Ítem
Acceso Abierto

Unequal impacts of AI on Colombia's labor market: an analysis of AI exposure, wages, and job dynamics

dc.contributor.gruplacGrupo de investigaciones. Facultad de Economía. Universidad del Rosario
dc.creatorGarcía Suaza, Andrés Felipe
dc.creatorSarango-Iturralde, Alexander
dc.creatorCaiza-Guamán, Pamela
dc.creatorGil Díaz, Mateo
dc.creatorAcosta Castillo, Dana
dc.date.accessioned2025-04-23T19:58:02Z
dc.date.available2025-04-23T19:58:02Z
dc.date.created2025-04-21
dc.date.issued2025-04-21
dc.description.abstractThe rapid advancements in the domain of artificial intelligence (AI) have exerted a considerable influence on the labor market, thereby engendering alterations in the demand for specific skills and the structure of employment. This study aims to evaluate the extent of exposure to AI within the Colombian labor market and its relation with workforce characteristics and available job openings. To this end, we built a specific AI exposure index or Colombia based on skill demand in job posts. Our findings indicate that 33.8% of workers are highly exposed to AI, with variations observed depending on the measurement method employed. Furthermore, it is revealed a positive and significant correlation between AI exposure and wages, i.e., highly exposed to AI earn a wage premium of 21.8%. On the demand side, only 2.5% of job openings explicitly mention AI-related skills. These findings imply that international indices may underestimate the wage premium associated with AI exposure in Colombia and underscore the potential unequal effects on wages distribution among different demographic groups.
dc.format.extent30 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_45239
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/45239
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Economía
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitationAcemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30
dc.source.bibliographicCitationAcemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340.
dc.source.bibliographicCitationAlekseeva, L., Azar, J., Giné, M., Samila, S., & Taska, B. (2021). The demand for AI skills in the labor market. Labour Economics, 71(October 2019), 102002. https://doi.org/10.1016/j.labeco.2021.102002
dc.source.bibliographicCitationAlonso, C., Berg, A., Kothari, S., Papageorgiou, C., & Rehman, S. (2022). Will the AI revolution cause a great divergence? Journal of Monetary Economics, 127, 18–37. https://doi.org/10.1016/j.jmoneco.2022.01.004
dc.source.bibliographicCitationAutor, D. H., & Dorn, D. (2013). The growth of low-skill service jobs and the polarization of the US Labor Market. American Economic Review, 103(5), 1553–1597. https://doi.org/10.1257/aer.103.5.1553
dc.source.bibliographicCitationBabashahi, L., Barbosa, C. E., Lima, Y., Lyra, A., Salazar, H., Argôlo, M., Almeida, M. A. de, & Souza, J. M. de. (2024). AI in the Workplace: A Systematic Review of Skill Transformation in the Industry. Administrative Sciences, 14(6). https://doi.org/10.3390/admsci14060127
dc.source.bibliographicCitationBaruffaldi, S., Van Beuzekom, B., Dernis, H., Harhoff, D., Rao, N., Rosenfeld, D., & Squicciarini, M. (2020). Identifying and measuring developments in artificial intelligence : Making the impossible possible. OECD Science, Technology and Industry Working Papers, 1–68. https://www.oecdilibrary.org/content/paper/5f65ff7e-en%0Ahttps://dx.doi.org/10.1787/5f65ff7e-en
dc.source.bibliographicCitationBlinder A. S. 1973. Wage discrimination: Reduced form and structural estimates. Journal of Human Resources 8: 436–455
dc.source.bibliographicCitationBone, M., Ehlinger, G., & Stephany, F. (2025). Skills or Degree? The Rise of Skill-Based Hiring for AI and Green Jobs. SSRN Electronic Journal, 214(April 2024). https://doi.org/10.2139/ssrn.4665577
dc.source.bibliographicCitationBrynjolfsson, E., Mitchell, T., & Rock, D. (2018). What Can Machines Learn and What Does It Mean for Occupations and the Economy? AEA Papers and Proceedings, 108, 43–47. https://doi.org/10.1257/pandp.20181019
dc.source.bibliographicCitationCAF (2024). Diseño de políticas públicas de inteligencia artificial. Desarrollo de habilitadores para su implementación en América Latina y el Caribe. Distrito Capital: CAF- banco de desarrollo de América Latina y el Caribe. Retrieved from https://scioteca.caf.com/handle/123456789/2241
dc.source.bibliographicCitationCarbonero, F., Davies, J., Ernst, E., Fossen, F. M., Samaan, D., & Sorgner, A. (2023). The impact of artificial intelligence on labor markets in developing countries: a new method with an illustration for Lao PDR and urban Viet Nam. Journal of Evolutionary Economics (Vol. 33, Issue 3). https://doi.org/10.1007/s00191-023-00809-7
dc.source.bibliographicCitationCausa, O., Nguyen, M., & Soldani, E. (2024). Lost in the green transition? Measurement and stylized facts. Organisation for Economic Co-Operation and Development, 1796. https://www.oecd.org/publications/lost-in-the-green-transition-measurement-and-stylized-factsdce1d5fe-en.htm
dc.source.bibliographicCitationCazzaniga, M., Jaumotte, M., F., Li, L., Melina, M., & Panton, A. J., Pizzinelli, C. (2024). Intelligence and the future of artificial intelligence. In IMF Staff Discussion. https://doi.org/10.1017/9781788216258.021
dc.source.bibliographicCitationDawson, N., Rizoiu, M.-A., & Johnston, D. B. (2021). Changing Labour Market Dynamics in Australia: Skill Shortages, Job Transitions, and Artificial Intelligence Technology Adoption. June. https://opus.lib.uts.edu.au/handle/10453/150972
dc.source.bibliographicCitationDernis, H., Calvino, F., Moussiegt, L., Nawa, D., & Samek, L. (2023). Identifying artificial intelligence actors using online data. 1–50.
dc.source.bibliographicCitationEhlinger, G., & Stephany, F. (2023). Skills or Degree? The Rise of Skill-Based Hiring for AI and Green Jobs. SSRN Electronic Journal, 214(April 2024). https://doi.org/10.2139/ssrn.4665577
dc.source.bibliographicCitationEloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. http://arxiv.org/abs/2303.10130
dc.source.bibliographicCitationErnst, E., Berg, J., & Moore, P. V. (2024). Editorial: Artificial intelligence and the future of work: humans in control. Frontiers in Artificial Intelligence, 7. https://doi.org/10.3389/frai.2024.1378893
dc.source.bibliographicCitationEuropean Institute of Innovation and Technology. (2021). Creation of a taxonomy for the European AI ecosystem. 32. https://eit.europa.eu/sites/default/files/creation_of_a_taxonomy_for_the_european_ai_e cosystem_final.pdf
dc.source.bibliographicCitationEU-US Trade and Technology Council. (2024). EU-U.S. Terminology and Taxonomy for Artificial Intelligence. 6.
dc.source.bibliographicCitationFelten, E., Raj, M., & Seamans, R. (2021). Occupational, industry, and geographic exposure to artificial intelligence: A novel dataset and its potential uses. Strategic Management Journal, 42(12), 2195- 2217.
dc.source.bibliographicCitationGarcia-Suaza, A., Caiza P., Sarango, A., & Varela D. (2025). How green is labor demand?: An analysis for Colombia. Mimeo
dc.source.bibliographicCitationGehlhaus, D., & Mutis, S. (2021). The U.S. AI Workforce: Understanding the Supply of AI Talent. Center for Security and Emerging Technology, January, 36. https://cset.georgetown.edu/publication/the-u-s-aiworkforce/
dc.source.bibliographicCitationGeorgieff, A., & Hyee, R. (2022). Artificial Intelligence and Employment: New Cross-Country Evidence. Frontiers in Artificial Intelligence, 5(May), 1–29. https://doi.org/10.3389/frai.2022.832736
dc.source.bibliographicCitationGmyrek, P., Berg, J., & Bescond, D. (2023). Generative AI and Jobs: A Global Analysis of Potential Effects on Job Quantity and Quality. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4584219
dc.source.bibliographicCitationGmyrek, P., Winkler, H., & Garganta, S. (2024). Buffer or bottleneck? Employment exposure to generative AI and the digital divide in Latin America (No. 121). ILO Working Paper.
dc.source.bibliographicCitationGreen, A. (2024). Artificial Intelligence and the Changing Demand for Skills in the Labour Market. OECD Artificial Intelligence Papers, 14(14). https://www.vopreco.ru/jour/article/view/4443
dc.source.bibliographicCitationKouretsis A, Bampouris A, Morfiris P, Papageorgiou K (2020). labourR: Classify Multilingual Labour Market Free-Text to Standardized Hierarchical Occupations. R package version 1.0.0, https://CRAN.Rproject.org/package=labourR.
dc.source.bibliographicCitationMhlanga, D. (2021). Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies?. Sustainability, 13(11). https://doi.org/10.3390/su13115788
dc.source.bibliographicCitationMiller, George A. (1995) . WordNet: A Lexical Database for English. Communications of the ACM, 38(11): 39–41.
dc.source.bibliographicCitationOaxaca R. (1973). Male–female wage differentials in urban labor markets. International Economic Review 14: 693–709.
dc.source.bibliographicCitationPizzinelli, C., Panton, A. J., Tavares, M. M. M., Cazzaniga, M., & Li, L. (2023). Labor market exposure to AI: Cross-country differences and distributional implications. International Monetary Fund.
dc.source.bibliographicCitationPwC. (2024). PwC’s 2024 AI Jobs Barometer. https://www.pwc.com/gx/en/issues/artificial-intelligence/aijobs-barometer.html
dc.source.bibliographicCitationRose, D. (2017). Who Will Teach Our Machines Right from Wrong? LinkedIn. April 25. https://www.linkedin.com/pulse/who-teach-our-machines-right-from-wrong-doug-rose
dc.source.bibliographicCitationSarango-Iturralde, Alexander, Gallego, J., & Montaña, M. (2021). Impacto del COVID-19 en la demanda de habilidades en ocupaciones teletrabajables en Colombia.
dc.source.bibliographicCitationScholl, N., Turban, S., & Gal, P. (2023). The green side of productivity: An international classification of green and brown occupations. OECD Productivity Working Papers, 33. https://doi.org/10.1787/a363530f-en
dc.source.bibliographicCitationSquicciarini, M., & Nachtigall, H. (2021). Demand for AI skills in jobs: Evidence from online job postings. OECD Science, Technology and Industry Working Papers, 2021(3), 1-74.
dc.source.bibliographicCitationSu, Z., Togay, G., & Côté, A. M. (2021). Artificial intelligence: a destructive and yet creative force in the skilled labour market. Human Resource Development International, 24(3), 341–352. https://doi.org/10.1080/13678868.2020.1818513
dc.source.bibliographicCitationTheofanos, M., Choong, Y.-Y., & Jensen, T. (2024). AI use taxonomy: A human-centered approach. https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.200-1.pdf
dc.source.bibliographicCitationWebb, M. (2020). The impact of artificial intelligence on the labor market. Available at SSRN 3482150.
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subject.jelE24, J23, J24, O33.
dc.subject.keywordArtificial intelligence
dc.subject.keywordLabor market
dc.subject.keywordJob posts
dc.subject.keywordOccupations
dc.subject.keywordSkills
dc.subject.keywordColombia
dc.titleUnequal impacts of AI on Colombia's labor market: an analysis of AI exposure, wages, and job dynamics
dc.typeworkingPaper
dc.type.hasVersioninfo:eu-repo/semantics/draft
dc.type.spaDocumento de trabajo
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
dt324R.pdf
Tamaño:
1.42 MB
Formato:
Adobe Portable Document Format
Descripción: