN UNIDADES DE CUIDADO INTENSIVO, COLOMBIA, 2017. Inst Nac salud. 2017;1–14
dc.source.bibliographicCitationLeal AL, Álvarez CA. Boletín informativo GREBO 2017. 2017;(2027):24
dc.source.bibliographicCitationWorld Health Organization (Who). Report on the Burden of Endemic Health Care-Associated Infection Worldwide. WHO Libr Cat Data. 2011;40
dc.source.bibliographicCitationFeng G, Cheng Y, Wang SY, Borca-Tasciuc DA, Worobo RW, Moraru CI. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: How small is small enough? npj Biofilms Microbiomes [Internet]. 2015;1(August). Available from: http://dx.doi.org/10.1038/npjbiofilms.2015.22
dc.source.bibliographicCitationBauer TT, Torres A, Ferrer R, Heyer CM, Schultze-Werninghaus G, Rasche K. Biofilm formation in endotracheal tubes. Association between pneumonia and the persistence of pathogens. Monaldi Arch Chest Dis - Pulm Ser. 2002;57(1):84–7
dc.source.bibliographicCitationRodríguez EC, Saavedra SY, Leal AL, Álvarez C, Olarte N, Valderrama A, et al. Diseminación de Klebsiella pneumoniae productoras de KPC-3 en hospitales de Bogotá durante un periodo de tres años. Biomédica [Internet]. 2014;34:224–31. Available from: /scielo.php?script=sci_arttext&pid=&lang=pt
dc.source.bibliographicCitationKalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–111
dc.source.bibliographicCitationÁlvarez C, Rosenthal VD, Olarte N, Gomez WV, Sussmann O, Agudelo JG, et al. Device-Associated Infection Rate and Mortality in Intensive Care Units of 9 Colombian Hospitals : Findings of the International Nosocomial Infection Control Consortium. Infect Control Hosp Epidemiol. 2016;27(May):349–56
dc.source.bibliographicCitationVandecandelaere I, Matthijs N, van Nieuwerburgh F, Deforce D, Vosters P, de Bus L, et al. Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS One. 2012;7(6):11–4.
dc.source.bibliographicCitationDe Souza PR, De Andrade D, Cabral DB, Watanabe E. Endotracheal tube biofilm and ventilator-associated pneumonia with mechanical ventilation. Microsc Res Tech. 2014;77(4):305–12
dc.source.bibliographicCitationPneumatikos IA, Dragoumanis CK, Bouros DE. Ventilator-associated pneumonia or endotracheal tube-associated pneumonia?: An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology. 2009;110(3):673–80
dc.source.bibliographicCitationDing C, Zhang Y, Yang Z, Wang J, Jin A, Wang W, et al. Incidence, temporal trend and factors associated with ventilator-associated pneumonia in mainland China: A systematic review and meta-analysis. BMC Infect Dis. 2017;17(1):1–10
dc.source.bibliographicCitationTsai WH, Hsu HC, Shih CH. Increased risks of endotracheal tube cuff colonization after prolonged intubation. Chin J Physiol. 2014;57(3):152–7
dc.source.bibliographicCitationHotterbeekx A, Xavier BB, Bielen K, Lammens C, Moons P, Schepens T, et al. The endotracheal tube microbiome associated with Pseudomonas aeruginosa or Staphylococcus epidermidis. Sci Rep [Internet]. 2016;6(November):1–11. Available from: http://dx.doi.org/10.1038/srep36507
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.
dc.type.documentTrabajo de grado
dc.creator.degreetypeFull time


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-SinDerivadas 2.5 Colombia

 

Reconocimientos: