Ítem
Embargo

Functional role of root fungal communities of frailejones (Espeletiinae, Asteraceae) and their response to biotic and abiotic factors in tropical high-altitude grasslands

dc.contributor.advisorCorrales Osorio, Adriana
dc.contributor.advisorSánchez Andrade, Adriana
dc.contributor.advisorMartin, Michael David
dc.creatorSánchez Tello, Juan David
dc.creator.degreeMagíster en Ciencias Naturales
dc.creator.degreeLevelMaestríaspa
dc.date.accessioned2025-03-04T20:08:30Z
dc.date.available2025-03-04T20:08:30Z
dc.date.created2024-12-03
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2027-03-05
dc.descriptionLos hongos de la rizosfera son actores clave en los procesos del ecosistema del suelo, ya que influyen en el ciclo de nutrientes debido a sus capacidades enzimáticas y su amplio potencial genético. Los rasgos funcionales de las plantas y las variables del suelo pueden influir directamente en las respuestas funcionales de las comunidades fúngicas del suelo. Sin embargo, los estudios que abordan la estructura taxonómica y el potencial genético de las comunidades fúngicas en los ecosistemas de páramo son escasos. En este estudio, analizamos cómo las comunidades fúngicas asociadas a la raíz de varias especies de Espeletia se ven afectadas por los rasgos radiculares y las variables edáficas en términos de estructura taxonómica y abundancia de genes funcionales. Para ello, muestreamos 58 individuos de Espeletia spp. y utilizamos secuenciación metagenómica de shotgun para identificar sus comunidades fúngicas asociadas. Se midieron los rasgos morfológicos de la raíz y las variables del suelo para cada muestra. Además, empleamos BLAST+ para identificar genes relacionados con el metabolismo del carbono (C) y del nitrógeno (N). Nuestros resultados indican que la comunidad fúngica es altamente rica y diversa, con una importante preponderancia de los géneros Aspergillus, Rhizophagus y Fusarium. La composición de la comunidad fúngica estuvo significativamente influenciada por dos factores edáficos (pH y azufre) y cuatro rasgos radiculares (diámetro promedio, volumen, longitud específica de la raíz y área específica de la raíz), pero no mostró una relación significativa con el sitio de muestreo ni con la especie hospedera. Además, la abundancia de genes relacionados con el metabolismo del C y N estuvo influenciada principalmente por variables del suelo (saturación de aluminio, porcentaje de arena, densidad aparente, nitrógeno, calcio y materia orgánica), mientras que el diámetro fue el único rasgo radicular significativamente relacionado. Nuestros hallazgos aportan evidencia sobre cómo los rasgos radiculares de Espeletia spp. y las variables edáficas de los páramos influyen en las comunidades fúngicas asociadas a la raíz y en su potencial genético en relación con el ciclo de nutrientes del C y N en el suelo.
dc.description.abstractRhizosphere fungi are important actors in soil ecosystem processes influencing nutrient cycling due to their enzymatic capabilities and wide genetic potential. Plant traits and soil variables can directly influence soil fungal communities' functional responses. However, studies focusing on the taxonomic structure and genetic potential of fungal communities are scarce in páramo ecosystems. We studied how root-associated fungal communities of several Espeletia spp. are affected by root traits and edaphic variables in terms of taxonomic structure and functional gene abundances. We sampled 58 individuals of Espeletia spp. and used shotgun metagenomic sequencing to identify its associated fungal communities. Morphological root traits and soil variables were measured for each sample. Additionally, we used BLAST+ to identify carbon (C) and nitrogen (N) targeting genes. Our results indicate that the fungal community is highly rich and diverse, with an important preponderance of Aspergillus, Rhizophagus, and Fusarium. The fungal community composition was significantly affected by two edaphic factors (pH and sulfur) and four root traits (average diameter, volume, specific root length, and specific root area), but was not significantly related to site or host species. Moreover, C- and N-targeting genes abundance was mainly influenced by soil variables (aluminum saturation, sand percentage, apparent density, nitrogen, calcium, and organic matter), meanwhile diameter was the only root trait significantly related. Our results elucidate how Espeletia spp. root traits and edaphic variables of páramos influence root-associated fungal communities and their genetic potential regarding the C and N nutrient cycle in soil.
dc.description.sponsorshipUniversidad del Rosario y red de entrenamiento BiGTREE
dc.format.extent38 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_45063
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/45063
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Ciencias Naturales
dc.publisher.programMaestría en Ciencias Naturales
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accesoRestringido (Temporalmente bloqueado)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.source.bibliographicCitationAdamczyk, B., Ahvenainen, A., Sieti, ¨o O-M et al. (2016). The contribution of ericoid plants to soil nitrogen chemistry and organic matter decomposition in boreal forest soil. Soil Biol Biochem, 103:394–404.
dc.source.bibliographicCitationAvellaneda-Torres, L. M., Rojas, E. T., & Pulido, C. P. G. (2014). Assessment of cellulolytic microorganisms in soils of Nevados park, Colombia. Brazilian Journal of Microbiology, 45(4), 1211–1220. https://doi.org/10.1590/S1517-83822014000400011
dc.source.bibliographicCitationBadouin, H., Gouzy, J., Grassa, C.J., Murat, F.S. Staton, E., Cottret, L., Lelandais-Brière, C., Owens, G.L., Carrère, S., Mayjonade, B., Ludo. (2017). The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, Nature, 546(7656), 148–152. https://doi.org/10.1038/nature22380
dc.source.bibliographicCitationBarnes, C.J., Maldonado, C., Frøslev, T.G., Antonelli, A., Rønsted, N. (2016). Unexpectedly high beta-diversity of root-associated fungal communities in the Bolivian Andes. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01377
dc.source.bibliographicCitationBeghini, F., Blanco-Míguez, A., Dubois, L., Asnicar, F., Manghi, P., Thomas, A. M., Valles-Colomer, M., Zolfo, M., Segata, N., McIver, L. J., Maharjan, S., Mailyan, A., Weingart, G., Zhang, Y., Huttenhower, C., Franzosa, E. A., & Scholz, M. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with biobakery 3. ELife, 10. https://doi.org/10.7554/eLife.65088
dc.source.bibliographicCitationBergmann, J., Rillig, M. C., Weigelt, A., Van Der Plas, F., Guerrero-Ramirez, N., Bruelheide, H., Kattge, J., Laughlin, D. C., Kuyper, T. W., Van Ruijven, J., Mommer, L., Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C., Iversen, C. M., McCormack, M. L., Meier, I. C., Semchenko, M., Sweeney, C. J., York, L. M. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6(27). https://doi.org/10.1126/sciadv.aba3756
dc.source.bibliographicCitationBeidler, K. V., & Pritchard, S. G. (2017). Maintaining connectivity: Understanding the role of root order and mycelial networks in fine root decomposition of woody plants. Plant and Soil, 420, 19–36. https://doi.org/10.1007/s1110 4-017-3393-8
dc.source.bibliographicCitationBouskill, N.J., Wood, T.E., Baran, R., Ye, Z., Bowen, B.P., Lim, H., et al. (2016). Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Frontiers in Microbiology. 7(525). https://doi.org/10.3389/fmicb.2016.00525 PMID: 27148214
dc.source.bibliographicCitationBrundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x
dc.source.bibliographicCitationBuchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods: Techniques for Life Scientists and Chemists, 18(4), 366–368. https://doi.org/10.1038/s41592-021-01101-x
dc.source.bibliographicCitationCruz, M., Lasso De Paulis, E. (2020). New insights into the functional ecology of paramo plants: what growth forms can tell us about plant functional types. Advance.
dc.source.bibliographicCitationCabezas, L., Calderon, C., Medina, L.M., Bahamon, I., Cardenas, M., Bernal, A.J., Gonzalez, A., Restrepo, S. (2012). Characterization of Cellulases of Fungal Endophytes Isolated from Espeletia spp. The Journal of Microbiology, 50(6), 1009–1013.
dc.source.bibliographicCitationCárdenas, M.F., Tobón, C., Rock, B.N., del Valle, J.I. (2018). Ecophysiology of frailejones (Espeletia spp.), and its contribution to the hydrological functioning of páramo ecosystems. Plant Ecol 219, 185–198. https://doi.org/10.1007/s11258-017-0787-x
dc.source.bibliographicCitationCarøe C, Gopalakrishnan S, Vinner L, Mak SST, Sinding MHS, Samaniego JA, et al. (2018). Single-tube library preparation for degraded DNA. Methods in Ecology and Evolution, 9(2):410-419–419.
dc.source.bibliographicCitationCastañeda-Martín, A. E., Montes-Pulido, C. R. (2017). Carbono almacenado en páramo andino. Revista Entramado, 13(1), 210–221. https://doi.org/10.18041/entramado.2017v13n1.25112
dc.source.bibliographicCitationCleveland, C.C., Reed, S.C., Keller, A.B., Nemergut, D.R., O’Neill, S.P., Ostertag, R., et al. (2014). Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia. 174 (1):283–94. https://doi.org/10.1007/s00442-013-2758-9 WOS:000329624300027. PMID: 24022257
dc.source.bibliographicCitationCorrales A, Henkel TW, Smith ME. (2018). Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist, 220(4), 1076–1091.
dc.source.bibliographicCitationDavis, N.M., Proctor, D., Holmes, S.P., Relman, D.A., Callahan, B.J. (2017). “Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data.” bioRxiv, 221499. doi:10.1101/221499.
dc.source.bibliographicCitationDelgado-Fernández, E., Valdez-Tenezaca, A., Nicola, L., Girometta, C. E., & Covarrubias, S. A. (2024). Fungal Diversity in an Undisturbed Andean Páramo Soil in Quimsacocha (Ecuador). Journal of Fungi, 10(9). https://doi.org/10.3390/jof10090623
dc.source.bibliographicCitationDesprez-Loustau, M.L., Aguayo, J., Dutech, C., Hayden, K. J., Husson, C., Jakushkin, B., Marçais, B., Piou, D., Robin, C., & Vacher, C. (2016). An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 73, 45–67. https://doi.org/10.1007/s1359 5-015-0487-4
dc.source.bibliographicCitationDiazgranados, M., Barber, J.C., (2017). Geography shapes the phylogeny of frailejones (Espeletiinae Cuatrec., Asteraceae): a remarkable example of recent rapid radiation in sky islands. PeerJ 5:e2968 https://doi.org/10.7717/peerj.2968
dc.source.bibliographicCitationFloudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P.M., de Vries, R.P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J.A., Kallen, N., Kersten, P., Kohler, A., Kües, U., Kumar, T.K.A., Kuo, A., LaButti, K., Larrondo, L.F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D.J., Morgenstern, I., Morin, E., Murat, C., Nagy, L.G., Nolan, M., Ohm, R.A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F.J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J.C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D.C., Martin, F., Cullen, D., Grigoriev, I.V., Hibbett, D.S. (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. http://dx.doi.org/10.1126/science.1221748.
dc.source.bibliographicCitationFreschet, G. T., Roumet, C., Comas, L. H., Weemstra, M., Bengough, A. G., Rewald, B., Bardgett, R. D., De Deyn, G. B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M. L., Meier, I. C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska, Z. A., … Stokes, A. (2021). Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 232(3), 1123–1158. https://doi.org/10.1111/nph.17072
dc.source.bibliographicCitationFrey, S. D. (2019). Mycorrhizal Fungi as Mediators of Soil Organic Matter Dynamics. Annual Review of Ecology, Evolution, and Systematics, 50, 237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331
dc.source.bibliographicCitationGarcés-Ruiz, M., Senés-Guerrero, C., Declerck, S., Cranenbrouck, S., (2017). Arbuscular mycorrhizal fungal community composition in Carludovica palmata , Costus scaber and Euterpe precatoria from Weathered oil ponds in the Ecuadorian amazon. Front. Microbiol. 8, 2134. http://dx.doi.org/10.3389/fmicb.2017.02134.
dc.source.bibliographicCitationGarcía Romero, J. F., García Fernandez, D. C., y Correa de Restrepo, M. (2004). Incidencia de las micorrizas arbusculares y vesículo arbusculares como estrategia adaptativa de especies de páramo y selva altoandina, cordillera oriental de Colombia. Colombia forestal, 8(17), 43–59. https://doi.org/10.14483/udistrital.jour.colomb.for.2004.1.a03
dc.source.bibliographicCitationGianinazzi, S., Gollotte, A., Binet, M. N., Tuinen, D., Redecker, D., & Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza, 20(8), 519–530. https://doi.org/10.1007/s00572-010-0333-3
dc.source.bibliographicCitationGilbert, G.S., Webb, C.O. (2007). Phylogenetic signal in plant pathogen-host range. Proc. Natl. Acad. Sci. U.S.A. 104,4979–4983. doi: 10.1073/pnas.0607968104
dc.source.bibliographicCitationGardes, M., Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
dc.source.bibliographicCitationGoldmann, K., Schöning, I., Buscot, F., & Wubet, T. (2015). Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01300
dc.source.bibliographicCitationGriffin, A., & Kernaghan, G. (2022). Ericoid mycorrhizal colonization and associated fungal communities along a wetland gradient in the Acadian Forest of Eastern Canada. Fungal Ecology, 56. https://doi.org/10.1016/j.funeco.2021.101138
dc.source.bibliographicCitationHalling, R. E. (2001). Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden, 88(1), 5–13. https://doi.org/10.2307/2666128
dc.source.bibliographicCitationHawkins, H.-J., Cargill, R. I. M., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M., Soudzilovskaia, N. A., Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology, 33(11), R560–R573. https://doi.org/10.1016/j.cub.2023.02.027
dc.source.bibliographicCitationHofstede, R.G.M. (1995). The effects of grazing and burning on soil and plant nutrient concentrations in Colombian páramo grasslands. Plant Soil 173, 111–132. https://doi.org/10.1007/BF00155524
dc.source.bibliographicCitationHogan, J. A., Jusino, M. A., Smith, M. E., Corrales, A., Song, X., Hu, Y., Yang, J., Cao, M., Valverde, B. O. J., & Baraloto, C. (2023). Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. New Phytologist, 238(5), 1849–1864. https://doi.org/10.1111/nph.18821
dc.source.bibliographicCitationKarim, N. F. A., Masratulhawa, M., Nor, N. M. I. M., & Zakaria, L. (2016). Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang. Tropical Life Sciences Research, 27(1), 1–20.
dc.source.bibliographicCitationKhuzaim, A., Clark D.R., Underwood G.J.C., Ford, H., Anne Cotton, T.E., Dumbrell A.J. (2019), Are drivers of root-associated fungal community structure context specific?, The ISME Journal, 13(5), 1330–1344. https://doi.org/10.1038/s41396-019-0350-y
dc.source.bibliographicCitationLambers, H., Shane, M. W., Cramer, M. D., Pearse, S. J., & Veneklaas, E. J. (2006). Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Annals of Botany, 98, 693–713. https://doi.org/10.1093/aob/mcl114
dc.source.bibliographicCitationLeff, J.W., Bardgett, R.D., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Johnson, D. et al. (2018). Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 12: 1794–1805.
dc.source.bibliographicCitationLeopold, D. R., Peay, K. G., Vitousek, P. M., & Fukami, T. (2021). Diversity of putative ericoid mycorrhizal fungi increases with soil age and progressive phosphorus limitation across a 4.1-million-year chronosequence. FEMS Microbiology Ecology, 97(3). https://doi.org/10.1093/femsec/fiab016
dc.source.bibliographicCitationLi, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
dc.source.bibliographicCitationLimborg, M. T., Winther-Have, C. S., Morueta-Holme, N., Gilbert, M. T. P., Rasmussen, J. A. (2024). The overlooked biodiversity loss. Trends in Ecology & Evolution, 39(10), 889–891. https://doi.org/10.1016/j.tree.2024.08.001
dc.source.bibliographicCitationLind, A. L., Pollard, K. S. (2021). Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome, 9(1). https://doi.org/10.1186/s40168-021-01015-y
dc.source.bibliographicCitationLindgreen. (2012). AdapterRemoval: Easy Cleaning of Next Generation Sequencing Reads, BMC Research Notes, 5:337. http://www.biomedcentral.com/1756-0500/5/337/
dc.source.bibliographicCitationLu J, Rincon N, Wood D E, Breitwieser F P, Pockrandt C, Langmead B, Salzberg S L, Steinegger M. (2022) Metagenome analysis using the Kraken software suite. Nature Protocols, doi: 10.1038/s41596-022-00738-y
dc.source.bibliographicCitationMa, X., Zarebanadkouki, M., Kuzyakov, Y., Blagodatskaya, E., Pausch, J., Razavi, B. (2018). Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biology & Biochemistry, 118, 69–78. https://doi.org/10.1016/j.soilb io.2017.12.009
dc.source.bibliographicCitationMadriñán, S., Cortés, A.J., Richardson, J.E. (2013). Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4. https://doi.org/10.3389/fgene.2013.00192
dc.source.bibliographicCitationMallick, H., Rahnavard, A., McIver, L.J., Ma, S., Zhang, Y., Nguyen, L.H., Tickle, T.L., Weingart, G., Ren, B., Schwager, E.H., Chatterjee, S., Thompson, K.N., Wilkinson, J.E., Subramanian, A., Lu, Y., Waldron, L., Paulson, J.N., Franzosa, E.A., Bravo, H.C., Huttenhower, C. (2021). Multivariable Association Discovery in Population-scale Meta-omics Studies. PLoS Computational Biology, 17(11):e1009442.
dc.source.bibliographicCitationMavárez, J. (2021). A Taxonomic Revision of Espeletia (Asteraceae). II. Updated List of Taxa, Nomenclature, and Conservation Status in the Colombian Radiation. Harvard Papers in Botany 26(1), 131-157. https://doi.org/10.3100/hpib.v26iss1.2021.n9
dc.source.bibliographicCitationMcMurdie, P.J., Holmes, S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE, 8(4):e61217. https:// doi. org/ 10. 1371/ journ al. pone.00612 17
dc.source.bibliographicCitationMitchell, D.T., Gibson, B.R. (2006). Ericoid mycorrhizal association: ability to adapt to a broad range of habitats. Mycologist, 20:2–9.
dc.source.bibliographicCitationMujica, M. I., Herrera, H., Cisternas, M., Zuniga-Feest, A., Sagredo-Saez, C., & Selosse, M.-A. (2024). Mycorrhizas in South American Ericaceae. Mycorrhiza, 34(1–2), 1–18. https://doi.org/10.1007/s00572-024-01141-z
dc.source.bibliographicCitationOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., (2017) Vegan: Community
dc.source.bibliographicCitationOnyeaka, H.N., Akinsemolu, A.A., Siyanbola, K.F., Adetunji, V.A. (2024). Green Microbe Profile: Rhizophagus intraradices—A Review of Benevolent Fungi Promoting Plant Health and Sustainability. Microbiol. Res., 15, 1028–1049. https://doi.org/10.3390/microbiolres15020068
dc.source.bibliographicCitationOrdoñez Castañeda, Y. M. (2016). Dinámica de la comunidad de Hongos Formadores de Micorrizas Arbusculares después de inocular Rhizophagus irregularis en un sistema agrícola en el trópico (Doctoral dissertation).
dc.source.bibliographicCitationParihar, M., Rakshit, A., Meena, V. S., Gupta, V. K., Rana, K., Choudhary, M., Tiwari, G., Mishra, P. K., Pattanayak, A., Bisht, J. K., Jatav, S. S., Khati, P., & Jatav, H. S. (2020). The potential of arbuscular mycorrhizal fungi in C cycling: a review. Archives of Microbiology, 202(7), 1581–1596.
dc.source.bibliographicCitationPeña, J., Zúñiga, O., Peña, E. (2011). Accounting the Carbon Storage in Disturbed and Non-Disturbed Tropical Andean Ecosystems. Planet Earth 2011-Global Warming Challenges and Opportunities for Policy and Practice.
dc.source.bibliographicCitationPerotto, S., Daghino, S., Martino, E. (2018). Ericoid mycorrhizal fungi and their genomes: another side to the mycorrhizal symbiosis? The New Phytologist, 220(4), 1141–1147. https://doi.org/10.1111/nph.15218
dc.source.bibliographicCitationPhilippot, L., Raaijmakers, J., Lemanceau, van der Putten, W. H. (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11, 789–799. https://doi.org/10.1038/nrmicro3109
dc.source.bibliographicCitationPolme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H., et al. (2020). FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers, 105(1):1–16. https://doi.org/10.1007/s13225-020-00466-2
dc.source.bibliographicCitationPouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic Analysis of the Explosive Adaptive Radiation of the Espeletia Complex (Asteraceae) in the Tropical Andes. Systematic Biology, 67(6), 1041–1060. https://doi.org/10.1093/sysbio/syy022
dc.source.bibliographicCitationPrada, S. L. D., Goldmann, K., Heintz, B. A., Reitz, T., Wambsganss, J., Bauhus, J., Buscot, F. (2021). Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 30(2), 572–591. https://doi.org/10.1111/mec.15749
dc.source.bibliographicCitationR Core Team. (2022). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https:// cran.r- proje ct. org/.
dc.source.bibliographicCitationRiley, R., Salamov, A.A., Brown, D.W., Nagy, L.G., Floudas, D., Held, B.W., Levasseur, A., Lombard, V., Morin, E., Otillar, R., Lindquist, E.A., Sun, H., LaButti, K.M., Schmutz, J., Jabbour, D., Luo, H., Baker, S.E., Pisabarro, A.G., Walton, J.D., Blanchette, R.A., Henrissat, B., Martin, F., Cullen, D., Hibbett, D.S., Grigoriev, I.V. (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci USA, 111:9923–9928. http://dx.doi.org/10.1073/pnas.1400592111.
dc.source.bibliographicCitationRoa-Angulo, V., Forero-Jiménez, A. (2021). Study of the behavior of Cellulolytic microorganisms and Phosphate solubilizers associated with Rhizospheric soil of Espeletia grandiflora in two zones with different degree of intervention in Páramo Ocetá, Colombia. Indian Journal of Science and Technology 14(7): 665-675. https://doi.org/10.17485/IJST/v14i7.1279
dc.source.bibliographicCitationRomero-Olivares, A. L., Morrison, E. W., Pringle, A., & Frey, S. D. (2021). Linking Genes to Traits in Fungi. Microbial Ecology, 82(1), 145–155. https://doi.org/10.1007/s00248-021-01687-x
dc.source.bibliographicCitationRStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
dc.source.bibliographicCitationRuiz-Pérez, C. A., Zambrano, M. M., & Restrepo, S. (2016). Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Applied and Environmental Microbiology, 82(6), 1807–1817. https://doi.org/10.1128/AEM.02781-15
dc.source.bibliographicCitationSalter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12(1), 87–98. https://doi.org/10.1186/s12915-014-0087-z
dc.source.bibliographicCitationSchubert, Lindgreen, and Orlando (2016). AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Research Notes, 12;9(1):88 http://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-016-1900-2
dc.source.bibliographicCitationSeethepalli A, Dhakal K, Griffiths M, Guo H, Freschet GT, York LM. (2021) RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. AoB PLANTS, plab056; https://doi.org/10.1093/aobpla/plab056
dc.source.bibliographicCitationSéry, D. J.-M., Zézé, A., van Tuinen, D., Drain, A., Mounier, A. (2018). The genus Rhizophagus dominates arbuscular mycorrhizal fungi communities in contrasted cassava field soils in Côte d’Ivoire. Rhizosphere, 7, 8–17. https://doi.org/10.1016/j.rhisph.2018.06.007
dc.source.bibliographicCitationShen, W., Le, S., Li, Y., Hu, F. (2016). SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE, 11(10): e0163962. https://doi.org/10.1371/journal.pone.0163962
dc.source.bibliographicCitationSoudzilovskaia, N. A., Vaessen, S., Barcelo, M., He, J., Rahimlou, S., Abarenkov, K., Brundrett, M. C., Gomes, S. I. F., Merckx, V., & Tedersoo, L. (2020). FungalRoot : global online database of plant mycorrhizal associations. The New Phytologist, 227(3), 955–966.
dc.source.bibliographicCitationSchlottman, Bradley Aaron. (2022). Impacts of Artificial Warming on Vegetation and Soil Fungal Communities in Two Sites in the Cruz-Verde Sumapaz Paramo Complex, Colombia (Master's thesis, University of Arizona, Tucson, USA). http://hdl.handle.net/10150/666430
dc.source.bibliographicCitationSweeney, C. J., Vries, F. T., Dongen, B. E., & Bardgett, R. D. (2021). Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 229(3), 1492–1507. https://doi.org/10.1111/nph.1697
dc.source.bibliographicCitationTiwari, C. K., Verma, R. K., Ayachi, A., Asaiya, A. J. K. (2008). Wood decaying fungi of Sal from Madhya Pradesh, India. Science Front 2(1): 13–26.
dc.source.bibliographicCitationTrejos-Espeleta, J. C., Marin-Jaramillo, J. P., Orsi, W. D., Schmidt, S. K., Sommers, P., & Bradley, J. A. (2024). Principal role of fungi in soil carbon stabilization during early pedogenesis in the high Arctic. PNAS 121(28). https://doi.org/10.1073/pnas.2402689121
dc.source.bibliographicCitationTreseder, K.K., Berlemont, R., Allison, S.D., Martiny, A.C. (2018). Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition. PLoS ONE, 13(11), e0206441. https://doi.org/10.1371/journal.pone.0206441
dc.source.bibliographicCitationTreseder, K.K., Lennon, J.T. (2015). Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. doi:10.1128/MMBR.00001-15.
dc.source.bibliographicCitationValencia, J.B., Mesa, J., León, J.G., Madriñán, S., Cortés, A.J. (2020). Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Frontiers in Ecology and Evolution, 8. https://doi.org/10.3389/fevo.2020.565708
dc.source.bibliographicCitationVásquez, D. L., Balslev, H., & Sklenář, P. (2015). Human impact on tropical-alpine plant diversity in the northern Andes. Biodivers Conserv, 24(11), 2673–2683. https://doi.org/10.1007/s10531-015-0954-0
dc.source.bibliographicCitationWood, D.E., Lu, J., Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 1–13. https://doi.org/10.1186/s13059-019-1891-0
dc.source.bibliographicCitationYan, B., Sun, L., Li, J., Liang, C., Wei, F., Xue, S., Wang, G. (2020). Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China. Geoderma, 364. https://doi.org/10.1016/j.geoderma.2020.114199
dc.source.bibliographicCitationYin, H., Wheeler, E., & Phillips, R. P. (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213–221. https://doi.org/10.1016/j.soilbio.2014.07.022
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectEspeletia spp.
dc.subjectGenes funcionales
dc.subjectPáramo
dc.subjectHongos de Rizosfera
dc.subjectFrailejones
dc.subject.keywordEspeletia spp.
dc.subject.keywordRhizosphere fungi
dc.subject.keywordFunctional Genes
dc.subject.keywordTropical high-altitude grasslands
dc.subject.keywordFrailejones
dc.titleFunctional role of root fungal communities of frailejones (Espeletiinae, Asteraceae) and their response to biotic and abiotic factors in tropical high-altitude grasslands
dc.title.TranslatedTitleRol funcional de las comunidades fúngicas de raíces de frailejones (Espeletiinae, Asteraceae) y su respuesta a factores bióticos y abióticos en pastizales tropicales de alta montaña (Páramos)
dc.typemasterThesis
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de grado
local.department.reportFacultad de Ciencias Naturales
local.regionesBogotá
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Functional_role_of_root_fungal_communities_of_frailejones_SanchezTello-JuanDavid-2024.pdf
Tamaño:
2.6 MB
Formato:
Adobe Portable Document Format
Descripción: