Ítem
Solo Metadatos

Solving the interval green inventory routing problem using optimization and genetic algorithms

Título de la revista
Autores
Franco, Carlos
López-Santana E.R.
Figueroa-García J.C.

Miniatura

Fecha
2017

Directores

ISSN de la revista
Título del volumen
Editor
Springer Verlag

Citations

Métricas alternativas

Resumen
Abstract
In this paper, we present a genetic algorithm embedded with mathematical optimization to solve a green inventory routing problem with interval fuel consumption. Using the idea of column generation in which only attractive routes are generated to the mathematical problem, we develop a genetic algorithm that allow us to determine speedily attractive routes that are connected to a mathematical model. We code our genetic algorithm using the idea of a integer number that represents all the feasible set of routes in which the maximum number allowed is the binary number that represents if a customer is visited or not. We approximate the fuel consumption as an interval number in which we want to minimize the overall fuel consumption of distribution. This is the first approximation made in the literature using this type of methodology so we cannot compare our approach with those used in the literature. © 2017, Springer International Publishing AG.
Palabras clave
Keywords
Fuels , Genetic algorithms , Linear programming , Routing algorithms , Column generation , Integer numbers , Interval number , Interval optimization , Inventory routing problems , Mathematical optimizations , Mathematical problems , Optimization and genetic algorithms , Optimization , Genetic algorithms , Green inventory routing problem , Interval optimization , Optimization
Citations
Enlace a la fuente
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030033946&doi=10.1007%2f978-3-319-66963-2_49&partnerID=40&md5=e59d6f26974ace3b38ff2da53e0ce129
Colecciones