Ítem
Restringido

Aparición de fibrosis pulmonar en función del tiempo por exposición a nanotubos de carbón (CNT) : Revisión sistemática de la literatura a partir de estudios experimentales en animales en los últimos 15 años

dc.contributorÁvila Bernal, Alba Graciela
dc.contributorBriceno-Ayala, Leonardo
dc.contributor.advisorOrduz García, Carlos Eduardo
dc.creatorPineda Blanco, Julian Orlando
dc.creatorGarcía Álvarez, Ana María
dc.creatorPáez Vásquez, Juan Manuel
dc.creator.degreeEspecialista en Salud Ocupacionalspa
dc.creator.degreetypeFull timespa
dc.date.accessioned2018-12-14T16:27:30Z
dc.date.available2018-12-14T16:27:30Z
dc.date.created2018-12-04
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2020-12-14
dc.date.issued2018
dc.descriptionIntroducción: El conocimiento de los nanotubos de carbón ha generado una amplia aplicación y exposición industrial. Esto facilita el desarrollo de fibrosis pulmonar por exposición siendo una patología progresiva, multifactorial y refractaria al tratamiento. Aunque la relación exposición y fibrosis se ha documentado, aún existen interrogantes sobre el momento de aparición de la fibrosis. Objetivo: Revisar el estado del arte y graficar la relación tiempo y aparición de fibrosis pulmonar posterior a la exposición a nanotubos de carbón (CNT). Método: Con límite de fechas entre enero de 2003 y mayo de 2018 se revisaron bases de datos seleccionadas, se eliminaron referencias duplicadas, se filtró por criterios de inclusión y exclusión, se evaluaron títulos y resúmenes por dos investigadores y finalmente se aplicaron criterios de calidad y riesgos de sesgos para extraer posteriormente los datos y analizarlos de forma descriptiva. Resultados: Se seleccionaron 49 artículos en inglés, todos experimentales en animales, se evaluaron exposiciones por aspiración, instilación e inhalación. En estos estudios se utilizaron diferentes dosis, en algunos casos se realizaron ajustes según peso del animal o dependiendo de la vía de exposición. Se reporta fibrosis pulmonar en la mayoría de resultados desde el día 1 hasta 728. Dentro de la búsqueda solo un estudio fue reportado en humanos. Conclusión: A partir de la evidencia disponible aún no se logra establecer el momento específico de aparición de la fibrosis pulmonar posterior a la exposición a nanotubos de carbón; realizamos algunas recomendaciones para futuros estudios a fin de facilitar la consolidación de evidencia que permita posteriormente evaluar dicho efecto en ambientes ocupacionales y determinar tiempos de seguimiento a los trabajadores.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_18831
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/18831
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Medicinaspa
dc.publisher.programEspecialización en Salud Ocupacionalspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accesoRestringido (Temporalmente bloqueado)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationISO/TS 27687:2008(en), Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate [Internet]. [citado 4 de noviembre de 2018]. Disponible en: https://www.iso.org/obp/ui/#iso:std:iso:ts:27687:ed-1:v2:enspa
dc.source.bibliographicCitationNIOSH U. NIOSH current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. 2013.spa
dc.source.bibliographicCitationSingh S, Nalwa HS. Nanotechnology and health safety–toxicity and risk assessments of nanostructured materials on human health. Journal of nanoscience and nanotechnology. 2007;7(9):3048-70.spa
dc.source.bibliographicCitationBakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation toxicology. 2012;24(2):125-35.spa
dc.source.bibliographicCitationMadl AK, Plummer LE, Carosino C, Pinkerton KE. Nanoparticles, Lung Injury, and the Role of Oxidant Stress. En: Julius D, editor. Annual Review of Physiology, Vol 76. 2014. p. 447-65.spa
dc.source.bibliographicCitationMirshafa A, Nazari M, Jahani D, Shaki F. Size-dependent neurotoxicity of aluminum oxide particles: a comparison between nano-and micrometer size on the basis of mitochondrial oxidative damage. Biological trace element research. 2018;1-9.spa
dc.source.bibliographicCitationWarheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicological sciences. 2006;95(1):270-80.spa
dc.source.bibliographicCitationBaroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. Journal of Investigative Dermatology. 2007;127(7):1701-12.spa
dc.source.bibliographicCitationMortensen LJ, Oberdörster G, Pentland AP, DeLouise LA. In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano letters. 2008;8(9):2779-87.spa
dc.source.bibliographicCitationLu W, Senapati D, Wang S, Tovmachenko O, Yu H, Ray P. Shape dependent cellular uptake and toxic effects of silver nanomaterials on human skin HaCaT keratinocytes. J Am Chem Soc. 2009.spa
dc.source.bibliographicCitationZhang L, Monteiro-Riviere N. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin pharmacology and physiology. 2008;21(3):166-80.spa
dc.source.bibliographicCitationPauluhn J. Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol. junio de 2010;57(1):78-89.spa
dc.source.bibliographicCitationZhao Y, Nalwa HS. Nanotoxicology: interactions of nanomaterials with biological systems. Vol. 19. American Scientific Publishers; 2007.spa
dc.source.bibliographicCitationSharma HS, Sharma A. Nanoparticles aggravate heat stress induced cognitive deficits, blood–brain barrier disruption, edema formation and brain pathology. Progress in brain research. 2007;162:245-73.spa
dc.source.bibliographicCitationHodson L, Hull M. Building a safety program to protect the nanotechnology workforce: a guide for small to medium-sized enterprises. 2016.spa
dc.source.bibliographicCitationFoladori G, Bejarano F, Invernizzi N. Nanotecnología&58; gestión y reglamentación de riesgos para la salud y medio ambiente en América Latina y el Caribe Nanotechnology&58; risk management and regulation for health and environment in Latin America and in the Caribbean. Trabalho. 2013;11(1):145-67.spa
dc.source.bibliographicCitationHodson L. Protecting the nanotechnology workforce: NIOSH nanotechnology research and guidance strategic plan, 2013–2016. 2013.spa
dc.source.bibliographicCitationSchulte P, Geraci C, Murashov V, Kuempel E, Zumwalde R, Castranova V, et al. Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research. 2014;16(1):2153.spa
dc.source.bibliographicCitationKuempel ED. Carbon nanotube risk assessment: implications for exposure and medical monitoring. J Occup Environ Med. junio de 2011;53(6 Suppl):S91-97.spa
dc.source.bibliographicCitationDong J, Ma Q. Myofibroblasts and lung fibrosis induced by carbon nanotube exposure. Particle and Fibre Toxicology [Internet]. diciembre de 2016 [citado 27 de mayo de 2018];13(1). Disponible en: http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-016-0172-2.spa
dc.source.bibliographicCitationSharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Archives of Toxicology. julio de 2016;90(7):1605-22.spa
dc.source.bibliographicCitationVietti G, Lison D, van den Brule S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol. 29 de febrero de 2016;13:11.spa
dc.source.bibliographicCitationLey B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clinical epidemiology. 2013;5:483.spa
dc.source.bibliographicCitationHarari S, Madotto F, Caminati A, Conti S, Cesana G. Epidemiology of idiopathic pulmonary fibrosis in Northern Italy. PLoS One. 2016;11(2):e0147072.spa
dc.source.bibliographicCitationBarreto-Rodríguez JO, Mejía ME, Buendía-Roldán I. Panorama actual de la fibrosis pulmonar idiopática en México. Neumología y cirugía de tórax. 2015;74(4):256-61.spa
dc.source.bibliographicCitationTorres Villacreses MI, Calero E, Cherrez A, Calderon JC, Cherrez S, Cottin V, et al. Management Patterns And Attitudes About IPF (Idiopathic Pulmonary Fibrosis) Among Pulmonologist And General Physicians In Latin America. En: C37 NEW INSIGHTS IN THE EPIDEMIOLOGY, MANAGEMENT, AND OUTCOMES OF CYSTIC FIBROSIS, ILD, AND RESPIRATORY DISEASE. American Thoracic Society; 2017. p. A5349-A5349.spa
dc.source.bibliographicCitationMercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 30 de julio de 2013;10:33.spa
dc.source.bibliographicCitationPark E-J, Roh J, Kim S-N, Kang M-S, Han Y-A, Kim Y, et al. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol. septiembre de 2011;85(9):1121-31.spa
dc.source.bibliographicCitationShvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, et al. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med. agosto de 2014;73:154-65.spa
dc.source.bibliographicCitationLi J, Li W, Xu J, Cai X, Liu R, Li Y, et al. Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environmental Toxicology: An International Journal. 2007;22(4):415-21.spa
dc.source.bibliographicCitationSargent L, Porter D, Lowry D, Battelli L, Siegrist K, Kashon M, et al. Multiwalled carbon nanotube-induced lung tumors. Toxicologist. 2013;132:98.spa
dc.source.bibliographicCitationPorter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, et al. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. noviembre de 2012;7(7):1179-94.spa
dc.source.bibliographicCitationWang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, et al. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 18 de agosto de 2011;8:24.spa
dc.source.bibliographicCitationMuller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology. 15 de septiembre de 2005;207(3):221-31.spa
dc.source.bibliographicCitationPauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicological Sciences. 2009;113(1):226-42.spa
dc.source.bibliographicCitationOsmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, et al. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Particle and fibre toxicology. 2011;8(1):15.spa
dc.source.bibliographicCitationRyman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. marzo de 2009;40(3):349-58.spa
dc.source.bibliographicCitationWick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology letters. 2007;168(2):121-31.spa
dc.source.bibliographicCitationOyabu T, Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, et al. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhalation toxicology. 2011;23(13):784-91.spa
dc.source.bibliographicCitationAvila A, Ocampo AM, Wootton O, Muñoz F, Vieira P. Nanotechnology and Manufactured Nanomaterials in Latin America and the Caribbean: Safety Issues: [Internet]. Universidad Los Andes; 2015. Disponible en: https://nanoseguridad.uniandes.edu.co/images/Nanotechnology_ingles_digital_012016AA.pdf.spa
dc.source.bibliographicCitationMartínez MJR, Ganzer JR, Huertas MLC. Aplicaciones actuales y futuras de los nanotubos de carbono. Fundación Madri+ d para el Conocimiento; 2007.spa
dc.source.bibliographicCitationRoco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: summary of international study. 2011.spa
dc.source.bibliographicCitationNakanishi J, Morimoto Y, Ogura I, Kobayashi N, Naya M, Ema M, et al. Risk assessment of the carbon nanotube group. Risk Analysis. 2015;35(10):1940-56.spa
dc.source.bibliographicCitationAschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al. Review of carbon nanotubes toxicity and exposure—Appraisal of human health risk assessment based on open literature. Critical reviews in toxicology. 2010;40(9):759-90.spa
dc.source.bibliographicCitationWang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, et al. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health Part A. 2010;73(5):410-22.spa
dc.source.bibliographicCitationRavichandran P, Baluchamy S, Gopikrishnan R, Biradar S, Ramesh V, Goornavar V, et al. Pulmonary biocompatibility assessment of inhaled single-wall and multiwall carbon nanotubes in BALB/c mice. J Biol Chem. 26 de agosto de 2011;286(34):29725-33.spa
dc.source.bibliographicCitationPorter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 10 de marzo de 2010;269(2/3):136-47.spa
dc.source.bibliographicCitationZhang Y, Deng J, Zhang Y, Guo F, Li C, Zou Z, et al. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med. enero de 2013;91(1):117-28.spa
dc.source.bibliographicCitationHonda K, Naya M, Takehara H, Kataura H, Fujita K, Ema M. A 104-week pulmonary toxicity assessment of long and short single-wall carbon nanotubes after a single intratracheal instillation in rats. Inhalation Toxicology. 19 de septiembre de 2017;29(11):471-82.spa
dc.source.bibliographicCitationTaylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, et al. Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo. PLOS ONE. 12 de septiembre de 2014;9(9):e106870.spa
dc.source.bibliographicCitationDandley EC, Taylor AJ, Duke KS, Ihrie MD, Shipkowski KA, Parsons GN, et al. Atomic layer deposition coating of carbon nanotubes with zinc oxide causes acute phase immune responses in human monocytes in vitro and in mice after pulmonary exposure. Particle and Fibre Toxicology [Internet]. diciembre de 2015 [citado 27 de mayo de 2018];13(1). Disponible en: http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-016-0141-9.spa
dc.source.bibliographicCitationKobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, et al. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology. 29 de octubre de 2010;276(3):143-53.spa
dc.source.bibliographicCitationPark E-J, Roh J, Kim SN, Kang M-S, Lee B-S, Kim Y, et al. Biological Toxicity and Inflammatory Response of Semi-Single-Walled Carbon Nanotubes. Plos One. 7 de octubre de 2011;6(10):e25892.spa
dc.source.bibliographicCitationFrank EA, Carreira VS, Birch ME, Yadav JS. Carbon Nanotube and Asbestos Exposures Induce Overlapping but Distinct Profiles of Lung Pathology in Non-Swiss Albino CF-1 Mice. Toxicol Pathol. febrero de 2016;44(2):211-25.spa
dc.source.bibliographicCitationCrouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, et al. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 4 de junio de 2010;272(1-3):39-45.spa
dc.source.bibliographicCitationMa-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, et al. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Particle and fibre toxicology. 2013;10(1):23.spa
dc.source.bibliographicCitationTeeguarden JG, Webb-Robertson B-J, Waters KM, Murray AR, Kisin ER, Varnum SM, et al. Comparative Proteomics and Pulmonary Toxicity of Instilled Single-Walled Carbon Nanotubes, Crocidolite Asbestos, and Ultrafine Carbon Black in Mice. Toxicological Sciences. marzo de 2011;120(1):123-35.spa
dc.source.bibliographicCitationRoda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol. 2011;26(3):357-67.spa
dc.source.bibliographicCitationMühlfeld C, Poland CA, Duffin R, Brandenberger C, Murphy FA, Rothen-Rutishauser B, et al. Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology. diciembre de 2012;6:867-79.spa
dc.source.bibliographicCitationWang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano. 27 de diciembre de 2011;5(12):9772-87.spa
dc.source.bibliographicCitationWang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, et al. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol. 19 de octubre de 2010;7:31.spa
dc.source.bibliographicCitationManke A, Luanpitpong S, Dong C, Wang L, He X, Battelli L, et al. Effect of fiber length on carbon nanotube-induced fibrogenesis. Int J Mol Sci. 29 de abril de 2014;15(5):7444-61.spa
dc.source.bibliographicCitationSager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen T, et al. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology. 2014;8(3):317-27.spa
dc.source.bibliographicCitationChang C-C, Tsai M-L, Huang H-C, Chen C-Y, Dai S-X. Epithelial-mesenchymal transition contributes to SWCNT-induced pulmonary fibrosis. Nanotoxicology. septiembre de 2012;6(6):600-10.spa
dc.source.bibliographicCitationChen T, Nie H, Gao X, Yang J, Pu J, Chen Z, et al. Epithelial-mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway. Toxicol Lett. 21 de abril de 2014;226(2):150-62.spa
dc.source.bibliographicCitationKhaliullin T, Shvedova A, Kisin E, Zalyalov R, Fatkhutdinova L. Evaluation of fibrogenic potential of industrial multi-walled carbon nanotubes in acute aspiration experiment. Bulletin of experimental biology and medicine. 2015;158(5):684-7.spa
dc.source.bibliographicCitationMurray AR, Kisin ER, Tkach AV, Yanamala N, Mercer R, Young S-H, et al. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 10 de abril de 2012;9:10.spa
dc.source.bibliographicCitationWang X, Shannahan JH, Brown JM. IL-33 modulates chronic airway resistance changes induced by multi-walled carbon nanotubes. Inhal Toxicol. marzo de 2014;26(4):240-9.spa
dc.source.bibliographicCitationDong J, Ma Q. In vivo activation of a T helper 2-driven innate immune response in lung fibrosis induced by multi-walled carbon nanotubes. Archives of Toxicology. septiembre de 2016;90(9):2231-48.spa
dc.source.bibliographicCitationElgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology. 20 de noviembre de 2008;253(1-3):131-6.spa
dc.source.bibliographicCitationShvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. octubre de 2008;295(4):L552-565.spa
dc.source.bibliographicCitationRyman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. noviembre de 2009;4(11):747-51.spa
dc.source.bibliographicCitationSager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, et al. Investigation of the pulmonary bioactivity of double-walled carbon nanotubes. J Toxicol Environ Health Part A. 2013;76(15):922-36.spa
dc.source.bibliographicCitationShvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, et al. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. enero de 2014;306(2):L170-182.spa
dc.source.bibliographicCitationDong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology. 7 de febrero de 2018;12(2):153-68.spa
dc.source.bibliographicCitationKhaliullin TO, Kisin ER, Murray AR, Yanamala N, Shurin MR, Gutkin DW, et al. Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1. Experimental Lung Research. 14 de septiembre de 2017;43(8):311-26.spa
dc.source.bibliographicCitationRahman L, Jacobsen NR, Aziz SA, Wu D, Williams A, Yauk CL, et al. Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. noviembre de 2017;823:28-44.spa
dc.source.bibliographicCitationSnyder-Talkington BN, Dong C, Porter DW, Ducatman B, Wolfarth MG, Andrew M, et al. Multiwalled carbon nanotube-induced pulmonary inflammatory and fibrotic responses and genomic changes following aspiration exposure in mice: A 1-year postexposure study. Journal of Toxicology and Environmental Health, Part A. 17 de abril de 2016;79(8):352-66.spa
dc.source.bibliographicCitationPolimeni M, Gulino G, Gazzano E, Kopecka J, Marucco A, Fenoglio I, et al. Multi-walled carbon nanotubes directly induce epithelial-mesenchymal transition in human bronchial epithelial cells via the TGF-β-mediated Akt/GSK-3β/SNAIL-1 signalling pathway. Particle and Fibre Toxicology. 1 de diciembre de 2016;13(1):1-19.spa
dc.source.bibliographicCitationPoulsen SS, Saber AT, Williams A, Andersen O, Købler C, Atluri R, et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 1 de abril de 2015;284(1):16-32.spa
dc.source.bibliographicCitationFrancis AP, Ganapathy S, Palla VR, Murthy PB, Ramaprabhu S, Devasena T. One time nose-only inhalation of MWCNTs: Exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep. 2015;2:111-20.spa
dc.source.bibliographicCitationDong J, Ma Q. Osteopontin enhances multi-walled carbon nanotube-triggered lung fibrosis by promoting TGF-β1 activation and myofibroblast differentiation. Particle and Fibre Toxicology [Internet]. diciembre de 2017 [citado 27 de mayo de 2018];14(1). Disponible en: http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/s12989-017-0198-0.spa
dc.source.bibliographicCitationDong J, Porter DW, Batteli LA, Wolfarth MG, Richardson DL, Ma Q. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch Toxicol. abril de 2015;89(4):621-33.spa
dc.source.bibliographicCitationKobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J. Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol. noviembre de 2011;23(13):814-28.spa
dc.source.bibliographicCitationReddy ARN, Reddy YN, Krishna DR, Himabindu V. Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environ Toxicol. marzo de 2012;27(4):211-9.spa
dc.source.bibliographicCitationAiso S, Yamazaki K, Umeda Y, Asakura M, Kasai T, Takaya M, et al. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind Health. 2010;48(6):783-95.spa
dc.source.bibliographicCitationEllinger-Ziegelbauer H, Pauluhn J. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 21 de diciembre de 2009;266(1-3):16-29.spa
dc.source.bibliographicCitationShvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. noviembre de 2005;289(5):L698-708.spa
dc.source.bibliographicCitationRao G, Tinkle S, Weissman D, Antonini J, Kashon M, Salmen R, et al. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. Journal of toxicology and environmental health Part A. 2003;66(15-16):1441-52.spa
dc.source.bibliographicCitationDriscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, et al. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicological Sciences. 2000;55(1):24-35.spa
dc.source.bibliographicCitationDutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicological Sciences. 2007;100(1):303-15.spa
dc.source.bibliographicCitationLam C-W, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological sciences. 2004;77(1):126-34.spa
dc.source.bibliographicCitationLam C-W, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. marzo de 2006;36(3):189-217.spa
dc.source.bibliographicCitationMercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 30 de julio de 2013;10:33.spa
dc.source.bibliographicCitationHübner R-H, Gitter W, Eddine El Mokhtari N, Mathiak M, Both M, Bolte H, et al. Standardized quantification of pulmonary fibrosis in histological samples. Biotechniques. 2008;44(4):507-17.spa
dc.source.bibliographicCitationBeura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532(7600):512.spa
dc.source.bibliographicCitationWalkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis & tissue repair. 2013;6(1):18.spa
dc.source.bibliographicCitationGozalo CT, Rodríguez MES, Traspaderne JNT. Problemática en el establecimiento de valores límite: el caso de las nanopartículas. Segur y Salud en el Trab. 2011;61:12.spa
dc.source.bibliographicCitationFatkhutdinova LM, Khaliullin TO, Vasil’yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, et al. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicology and Applied Pharmacology. 15 de mayo de 2016;299:125-31.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectAnimales experimentaciónspa
dc.subjectNanotubos de pared múltiplespa
dc.subjectNanotubos de pared simplespa
dc.subjectNanotubos de carbónspa
dc.subjectFibrosis pulmonarspa
dc.subject.ddcEnfermedadesspa
dc.subject.keywordAnimal experimentspa
dc.subject.keywordMulti walled nanotubespa
dc.subject.keywordSingle walled nanotubespa
dc.subject.keywordCarbon nanotubespa
dc.subject.keywordLung fibrosisspa
dc.subject.lembFibrosis pulmonarspa
dc.subject.lembNanotubosspa
dc.titleAparición de fibrosis pulmonar en función del tiempo por exposición a nanotubos de carbón (CNT) : Revisión sistemática de la literatura a partir de estudios experimentales en animales en los últimos 15 añosspa
dc.typemasterThesiseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
PinedaBlanco-JulianOrlando-2018.pdf
Tamaño:
1.08 MB
Formato:
Adobe Portable Document Format
Descripción: