Ítem
Restringido

Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto
dc.contributor.advisor | Galeano, Luis Alejandro | |
dc.contributor.advisor | Ramírez González, Juan David | |
dc.contributor.gruplac | Grupo de Investigaciones Microbiológicas UR (GIMUR) | |
dc.creator | Reina Hidalgo, Ariana | |
dc.creator.degree | Magíster en Ciencias Naturales | |
dc.creator.degreeLevel | Maestría | spa |
dc.creator.degreetype | Full time | |
dc.date.accessioned | 2023-06-27T20:37:18Z | |
dc.date.available | 2023-06-27T20:37:18Z | |
dc.date.created | 2023-05-18 | |
dc.description | Giardia intestinalis es un parásito protozoario con distribución global, que infecta amplia gama de hospederos vertebrados. Tiene dos estadíos de vida, los trofozoítos (forma replicativa) y los quistes (forma transmisible e infectiva) que se encuentran en el agua y alimentos contaminados. En este estudio se monitoreó el ARNm de quistes, como respuesta a la desinfección de agua superficial por Peroxidación Catalítica en Fase Húmeda (PCFH) activada por un catalizador de arcilla pilarizada con Al/Fe (Al/Fe-PILC); PCFH es un Proceso de Oxidación Avanzada (POA) evaluado en este estudio para la eliminación de quistes que exhiben alta resistencia a la cloración y otros métodos convencionales de desinfección. Los quistes de G. intestinalis (cepa WB, ensamblaje A) se cultivaron in vitro; se extrajo ARNm (1 x 105 quistes/mL) y se estandarizó un análisis de RT-qPCR para su detección y cuantificación utilizando los marcadores moleculares 18S-ARNr y β-giardina. Los experimentos catalíticos se realizaron en un reactor semi-continuo de 1 L utilizando agua superficial del río Pasto (Colombia) y se doparon con 100 quistes equivalentes Giardia/L teniendo en cuenta los factores experimentales de pH (6,0 y 7,0) y concentración de hierro activo del catalizador sólido (100 y 300 mg/L). Todos los experimentos catalíticos causaron pérdida de viabilidad de quistes de al menos 4 Log (99,99%); además, hasta alrededor del 35 % del Carbono Orgánico Disuelto (COD) y el 30 % del Nitrógeno Total Disuelto (NTD) se mineralizaron usando una dosis baja de peróxido de hidrógeno (0,037 mg H2O2/mg Fe.mg activo COD) en condiciones ambientales de temperatura (11 °C) y presión (73 kPa). El análisis de varianza mostró que la concentración de Fe activo (mg/L) ejerció un efecto significativo sobre la eliminación de quistes de G. intestinalis, la eliminación de COD y la fracción de H2O2 reaccionada (p < 0,05 con 95 % de nivel de confianza). Por su parte, en la optimización estadística de respuesta múltiple se obtuvo un valor de 0,95 para la función Deseabilidad, donde todas las respuestas alcanzaron el óptimo cuando la concentración de Fe activo fue de aproximadamente 80 mg/L y el pH 6,0. El pH no tuvo efecto significativo en los experimentos catalíticos. Este enfoque podría permitir a corto plazo monitorear a bajo costo la presencia de quistes de Giardia en el agua, así como prevenir la propagación de enfermedades infecciosas que son un problema de salud pública al complementar la desinfección convencional del agua con la PCFH en presencia de Al/Fe-PILC. | |
dc.description.abstract | Giardia intestinalis is a protozoan parasite with a global distribution, infecting a wide range of vertebrate hosts. It has two life stages, trophozoites (replicative stage) and cysts (transmissible and infective stage) found in either contaminated food or water. In this study, the mRNA of cysts was monitored, as a response to the disinfection of surface water by Catalytic Wet Peroxide Oxidation (CWPO) activated by an Al/Fe-pillared clay catalyst (Al/Fe-PILC); CWPO is an Advanced Oxidation Process (AOP) assessed in our study for the removal of cysts that exhibit high resistance to chlorination and other standard disinfection methods. Cysts of G. intestinalis (strain WB, assemblage A) were cultured in vitro; the RNA was extracted (1x105 cysts/mL) and a RT-qPCR analysis was standardized for detection and quantification using the molecular markers 18S-rRNA and β-giardin. The catalytic experiments were carried out in a 1 L semicontinuous reactor using surface water from Pasto River (Colombia) that was doped with 100 equivalent Giardia cysts/L considering the experimental factors pH (6.0 - 7.0) and the concentration of active iron in the solid catalyst (100 - 300 mg/L). All the catalytic experiments caused loss of the cyst viability of at least 4 Log (99.99 %); besides, up to around 35 % of Dissolved Organic Carbon (DOC) and 30 % of Dissolved Total Nitrogen (DTN) vanished by using a low dose of hydrogen peroxide (0.037 mg H2O2/mg active Fe.mg DOC) under pretty middle ambient conditions of temperature (11 °C) and pressure (73 kPa). The analysis of variance showed the concentration of active Fe (mg/L) to exhibit a significant effect on the elimination of G. intestinalis cysts, DOC elimination, and fraction of reacted H2O2 (p < 0.05, 95 % confidence level). Meanwhile, in the statistical multiple-response optimization, a value of 0.95 was obtained in the Desirability function, where all the responses reached the optimum when the concentration of active Fe was approximately 80 mg/L and pH 6.3, whereas the pH did not display a significant effect on the catalytic performance. This approach could allow in the short term to monitor at low cost the presence of Giardia cysts in water as well as to prevent the spread of infectious diseases that are of public health concern by complementing conventional water disinfection with Catalytic Wet Peroxide Oxidation in the presence of Al/Fe-PILCs. | |
dc.format.extent | 48 pp | |
dc.format.mimetype | application/pdf | |
dc.identifier.doi | https://doi.org/10.48713/10336_39894 | |
dc.identifier.uri | https://repository.urosario.edu.co/handle/10336/39894 | |
dc.publisher | Universidad del Rosario | |
dc.publisher.department | Facultad de Ciencias Naturales | |
dc.publisher.program | Maestría en Ciencias Naturales | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | * |
dc.rights.accesRights | info:eu-repo/semantics/closedAccess | |
dc.rights.acceso | Bloqueado (Texto referencial) | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source.bibliographicCitation | Abeledo-Lameiro, M. J., Polo-López, M. I., Ares-Mazás, E., y Gómez-Couso, H. (2019). Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Applied Catalysis B: Environmental, 253, 341–347. https://doi.org/10.1016/j.apcatb.2019.04.049 | |
dc.source.bibliographicCitation | Adam, R. D. (2001). Biology of Giardia lamblia. In Clinical Microbiology Reviews (Vol. 14, Issue 3, pp. 447–475). https://doi.org/10.1128/CMR.14.3.447-475.2001 | |
dc.source.bibliographicCitation | Adam, R. D. (2021). Giardia duodenalis: Biology and Pathogenesis. https://doi.org/10.1128/CMR | |
dc.source.bibliographicCitation | Adeyemo, F. E., Singh, G., Reddy, P., y Stenström, T. A. (2018). Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid-based tools in clinical and environmental regimes. In Acta Tropica (Vol. 184, pp. 15–28). Elsevier B.V. https://doi.org/10.1016/j.actatropica.2018.01.011 | |
dc.source.bibliographicCitation | Alonso, J. L., Amorós, I., y Guy, R. A. (2014). Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitology Research, 113(7), 2671–2678. https://doi.org/10.1007/s00436-014-3922-9 | |
dc.source.bibliographicCitation | APHA, AWWA, WEF. (2017). Standard Methods for the Examination of Water and Wastewater, 23rd ed., American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington D.C, USA. | |
dc.source.bibliographicCitation | Bakker, K. (2012). Water security: Research challenges and opportunities. In Science (Vol. 337, Issue 6097, pp. 914–915). American Association for the Advancement of Science. https://doi.org/10.1126/science.1226337 | |
dc.source.bibliographicCitation | Baque, R. H., Gilliam, A. O., Robles, L. D., Jakubowski, W., y Slifko, T. R. (2011). A real-time RT-PCR method to detect viable Giardia lamblia cysts in environmental waters. Water Research, 45(10), 3175–3184. https://doi.org/10.1016/j.watres.2011.03.032 | |
dc.source.bibliographicCitation | Bertrand, I., Maux, M., Helmi, K., Hoffmann, L., Schwartzbrod, J., y Cauchie, H. M. (2009). Quantification of Giardia transcripts during in vitro excystation: Interest for the estimation of cyst viability. Water Research, 43(10), 2728–2738. https://doi.org/10.1016/j.watres.2009.03.028 | |
dc.source.bibliographicCitation | Chaukura, N., Marais, S. S., Moyo, W., Mbali, N., Thakalekoala, L. C., Ingwani, T., Mamba, B. B., Jarvis, P., y Nkambule, T. T. I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review. In Journal of Environmental Chemical Engineering (Vol. 8, Issue 2). Elsevier Ltd. https://doi.org/10.1016/j.jece.2020.103659 | |
dc.source.bibliographicCitation | Collivignarelli, M. C., Abbà, A., Benigna, I., Sorlini, S., y Torretta, V. (2018). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability (Switzerland), 10(1). https://doi.org/10.3390/su10010086 | |
dc.source.bibliographicCitation | Dayarathne, H. N. P., Angove, M. J., Aryal, R., Abuel-Naga, H., y Mainali, B. (2021). Removal of natural organic matter from source water: Review on coagulants, dual coagulation, alternative coagulants, and mechanisms. In Journal of Water Process Engineering (Vol. 40). Elsevier Ltd. https://doi.org/10.1016/j.jwpe.2020.101820 | |
dc.source.bibliographicCitation | de Vries, W. (2021). Impacts of nitrogen emissions on ecosystems and human health: A mini review. In Current Opinion in Environmental Science and Health (Vol. 21). Elsevier B.V. https://doi.org/10.1016/j.coesh.2021.100249 | |
dc.source.bibliographicCitation | Diamond, L. S., Harlow, D. R., y Cunnick, C. C. (1978). A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. In Transactions of the Royal Society of Tropical Medicine and Hygiene (Vol. 72, Issue 4). | |
dc.source.bibliographicCitation | Efstratiou, A., Ongerth, J. E., y Karanis, P. (2017). Waterborne transmission of protozoan parasites: Review of worldwide outbreaks - An update 2011–2016. In Water Research (Vol. 114, pp. 14–22). Elsevier Ltd. https://doi.org/10.1016/j.watres.2017.01.036 | |
dc.source.bibliographicCitation | Einarsson, E., Ma’ayeh, S., y Svärd, S. G. (2016). An up-date on Giardia and giardiasis. In Current Opinion in Microbiology (Vol. 34, pp. 47–52). Elsevier Ltd. https://doi.org/10.1016/j.mib.2016.07.019 | |
dc.source.bibliographicCitation | Feng, C., Xu, Z., Li, Y., Zhu, N., y Wang, Z. (2021). Research progress on the contamination status and control policy of Giardia and Cryptosporidium in drinking water. In Journal of Water Sanitation and Hygiene for Development (Vol. 11, Issue 6, pp. 867–886). IWA Publishing. https://doi.org/10.2166/washdev.2021.151 | |
dc.source.bibliographicCitation | Fink, M. Y., Shapiro, D., y Singer, S. M. (2020). Giardia lamblia: Laboratory Maintenance, Lifecycle Induction, and Infection of Murine Models. Current Protocols in Microbiology, 57(1). https://doi.org/10.1002/cpmc.102 | |
dc.source.bibliographicCitation | Galeano, L. A., Bravo, P. F., Luna, C. D., Vicente, M. Ángel, y Gil, A. (2012). Removal of natural organic matter for drinking water production by Al/Fe-PILC-catalyzed wet peroxide oxidation: Effect of the catalyst preparation from concentrated precursors. Applied Catalysis B: Environmental, 111–112, 527–535. https://doi.org/10.1016/j.apcatb.2011.11.004 | |
dc.source.bibliographicCitation | Galeano, L. A., Vicente, M. ángel, y Gil, A. (2014). Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catalysis Reviews: Science and Engineering, 56:3, 239-287. https://doi.org/10.1080/01614940.2014.904182 | |
dc.source.bibliographicCitation | Galeano, L. A., Guerrero-Flórez, M., Sánchez, C. A., Gil, A., y Vicente, M. Á. (2019). Disinfection by chemical oxidation methods. In Handbook of Environmental Chemistry (Vol. 67, pp. 257–295). Springer Verlag. https://doi.org/10.1007/698_2017_179 | |
dc.source.bibliographicCitation | Galeano, L. A., García-Mora, A. M., Cabrera, C. L., Vallejo, C. A., Muñoz, H. J., Hidalgo, A., Gil, A., y Vicente, M. (2022). Fabricación de Arcilla Pilarizada con Al y Fe a partir de precursores altamente concentrados y su aplicación en Procesos de Oxidación Avanzada. (Patente de Colombia. No. 40871). Superintendencia de Industria y Comercio. https://gimfc.udenar.edu.co/patentes/ | |
dc.source.bibliographicCitation | García-Mora, A. M., Portilla-Delgado, C. S., Torres-Palma, R. A., Hidalgo-Troya, A., y Galeano, L. A. (2021). Catalytic wet peroxide oxidation to remove natural organic matter from real surface waters at urban and rural drinking water treatment plants. Journal of Water Process Engineering, 42. https://doi.org/10.1016/j.jwpe.2021.102136 | |
dc.source.bibliographicCitation | Garcia-Mora, A. M., Torres-Palma, R. A., García, H., Hidalgo-Troya, A., y Galeano, L. A. (2021). Removal of dissolved natural organic matter by the Al/Fe pillared clay-activated-catalytic wet peroxide oxidation: Statistical multi-response optimization. Journal of Water Process Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101755 | |
dc.source.bibliographicCitation | Ghernaout, D. (2020). Natural Organic Matter Removal in the Context of the Performance of Drinking Water Treatment Processes-Technical Notes. OALib, 07(09), 1–40. https://doi.org/10.4236/oalib.1106751 | |
dc.source.bibliographicCitation | Guimarães, J. R., Franco, R. M. B., Guadagnini, R. A., y Santos, L. U. dos. (2014). Giardia duodenalis: Number and Fluorescence Reduction Caused by the Advanced Oxidation Process (H 2 O 2 /UV). International Scholarly Research Notices, 2014, 1–7. https://doi.org/10.1155/2014/525719 | |
dc.source.bibliographicCitation | Guy, R. A., Payment, P., Krull, U. J., y Horgen, P. A. (2003). Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Applied and Environmental Microbiology, 69(9), 5178–5185. https://doi.org/10.1128/AEM.69.9.5178-5185.2003 | |
dc.source.bibliographicCitation | Hamilton, K. A., Waso, M., Reyneke, B., Saeidi, N., Levine, A., Lalancette, C., Besner, M., Khan, W., y Ahmed, W. (2018). Cryptosporidium and Giardia in Wastewater and Surface Water Environments. Journal of Environmental Quality, 47(5), 1006–1023. https://doi.org/10.2134/jeq2018.04.0132 | |
dc.source.bibliographicCitation | Ibáñez C, y Peñuelas J. (2019). Changing nutrients, changing rivers. Phosphorus removal from freshwater systems has wide-ranging ecological consequence. In Science (Vol. 365, Issue 6454, pp. 637–638). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaw9407 | |
dc.source.bibliographicCitation | Kane, A. v, Ward, H. D., Keusch, G. T., y Pereira, M. E. A. (1991). In vitro Encystation of Giardia lamblia: Large-Scale Production of In vitro Cysts and Strain and Clone Differences in Encystation Efficiency. In Source: The Journal of Parasitology (Vol. 77, Issue 6). | |
dc.source.bibliographicCitation | Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. 77(4), 487–488. | |
dc.source.bibliographicCitation | Kitis, M., y Kaplan, S. S. (2007). Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere, 68(10), 1846–1853. https://doi.org/10.1016/j.chemosphere.2007.03.027 | |
dc.source.bibliographicCitation | Koehler, A. v., Jex, A. R., Haydon, S. R., Stevens, M. A., y Gasser, R. B. (2014). Giardia/giardiasis - A perspective on diagnostic and analytical tools. In Biotechnology Advances (Vol. 32, Issue 2, pp. 280–289). Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2013.10.009 | |
dc.source.bibliographicCitation | Kondo Nakada, L. Y., Urbano dos Santos, L., y Guimarães, J. R. (2020). Pre-ozonation of surface water: An effective water treatment process to reduce the risk of infection by Giardia in drinking water. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115144 | |
dc.source.bibliographicCitation | Kralik, P., y Ricchi, M. (2017). A basic guide to real time PCR in microbial diagnostics: Definitions, parameters, and everything. In Frontiers in Microbiology (Vol. 8, Issue FEB). Frontiers Research Foundation. https://doi.org/10.3389/fmicb.2017.00108 | |
dc.source.bibliographicCitation | León, C. M., Muñoz, M., Hernández, C., Ayala, M. S., Flórez, C., Teherán, A., Cubides, J. R., y Ramírez, J. D. (2017). Analytical performance of Four Polymerase Chain Reaction (PCR) and real time PCR (qPCR) assays for the detection of six Leishmania species DNA in Colombia. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01907 | |
dc.source.bibliographicCitation | Li, S. F., y Ran, Z. L. (2014). Inactivation of giardia intestinalis by h2o2/o3. Applied Mechanics and Materials, 675–677, 134–139. https://doi.org/10.4028/www.scientific.net/AMM.675-677.134 | |
dc.source.bibliographicCitation | Lujan y Staffan. (2011). Giardia: A model organism. | |
dc.source.bibliographicCitation | Matilainen, A., Gjessing, E. T., Lahtinen, T., Hed, L., Bhatnagar, A., y Sillanpää, M. (2011). An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. In Chemosphere (Vol. 83, Issue 11, pp. 1431–1442). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2011.01.018 | |
dc.source.bibliographicCitation | Matilainen, A., y Sillanpää, M. (2010). Removal of natural organic matter from drinking water by advanced oxidation processes. In Chemosphere (Vol. 80, Issue 4, pp. 351–365). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2010.04.067 | |
dc.source.bibliographicCitation | Mejia, R., Vicuña, Y., Broncano, N., Sandoval, C., Vaca, M., Chico, M., Cooper, P. J., y Nutman, T. B. (2013). A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. American Journal of Tropical Medicine and Hygiene, 88(6), 1041–1047. https://doi.org/10.4269/ajtmh.12-0726 | |
dc.source.bibliographicCitation | Muñoz, H. J., Blanco, C., Gil, A., Vicente, M. ángel, y Galeano, L. A. (2017). Preparation of Al/Fe-pillared clays: Effect of the starting mineral. Materials, 10(12). https://doi.org/10.3390/ma10121364 | |
dc.source.bibliographicCitation | Muñoz, H. J., Vallejo, C., Blanco, C., Gil, A., Vicente, M. Á., Ramírez, J. H., y Galeano, L. A. (2018). 10 kg scaled-up preparation of Al/Fe-pillared clay CWPO catalysts from concentrated precursors. Green Chemistry, 20(22), 5196–5208. https://doi.org/10.1039/c8gc02445f | |
dc.source.bibliographicCitation | Ordoñez-Ordoñez, A., Revelo-Romo, D. M., Garcia-Mora, A. M., Hidalgo-Troya, A., y Galeano, L. A. (2019). MS2 coliphage inactivation by Al/Fe PILC-activated Catalytic Wet Peroxide Oxidation: multiresponse statistical optimization. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01892 | |
dc.source.bibliographicCitation | Portilla Delgado, C. S. (2021). Peroxidación Catalítica en Fase Húmeda de Materia Orgánica Natural Disuelta para la producción de agua de consumo. [Tesis de pregrado, Universidad de Nariño]. | |
dc.source.bibliographicCitation | Rosado-García, F. M., Guerrero-Flórez, M., Karanis, G., Hinojosa, M. D. C., y Karanis, P. (2017). Water-borne protozoa parasites: The Latin American perspective. In International Journal of Hygiene and Environmental Health (Vol. 220, Issue 5, pp. 783–798). Elsevier GmbH. https://doi.org/10.1016/j.ijheh.2017.03.008 | |
dc.source.bibliographicCitation | Sánchez, C., López, M. C., Galeano, L. A., Qvarnstrom, Y., Houghton, K., y Ramírez, J. D. (2018). Molecular detection and genotyping of pathogenic protozoan parasites in raw and treated water samples from southwest Colombia. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-3147-3 | |
dc.source.bibliographicCitation | Seabolt, M. H., Roellig, D. M., y Konstantinidis, K. T. (2022). Genomic comparisons confirm Giardia duodenalis sub-assemblage AII as a unique species. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.1010244 | |
dc.source.bibliographicCitation | Sillanpää, M., Ncibi, M. C., y Matilainen, A. (2018). Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. In Journal of Environmental Management (Vol. 208, pp. 56–76). Academic Press. https://doi.org/10.1016/j.jenvman.2017.12.009 | |
dc.source.bibliographicCitation | Travaillé, E., la Carbona, S., Gargala, G., Aubert, D., Guyot, K., Dumètre, A., Villena, I., y Houssin, M. (2016). Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control, 59, 359–365. https://doi.org/10.1016/j.foodcont.2015.06.007 | |
dc.source.bibliographicCitation | US-EPA. (1999). Giardia: Drinking Water Health Advisory. www.epa.gov | |
dc.source.bibliographicCitation | US-EPA, of Ground Water, O., y Water, D. (2012). Method 1623.1: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. http://www.epa.gov/safewater | |
dc.source.bibliographicCitation | World Health Organization. (2022). Drinking-water. 2022, octubre 9, de World Health Organization. Sitio web: https://www.who.int/en/news-room/fact-sheets/detail/drinking-water | |
dc.source.instname | instname:Universidad del Rosario | |
dc.source.reponame | reponame:Repositorio Institucional EdocUR | |
dc.subject | Giardia intestinalis | |
dc.subject | Peroxidación Catalítica en Fase Húmeda | |
dc.subject | Viabilidad de quistes | |
dc.subject | RT-qPCR | |
dc.subject | Arcillas pilarizadas con Al/Fe | |
dc.subject.keyword | Giardia intestinalis | |
dc.subject.keyword | Catalytic Wet Peroxide Oxidation | |
dc.subject.keyword | Cyst viability | |
dc.subject.keyword | RT-qPCR | |
dc.subject.keyword | Al/Fe-pillared clay | |
dc.title | Efecto de la Peroxidación Catalítica en Fase Húmeda activada por una Arcilla Pilarizada con Al/Fe sobre la viabilidad de Quistes de Giardia Intestinalis en agua superficial del río Pasto | |
dc.title.TranslatedTitle | Effect of Catalytic Wet Peroxide Oxidation activated by an Al/Fe pillared clay catalyst on the viability of Giardia intestinalis cysts in surface water from the Pasto River | |
dc.type | bachelorThesis | |
dc.type.document | Trabajo de grado | |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | |
dc.type.spa | Trabajo de grado | |
local.department.report | Facultad de Ciencias Naturales |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Efecto_de_la_Peroxidacion_Catalitica_en_Fase_Humeda_Reina_Hidalgo_Ariana_2023.pdf
- Tamaño:
- 5.91 MB
- Formato:
- Adobe Portable Document Format
- Descripción: