Ítem
Acceso Abierto

How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes

dc.contributor.advisorCorrales Osorio, Adriana
dc.creatorSanchez Tello, Juan David
dc.creator.degreeBiólogoes
dc.creator.degreeLevelPregrado
dc.creator.degreetypeFull timees
dc.date.accessioned2021-09-09T22:50:40Z
dc.date.available2021-09-09T22:50:40Z
dc.date.created2021-09-06
dc.descriptionLos paisajes urbanos son cada vez más importantes debido al crecimiento acelerado de la población y al aumento de la urbanización. Los ecosistemas urbanos sirven de hogar a diversas comunidades de plantas y hongos. Sin embargo, los estudios que se centran en la diversidad y estructura de las comunidades biológicas son poco comunes en este hábitat. En Colombia, Quercus humboldtii Bonpl. es una especie ectomicorrízica conspicua presente en los bosques montanos tropicales que alberga una gran diversidad de hongos ectomicorrízicos en sus raíces. Quercus humboldtii se usa comúnmente como árbol urbano en Bogotá, pero las comunidades ectomicorrízicas de esta especie aún no han sido estudiadas en ecosistemas urbanos. Estudiamos cómo las comunidades de hongos ectomicorrízicos asociadas con este árbol cambian entre ecosistemas naturales y urbanos. Se muestrearon raíces de 24 árboles en dos sitios, Reserva Natural Chicaque (natural) y tres barrios de la ciudad de Bogotá (urbano). Utilizando la secuenciación de Illumina, la región ITS1 de todos los hongos asociados a la raíz se amplificó y analizó utilizando tuberías bioinformáticas tanto de OTU como de ASV. Encontramos 949 OTU en Bogotá y 514 OTU en Chicaque. No encontramos diferencias significativas en la riqueza de especies entre los sitios de Bogotá y Chicaque según el alfa de Fisher o las curvas de acumulación de especies. En las comunidades chicacas, los géneros más abundantes fueron Russula y Lactarius, mientras que Scleroderma, Hydnangium y Trechispora fueron muy abundantes en Bogotá. Un análisis de NMDS mostró que las muestras del sitio natural tenían una composición comunitaria significativamente diferente en comparación con los árboles urbanos. Nuestros resultados destacan la importancia de los árboles de Quercus como reservorios de diversidad fúngica ectomicorrízica en Bogotá.es
dc.description.abstractUrban landscapes are becoming more important due to the accelerated population growth and increasing urbanization. Urban ecosystems serve as home to diverse plant and fungal communities. However, studies focusing on the diversity and structure of biological communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is a conspicuous ectomycorrhizal species present in tropical montane forests that hosts a high diversity of ectomycorrhizal fungi in its roots. Quercus humboldtii is commonly used as an urban tree in Bogotá, but the ectomycorrhizal communities of this species have not yet been studied in urban ecosystems. We studied how the ectomycorrhizal fungal communities associated with this tree change between natural and urban ecosystems. Roots of 24 trees were sampled in two sites, Chicaque Natural Reserve (natural) and three neighborhoods of Bogotá city (urban). Using Illumina sequencing, the ITS1 region of all root associated fungi was amplified and analyzed using both OTUs and ASVs bioinformatics pipelines. We found 949 OTUs in Bogotá and 514 OTUs in Chicaque. We didn’t find significant differences in the species richness between Bogotá and Chicaque sites based on Fisher’s alpha or species-accumulation curves. In Chicaque communities, the most abundant genera were Russula and Lactarius, while Scleroderma, Hydnangium, and Trechispora were highly abundant in Bogotá. An NMDS analysis showed that samples from the natural site had a significantly different community composition compared with urban trees. Our results highlight the importance of Quercus trees as reservoirs of ectomycorrhizal fungal diversity in Bogotá.es
dc.format.extent24 pp.es
dc.format.mimetypeapplication/pdfes
dc.geoLocationBogotá, Colombiaes
dc.geoLocationParque Natural Montañas de Chicaque, Cundinamarca, Colombiaes
dc.identifier.doihttps://doi.org/10.48713/10336_32397
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/32397
dc.language.isoenges
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Ciencias Naturales
dc.publisher.programBiología
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccesses
dc.rights.accesoAbierto (Texto Completo)es
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.source.bibliographicCitationAbarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Kõljalg, Urmas (2020): UNITE general FASTA release for Fungi. UNITE Community. 10.15156/BIO/786368es
dc.source.bibliographicCitationAldrich, P. R., & Cavender-Bares, J. (2011). Quercus. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees (pp. 89–129). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21250-5_6es
dc.source.bibliographicCitationAnderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., et al., (2011). Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19e28.es
dc.source.bibliographicCitationBaruch, Z., Liddicoat, C., Laws, M., Kiri Marker, L., Morelli, H., Yan, D., … Breed, M. F. (2020). Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 47, 100939. https://doi.org/https://doi.org/10.1016/j.funeco.2020.100939es
dc.source.bibliographicCitationBaxter, J. W., Pickett, S. T. A., Carreiro, M. M., & Dighton, J. (1999). Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Canadian Journal of Botany, 77(6), 771–782. https://doi.org/10.1139/b99-039es
dc.source.bibliographicCitationBernal, S. G. N., & Guevara, M. C. (2019). Actividad turística en el Parque Natural Chicaque como factor de desarrollo sostenible en las veredas Chicaque y Cascajal (Cundinamarca, Colombia). Turismo y Sociedad, 26. https://doi.org/10.18601/01207555.n26.08es
dc.source.bibliographicCitationBrundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304.es
dc.source.bibliographicCitationCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869es
dc.source.bibliographicCitationColparques. (2017). Organización Colparques. Chicaque. Recuperado de: http://www.colparques.net/chlcaquees
dc.source.bibliographicCitationCorrales, A., & Ovrebo, C. L. (2020). Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities. BioRxiv, 2020.04.16.045724. https://doi.org/10.1101/2020.04.16.045724es
dc.source.bibliographicCitationCorrales, A., Henkel, T. W., & Smith, M. E. (2018). Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist, 220(4), 1076–1091.es
dc.source.bibliographicCitationDepartamento Administrativo Nacional de Estadística - DANE (2019) Censo Nacional de Población y Vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/. Accesed 25 July 2021.es
dc.source.bibliographicCitationDesai, N. S., Wilson, A. W., Powers, J. S., Mueller, G. M., & Egerton-Warburton, L. M. (2016). Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica. Environmental Research Letters, 11(12), 125007.es
dc.source.bibliographicCitationGarcía-Guzmán, O. M., Garibay-Orijel, R., Hernández, E., Arellano-Torres, E., & Oyama, K. (2017). Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza, 27(8), 811–822. https://doi.org/10.1007/s00572-017-0793-9es
dc.source.bibliographicCitationGardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.xes
dc.source.bibliographicCitationHalling, R. E. (2001). Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden, 88(1), 5–13. https://doi.org/10.2307/2666128es
dc.source.bibliographicCitationHenkel, T. W., Aime, M. C., Chin, M. M. L., Miller, S. L., Vilgalys, R., & Smith, M. E. (2012). Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation, 21(9), 2195–2220. https://doi.org/10.1007/s10531-011-0166-1es
dc.source.bibliographicCitationInstituto Distrital de Gestión de Riesgos y Cambio Climático IDIGER (2021) Lluvias y temperatura en Bogotá desde 1979 a 2018. https://www.idiger.gov.co/precipitacion-y-temperatura#:~:text=De%20acuerdo%20con%20el%20Instituto%20de%20Hidrolog%C3%ADa%2C%20Meteorolog%C3%ADa,lluvias%20en%20la%20ciudad%2C%20presenta%20un%20comportamiento%20bimodal%3A. Accesed 25 July 2021.es
dc.source.bibliographicCitationJumpponen, A. R. I., Jones, K. L., David Mattox, J., & Yaege, C. (2010). Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 19(s1), 41–53. https://doi.org/https://doi.org/10.1111/j.1365-294X.2009.04483.xes
dc.source.bibliographicCitationKarpati, A. S., Handel, S. N., Dighton, J., & Horton, T. R. (2011). Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21(6), 537–547. https://doi.org/10.1007/s00572-011-0362-6es
dc.source.bibliographicCitationKropp, B. R., & Mueller, G. M. (1999). Laccaria BT - Ectomycorrhizal Fungi Key Genera in Profile. In J. W. G. Cairney & S. M. Chambers (Eds.) (pp. 65–88). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_3es
dc.source.bibliographicCitationLilleskov, E. A., Hobbie, E. A., & Horton, T. R. (2011). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. fungal ecology, 4(2), 174-183.es
dc.source.bibliographicCitationManos, P. S., Doyle, J. J., & Nixon, K. C. (1999). Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution, 12(3), 333–349.es
dc.source.bibliographicCitationMahecha, G, Sánchez, F, Chaparro, J, Cadena, H, Tovar, G, Villota, L, Morales, G, Castro JA, Bocanegra F, Quintero, M (2010) Manejo silvicultural. In: Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá, Colombia, p 74-76.es
dc.source.bibliographicCitationMartin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200es
dc.source.bibliographicCitationMartinová, V., van Geel, M., Lievens, B., & Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20, 88–96. https://doi.org/https://doi.org/10.1016/j.funeco.2015.12.002es
dc.source.bibliographicCitationMcGuire, K. L. (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88(3), 567–574.es
dc.source.bibliographicCitationMcMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217es
dc.source.bibliographicCitationMorris, M. H., Pérez-Pérez, M. A., Smith, M. E., & Bledsoe, C. S. (2008). Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza, 18(8), 375–383. https://doi.org/10.1007/s00572-008-0186-1es
dc.source.bibliographicCitationOchimaru, T., & Fukuda, K. (2007). Changes in fungal communities in evergreen broad-leaved forests across a gradient of urban to rural areas in JapanThis article is one of a selection of papers published in the Special Forum on Towards Sustainable Forestry — The Living Soil: Soil Biodivers. Canadian Journal of Forest Research, 37(2), 247–258. https://doi.org/10.1139/X06-293es
dc.source.bibliographicCitationOksanen, J., Kindt, R., Legendre, P., O’hara, B., Simpson, G.L., Stevens, M.H.H., (2008). Vegan: community ecology package.es
dc.source.bibliographicCitationOksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E & Wagner, H, (2017). Vegan: community ecology package. R package version 2.4–0es
dc.source.bibliographicCitationOlchowik, J., Suchocka, M., Malewski, T., Baczewska-Dąbrowska, A., Studnicki, M., & Hilszczańska, D. (2020). The Ectomycorrhizal Community of Crimean Linden Trees in Warsaw, Poland. Forests . https://doi.org/10.3390/f11090926es
dc.source.bibliographicCitationPagano, M. C., & Lugo, M. A. (2019). Mycorrhizal Fungi in South America. Springer.es
dc.source.bibliographicCitationPalmer, J. M., Jusino, M. A., Banik, M. T., & Lindner, D. L. (2018). Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6: e4925.es
dc.source.bibliographicCitationPeña-Venegas, C. P., & Vasco-Palacios, A. M. (2019). Endo-and Ectomycorrhizas in tropical ecosystems of Colombia. In Mycorrhizal Fungi in South America (pp. 111–146). Springer.es
dc.source.bibliographicCitationPinzón Osorio, C. A., & Pinzón Osorio, J. (2018). Primer registro de Scleroderma bovista (Boletales, Sclerodermataceae) para Colombia. Revista Peruana de Biología, 25(4 SE-Notas científicas), 445–450. https://doi.org/10.15381/rpb.v25i4.14550es
dc.source.bibliographicCitationPõlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., … Tedersoo, L. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105(1), 1–16. https://doi.org/10.1007/s13225-020-00466-2es
dc.source.bibliographicCitationRendón MA (2020) Diversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America. Dissertation, Universidad del Rosarioes
dc.source.bibliographicCitationRivera D. & Córdoba C. (1998). Guía Ecológica Parque Natural Chicaque. Bogotá, Colombia: Jardín Botánico de Bogotá José Celestino Mutis.es
dc.source.bibliographicCitationSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., … consortium, G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408. https://doi.org/10.1038/s41586-019-1128-0es
dc.source.bibliographicCitationStevenson, P. C., Bidartondo, M. I., Blackhall-Miles, R., Cavagnaro, T. R., Cooper, A., Geslin, B., … Suz, L. M. (2020). The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees? PLANTS, PEOPLE, PLANET, 2(5), 482–498. https://doi.org/https://doi.org/10.1002/ppp3.10143es
dc.source.bibliographicCitationTaiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Sunderland, MA: Sinauer Associates.es
dc.source.bibliographicCitationVargas N, Restrepo S. 2019. A checklist of Ectomycorrhizal Mushrooms associated to Quercus humboldtii in Colombia. En: Guerin-Laguette A, Moreno J, Flores R, Quiang F (eds). Mushrooms, humans and nature in a changing world: Perspectives from ecological, agricultural and social sciences. Springer Naturees
dc.source.bibliographicCitationVasco-Palacios, A. M., Bahram, M., Boekhout, T., & Tedersoo, L. (2019). Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant and Soil. https://doi.org/10.1007/s11104-019-04218-3es
dc.source.bibliographicCitationWang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07es
dc.source.bibliographicCitationWaring, B. G., Adams, R., Branco, S., & Powers, J. S. (2016). Scale‐dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 209(2), 845–854.es
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectHongos ectomicorrízicoses
dc.subjectQuercus humboldtii Bonples
dc.subjectEstructura de la comunidades
dc.subjectComunidades rurales vs urbanases
dc.subjectEstudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanoses
dc.subjectAnálisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanases
dc.subject.ddcCiencias botánicases
dc.subject.keywordEctomycorrhizal fungies
dc.subject.keywordQuercus humboldtii Bonpl.es
dc.subject.keywordCommunity structurees
dc.subject.keywordRural vs Urban communitieses
dc.subject.keywordStudies of the diversity and structure of the biological communities of fungi in urban ecosystemses
dc.subject.keywordComparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communitieses
dc.titleHow ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andeses
dc.title.TranslatedTitleCómo las comunidades ectomicorrízicas varían de ecosistemas naturales a urbanos: Quercus humboldtii como caso de estudio en los Andes tropicaleses
dc.typebachelorThesiseng
dc.type.documentArtículoes
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
SanchezTello-JuanDavid-2021.pdf
Tamaño:
695.16 KB
Formato:
Adobe Portable Document Format
Descripción:
Articulo principal
Cargando...
Miniatura
Nombre:
SanchezTello-JuanDavid-1-2021.pdf
Tamaño:
659.88 KB
Formato:
Adobe Portable Document Format
Descripción:
Material suplementario