Ítem
Acceso Abierto

Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7

dc.contributor.advisorRodríguez Burbano, Diana Consuelo
dc.contributor.advisorOndo Méndez, Alejandro Oyono
dc.creatorRodríguez Rojas, Yoly Carolina
dc.creator.degreeIngeniero Biomédicospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-06-16T20:48:19Z
dc.date.available2021-06-16T20:48:19Z
dc.date.created2021-05-28
dc.descriptionEl glioblastoma multiforme (GBM) es uno de los tipos de cáncer con mayor letalidad. El promedio de vida para todos los pacientes es de 12-18 meses después del diagnóstico y tratamiento. Los principales tratamientos para combatir el glioblastoma son: la cirugía y radioterapia. La cirugía principalmente utilizada para eliminar la mayor parte de la masa tumoral, ha tenido limitaciones dado a la característica invasiva que precede del GBM. La radioterapia (RT) ha tomado un papel crucial en terapias de GBM, siendo su objetivo detener la proliferación celular ocasionando rupturas en la cadena del ADN de las células cancerosas. Sin embargo, las células de GBM tienen un carácter radioresistente, limitando la efectividad de esta terapia. Los puntos de carbono (PC) son nanoestructuras esféricas, de alta biocompatibilidad, propiedades ópticas y fisicoquímicas que los hacen interesantes para aplicaciones dirigidas al aumentar la efectividad de la radioterapia. En estas aplicaciones, uno de los parámetros más importantes a establecer en los PC es su nivel de citotoxicidad. Por esto, el objetivo de este trabajo fue identificar el efecto citotóxico que tienen los puntos de carbono a base de ácido cítrico frente a células cancerosas de glioblastoma (U87) y células cancerosas de mama (MCF-7) por medio de dos ensayos de viabilidad MTT y Azul Tripán. Como resultado se obtuvieron puntos de carbono por medio de reacción microondas (bottom up) a partir de acido cítrico, etanol y N,N-dimetilformamida, emitiendo una fluorescencia de color azul bajo irradiación con luz ultravioleta de 365 nm. Se vió una alta viabilidad de las células U87 y MCF-7 frente a los PC sintetizados. Lo que da a entender que su baja citotoxicidad evidenciada en este trabajo, su facilidad para modular propiedades superficiales y su biocompatibilidad hacen que los PC sean potencialmente investigados para trabajos futuros.spa
dc.description.abstractGlioblastoma multiforme (GBM) is one of the most deadly cancers. The average life span for all patients is 12-18 months after diagnosis and treatment. The main treatments to combat glioblastoma are: surgery and radiation therapy. Surgery, mainly used to remove most of the tumor mass, has had limitations due to the invasive characteristic that precedes GBM. Radiotherapy (RT) has taken on a crucial role in GBM therapies, its objective being to stop cell proliferation by causing breaks in the DNA chain of cancer cells. However, GBM cells have a radioresistant character, limiting the effectiveness of this therapy. Carbon dots (PC) are spherical nanostructures, with high biocompatibility, optical and physicochemical properties that make them interesting for targeted applications by increasing the effectiveness of radiotherapy. In these applications, one of the most important parameters to establish in the PC is its level of cytotoxicity. Therefore, the objective of this work was to identify the cytotoxic effect that citric acid-based carbon spots have against glioblastoma cancer cells (U87) and breast cancer cells (MCF-7) by means of two viability assays. MTT and Azul Tripán. As a result, carbon points were obtained by means of microwave reaction (bottom up) from citric acid, ethanol and N, N-dimethylformamide, emitting a blue fluorescence under irradiation with 365 nm ultraviolet light. High viability of U87 and MCF-7 cells was seen against the synthesized PCs. This suggests that their low cytotoxicity evidenced in this work, their ease of modulating surface properties, and their biocompatibility make PCs potentially investigated for future work.eng
dc.format.extent38 pp.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_31625
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/31625
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationWorld Health Organization -cancer, (2018). https://www.who.int/healthtopics/cancer#tab=tab_1.spa
dc.source.bibliographicCitationG.P. Gupta, J. Massagué, Cancer Metastasis: Building a Framework, Cell. 127 (2006) 679–695. https://doi.org/10.1016/j.cell.2006.11.001.spa
dc.source.bibliographicCitationInternation Agengy for Research on Cancer, Estimated number of prevalent cases in 2020, worldwide, both sexes, all ages, Cancer Today. 896 (2020) 2020. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=cancer&mode_population=regions&population=900&populatio ns=900&key=asr&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population _group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&in cl.spa
dc.source.bibliographicCitationP. bórquez, c. romero, El paciente oncológico geriátrico, Rev. Chil. Cirugía. 59 (2007). https://doi.org/10.4067/s0718-40262007000600015.spa
dc.source.bibliographicCitationJ. Wang, X. Wu, P. Shen, J. Wang, Y. Shen, Y. Shen, T.J. Webster, J. Deng, Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment, Int. J. Nanomedicine. 15 (2020) 1903–1914. https://doi.org/10.2147/IJN.S239751.spa
dc.source.bibliographicCitationV.T. DeVita, E. Chu, A history of cancer chemotherapy, Cancer Res. 68 (2008) 8643– 8653. https://doi.org/10.1158/0008-5472.CAN-07-6611.spa
dc.source.bibliographicCitationH. Chen, Y. Zhao, Applications of Light-Responsive Systems for Cancer Theranostics, ACS Appl. Mater. Interfaces. 10 (2018) 21021–21034. https://doi.org/10.1021/acsami.8b01114spa
dc.source.bibliographicCitationD. Khuntia, P. Brown, J. Li, M.P. Mehta, Whole-brain radiotherapy in the management of brain metastasis, J. Clin. Oncol. 24 (2006) 1295–1304. https://doi.org/10.1200/JCO.2005.04.6185.spa
dc.source.bibliographicCitationJ. Liu, K. Bi, R. Yang, H. Li, Z. Nikitaki, L. Chang, Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future, Int. J. Radiat. Biol. 96 (2020) 1329–1338. https://doi.org/10.1080/09553002.2020.1807641.spa
dc.source.bibliographicCitationJ. Ruan, Y. Wang, F. Li, R. Jia, G. Zhou, C. Shao, L. Zhu, M. Cui, D.P. Yang, S. Ge, Graphene Quantum Dots for Radiotherapy, ACS Appl. Mater. Interfaces. 10 (2018) 14342–14355. https://doi.org/10.1021/acsami.7b18975spa
dc.source.bibliographicCitationP.B. Dirks, Brain tumor stem cells: Bringing order to the chaos of brain cancer, J. Clin. Oncol. 26 (2008) 2916–2924. https://doi.org/10.1200/JCO.2008.17.6792.spa
dc.source.bibliographicCitationGLOBOCAN, Estimated number of deaths in 2020,both sexes, all ages, brain cancer, Int. Agency Res. Cancer. 144 (2020) 100. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=population&mode_population=continents&population=900&po pulations=900&key=asr&sex=0&cancer=31&type=1&statistic=5&prevalence=0&pop ulation_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer.spa
dc.source.bibliographicCitationC.J. Sherr, Principles of Tumor Suppression, Cell. 116 (2004) 235–246. https://doi.org/10.1016/S0092-8674(03)01075-4.spa
dc.source.bibliographicCitationJ. Han, Y. Jun, S.H. Kim, H.H. Hoang, Y. Jung, S. Kim, J. Kim, R.H. Austin, S. Lee, S. Park, Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14283–14288. https://doi.org/10.1073/pnas.1614898113.spa
dc.source.bibliographicCitationA. Bradshaw, A. Wickremesekera, H.D. Brasch, A.M. Chibnall, P.F. Davis, S.T. Tan, T. Itinteang, Cancer Stem Cells in Glioblastoma Multiforme, Front. Surg. 3 (2016) 1203–1217. https://doi.org/10.3389/fsurg.2016.00048.spa
dc.source.bibliographicCitationJ.K. Park, T. Hodges, L. Arko, M. Shen, D. Dello Iacono, A. McNabb, N.O. Bailey, T.N. Kreisl, F.M. Iwamoto, J. Sul, S. Auh, G.E. Park, H.A. Fine, P.M.L. Black, Scale to predict survival after surgery for recurrent glioblastoma multiforme, J. Clin. Oncol. 28 (2010) 3838–3843. https://doi.org/10.1200/JCO.2010.30.0582.spa
dc.source.bibliographicCitationF. Hanif, K. Muzaffar, K. Perveen, S.M. Malhi, S.U. Simjee, Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment, Asian Pacific J. Cancer Prev. 18 (2017) 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3.spa
dc.source.bibliographicCitationR. Rodríguez, K. Lombardo, G. Roldán, J. Silvera, R. Lagomarsino, Glioblastoma multiforme cerebral hemisférico: análisis de sobrevida de 65 casos tratados en el Departamento de Oncología del Hospital de Clínicas, desde 1980 a 2000, Rev. Médica Del Uruguay. 28 (2012) 250–261.spa
dc.source.bibliographicCitationX. Li, F. Shao, J. Sun, K. Du, Y. Sun, F. Feng, Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme, ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b14849.spa
dc.source.bibliographicCitationJ. Mann, R. Ramakrishna, R. Magge, A.G. Wernicke, Advances in radiotherapy for glioblastoma, Front. Neurol. 8 (2018) 1–11. https://doi.org/10.3389/fneur.2017.00748.spa
dc.source.bibliographicCitationJ. Choi, G. Kim, S. Bin Cho, H.J. Im, Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme, J. Nanobiotechnology. 18 (2020) 1–23. https://doi.org/10.1186/s12951-020-00684-5.spa
dc.source.bibliographicCitationF. Kazmi, K.A. Vallis, B.A. Vellayappan, A. Bandla, D. Yukun, R. Carlisle, Megavoltage radiosensitization of gold nanoparticles on a glioblastoma cancer cell line using a clinical platform, Int. J. Mol. Sci. 21 (2020) 1–12. https://doi.org/10.3390/ijms21020429.spa
dc.source.bibliographicCitationO. Grauer, M. Jaber, K. Hess, M. Weckesser, W. Schwindt, S. Maring, J. Wölfer, W. Stummer, Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients, J. Neurooncol. 141 (2019) 83–94. https://doi.org/10.1007/s11060-018-03005-x.spa
dc.source.bibliographicCitationK. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci. 209 (2014) 8–39. https://doi.org/10.1016/j.cis.2013.12.008.spa
dc.source.bibliographicCitationC.G. Lizarazo-Salcedo, E.E. González-Jiménez, C.Y. Arias-Portela, J. GuarguatiAriza, Nanomateriales: un acercamiento a lo básico, Med. Segur. Trab. (Madr). 64 (2018) 109–118.spa
dc.source.bibliographicCitationN. Sanvicens, M.P. Marco, Multifunctional nanoparticles - properties and prospects for their use in human medicine, Trends Biotechnol. 26 (2008) 425–433. https://doi.org/10.1016/j.tibtech.2008.04.005.spa
dc.source.bibliographicCitationJ. Yao, M. Yang, Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev. 114 (2014) 6130–6178. https://doi.org/10.1021/cr200359p.spa
dc.source.bibliographicCitationK.P.R. Chowdary, A. Srinivasa Rao, Nanoparticles as drug carriers, Indian Drugs. 34 (1997) 549–556. https://doi.org/10.1533/9781908818195.29.spa
dc.source.bibliographicCitationN.D. Thorat, H. Townely, G. Brennan, A.K. Parchur, C. Silien, J. Bauer, S.A.M. Tofail, Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics, ACS Biomater. Sci. Eng. 5 (2019) 2669–2687. https://doi.org/10.1021/acsbiomaterials.8b01173.spa
dc.source.bibliographicCitationD. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res. 2 (2013) 330–342. https://doi.org/10.3978/j.issn.2218-676X.2013.08.06.spa
dc.source.bibliographicCitationR. Jelinek, Carbon Quantum Dots. Synthesis, Properties and Applicatons, 2017spa
dc.source.bibliographicCitationS. Sagbas, N. Sahiner, Carbon dots: Preparation, properties, and application, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-102509-3.00022-5.spa
dc.source.bibliographicCitationH. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chem. Commun. (2009) 5118–5120. https://doi.org/10.1039/b907612cspa
dc.source.bibliographicCitationP. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Recent advances in carbon nanodots: Synthesis, properties and biomedical applications, Nanoscale. 7 (2015) 1586–1595. https://doi.org/10.1039/c4nr05712k.spa
dc.source.bibliographicCitationD.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. - A Eur. J. 18 (2012) 12522–12528. https://doi.org/10.1002/chem.201201043spa
dc.source.bibliographicCitationA. Sharma, J. Das, Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine, J. Nanobiotechnology. 17 (2019) 1– 24. https://doi.org/10.1186/s12951-019-0525-8.spa
dc.source.bibliographicCitationJ. Prado-Gonjal, E. Morán, E.J. Morán Prado-Gonjal, Síntesis asistida por microondas de sólidos inorgánicos Investigación Química Introducción, An. Quím. 107 (2011) 129–136.spa
dc.source.bibliographicCitationE.E. González Jiménez, F. González, Síntesis por radiación con microondas de nanotubos de carbono, Univ. Sci. 13 (2008) 258–266.spa
dc.source.bibliographicCitationL. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing, Adv. Mater. 27 (2015) 7782–7787. https://doi.org/10.1002/adma.201503821.spa
dc.source.bibliographicCitationS. Pandey, G.R. Gedda, M. Thakur, M.L. Bhaisare, A. Talib, M.S. Khan, S.M. Wu, H.F. Wu, Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photochemotherapy and bioimaging of cancer, J. Ind. Eng. Chem. 56 (2017) 62–73. https://doi.org/10.1016/j.jiec.2017.06.008.spa
dc.source.bibliographicCitationT. V. De Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications, J. Mater. Chem. C. 7 (2019) 7175–7195. https://doi.org/10.1039/c9tc01640f.spa
dc.source.bibliographicCitationL. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S. Xie, Y. Sun, Geburt des Schwarzhändlers | DIE ZEIT Archiv | Ausgabe 20/1946, Americal. (1946) 11318–11319.spa
dc.source.bibliographicCitationF. Du, M. Zhang, A. Gong, Y. Tan, J. Miao, Y. Gong, S. Zou, L. Zhang, L. Zhang, C. Wu, M. Sun, H. Ju, Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors, Biomaterials. 121 (2017) 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008.spa
dc.source.bibliographicCitationM. Tuerhong, Y. XU, X.B. YIN, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139–150. https://doi.org/10.1016/S1872- 2040(16)60990-8.spa
dc.source.bibliographicCitationS.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors, Nanoscale. 11 (2019) 6192–6205. https://doi.org/10.1039/C8NR08970A.spa
dc.source.bibliographicCitationZ. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu, Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma, ACS Biomater. Sci. Eng. 4 (2018) 2089–2094. https://doi.org/10.1021/acsbiomaterials.7b01008.spa
dc.source.bibliographicCitationL. Zhang, Z. Lin, Y.X. Yu, B.P. Jiang, X.C. Shen, Multifunctional hyaluronic acidderived carbon dots for self-targeted imaging-guided photodynamic therapy, J. Mater. Chem. B. 6 (2018) 6534–6543. https://doi.org/10.1039/c8tb01957f.spa
dc.source.bibliographicCitationA. Kundu, J. Lee, B. Park, C. Ray, K.V. Sankar, W.S. Kim, S.H. Lee, I.J. Cho, S.C. Jun, Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging, J. Colloid Interface Sci. 513 (2018) 505–514. https://doi.org/10.1016/j.jcis.2017.10.095.spa
dc.source.bibliographicCitationN. Irmania, K. Dehvari, G. Gedda, P.J. Tseng, J.Y. Chang, Manganese-doped green tea-derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform, J. Biomed. Mater. Res. - Part B Appl. Biomater. 108 (2020) 1616– 1625. https://doi.org/10.1002/jbm.b.34508.spa
dc.source.bibliographicCitationS.B. de M. Barros, Toxicologia, Rev. Bras. Ciências Farm. 38 (2002) 500–500. https://doi.org/10.1590/s1516-93322002000400015.spa
dc.source.bibliographicCitationN. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51.spa
dc.source.bibliographicCitationH. Muktha, R. Sharath, N. Kottam, S.P. Smrithi, K. Samrat, P. Ankitha, Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities, Bionanoscience. 10 (2020) 731–744. https://doi.org/10.1007/s12668-020-00741-1.spa
dc.source.bibliographicCitationA. Sharma, V. Panwar, J. Thomas, V. Chopra, H.S. Roy, D. Ghosh, Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells, Colloids Surfaces B Biointerfaces. 200 (2021) 111572. https://doi.org/10.1016/j.colsurfb.2021.111572.spa
dc.source.bibliographicCitationZ. Wang, H. Liao, H. Wu, B. Wang, H. Zhao, M. Tan, Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery, Anal. Methods. 7 (2015) 8911– 8917. https://doi.org/10.1039/c5ay01978h.spa
dc.source.bibliographicCitationE. Arkan, A. Barati, M. Rahmanpanah, L. Hosseinzadeh, S. Moradi, M. Hajialyani, Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells, Adv. Pharm. Bull. 8 (2018) 149–155. https://doi.org/10.15171/apb.2018.018.spa
dc.source.bibliographicCitationÖ.S. Aslantürk, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, Genotoxicity - A Predict. Risk to Our Actual World. (2018) 1–18. https://doi.org/10.5772/intechopen.71923.spa
dc.source.bibliographicCitationP. Brescia, P. Banks, Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch TM Microplate Spectrophotometer, BioTek. (2009) 3.spa
dc.source.bibliographicCitationL. Florento, R. Matias, E. Tuaño, K. Santiago, F. Dela Cruz, A. Tuazon, Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach, Int. J. Biomed. Sci. 8 (2012) 76–80.spa
dc.source.bibliographicCitationK.E. Zakrzewska, A. Samluk, M. Wierzbicki, S. Jaworski, M. Kutwin, E. Sawosz, A. Chwalibog, D.G. Pijanowska, K.D. Pluta, Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines, PLoS One. 10 (2015) 1–15. https://doi.org/10.1371/journal.pone.0122579.spa
dc.source.bibliographicCitationY. Wang, P. Anilkumar, L. Cao, J.H. Liu, P.G. Luo, K.N. Tackett, S. Sahu, P. Wang, X. Wang, Y.P. Sun, Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging, Exp. Biol. Med. 236 (2011) 1231–1238. https://doi.org/10.1258/ebm.2011.011132.spa
dc.source.bibliographicCitationATCC, American Type Culture Collection U87, HTB-14, (2020) 17025. available: https://www.atcc.org/products/all/HTB-14.aspx.spa
dc.source.bibliographicCitationMCF-7, American Type Culture Collection ATCC (atcc ® htb-22 TM ), (2020) 17025.spa
dc.source.bibliographicCitationS. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature. 444 (2006) 756–760. https://doi.org/10.1038/nature05236.spa
dc.source.bibliographicCitationN. Kumar, S. Kumbhat, Carbon‐Based Nanomaterials, Essentials Nanosci. Nanotechnol. (2016) 189–236. https://doi.org/10.1002/9781119096122.ch5.spa
dc.source.bibliographicCitationReactor de síntesis-Monowave 50-Anton-Paar, Donau Lab Ukr. (2019) 2021.spa
dc.source.bibliographicCitationD. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan, X. Zhang, Exploring of multicolor emissive carbon dots with novel double emission mechanism, Sensors Actuators, B Chem. 277 (2018) 373–380. https://doi.org/10.1016/j.snb.2018.09.031.spa
dc.source.bibliographicCitationE.H. Hong, K.H. Lee, S.H. Oh, C.G. Park, Synthesis of Carbon Nanotubes Using Microwave Radiation, Adv. Funct. Mater. 13 (2003) 961–966. https://doi.org/10.1002/adfm.200304396.spa
dc.source.bibliographicCitationQ. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing, Microchim. Acta. 184 (2017) 2429–2438. https://doi.org/10.1007/s00604-017-2242- z.spa
dc.source.bibliographicCitationA. Ettinger, T. Wittmann, Fluorescence live cell imaging, 1st ed., Elsevier Inc., 2014. https://doi.org/10.1016/B978-0-12-420138-5.00005-7.spa
dc.source.bibliographicCitationJ. Cigales Canga, Síntesis y caracterización de nanopartículas de carbono luminiscentes: Carbon Quantum Dots (CQDs), (2016) 70.spa
dc.source.bibliographicCitationS. Xia, E.M. Rosen, J. Laterra, Sensitization of glioma cells to fas-dependent apoptosis by chemotherapy-induced oxidative stress, Cancer Res. 65 (2005) 5248– 5255. https://doi.org/10.1158/0008-5472.CAN-04-4332.spa
dc.source.bibliographicCitationR. Ahmad, G. Schettino, G. Royle, M. Barry, Q.A. Pankhurst, O. Tillement, B. Russell, K. Ricketts, Radiobiological Implications of Nanoparticles Following Radiation Treatment, Part. Part. Syst. Charact. 37 (2020). https://doi.org/10.1002/ppsc.201900411.spa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectGlioblastomaspa
dc.subjectPuntos de carbonospa
dc.subjectCitotoxicidadspa
dc.subjectAzul tripánspa
dc.subject.ddcIngeniería & operaciones afinesspa
dc.subject.lembCiencias médicas - Innovaciones tecnológicasspa
dc.subject.lembBioingenieríaspa
dc.titleEvaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7spa
dc.title.TranslatedTitleEvaluation of carbon point (CD) cytotoxicity in tumor cell lines U-87 and MCF-7spa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
TRABAJODIRIGIDOFINAL.pdf
Tamaño:
1.44 MB
Formato:
Adobe Portable Document Format
Descripción: