Solo Metadatos

Assessing single-objective performance convergence and time complexity for refactoring detection

Título de la revista
Nader-Palacio D.
Rodríguez-Cárdenas D.
Gomez J.



ISSN de la revista
Título del volumen
Association for Computing Machinery, Inc


Métricas alternativas

The automatic detection of refactoring recommendations has been tackled in prior optimization studies involving bad code smells, semantic coherence and importance of classes; however, such studies informally addressed formalisms to standardize and replicate refactoring models. We propose to assess the refactoring detection by means of performance convergence and time complexity. Since the reported approaches are diicult to reproduce, we employ an Artiicial Refactoring Generation (ARGen) as a formal and naive computational solution for the Refactoring Detection Problem. ARGen is able to detect massive refactoring's sets in feasible areas of the search space. We used a refactoring formalization to adapt search techniques (Hill Climbing, Simulated Annealing and Hybrid Adaptive Evolutionary Algorithm) that assess the performance and complexity on three open software systems. Combinatorial techniques are limited in solving the Refactoring Detection Problem due to the relevance of developers' criteria (human factor) when designing reconstructions. Without performance convergence and time complexity analysis, a software empirical analysis that utilizes search techniques is incomplete. © 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
Palabras clave
Combinatorial optimization , Computer software maintenance , Information analysis , Semantics , Simulated annealing , Automatic Detection , Combinatorial techniques , Computational solutions , Empirical analysis , Mathematical software , Optimization studies , Refactorings , Time complexity analysis , Evolutionary algorithms , Combinatorial Optimization , Mathematical Software Performance , Refactoring , Software Maintenance