Ítem
Acceso Abierto

Sobreestimación de especies en el género Dendropsophus (Anura: Hylidae) y la importancia del locus MC1R en delimitar su polimorfismo de color

dc.contributor.advisorSalazar, Camilo
dc.contributor.advisorBarrientos, Lucas
dc.creatorArias Cárdenas, Diana Alexandra
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2020-02-12T21:56:41Z
dc.date.available2020-02-12T21:56:41Z
dc.date.created2020-01-24
dc.descriptionDendropsophus molitor es una especie de rana de la familia Hylidae que se distribuye en la Cordillera Oriental de Colombia desde Boyacá hasta Norte de Santander. Esta especie está cercanamente emparentada a D. luddeckei, D. pelidna y D. meridensis, las cuales constituyen un clado cuyas relaciones internas entre linajes son controversiales. En este estudio se realizaron análisis morfológicos, filogenéticos y de estructura poblacional en poblaciones de D. molitor utilizando los genes mitocondriales 12S, 16S y COI y el gen nuclear POMC para evaluar la validez de la especie D. luddeckei. Adicionalmente, se determinó si las variaciones (SNPs) en el fragmento del gen MC1R se correlacionan con los polimorfismos de color encontrados en ambas especies. Del análisis filogenético se obtuvieron dos clados internos poco diferenciados que corresponden a la agrupación de las poblaciones por geografía. Así mismo, estadísticos de diversidad y diferenciación genética, caracteres morfológicos y análisis de delimitación de especies indicaron que D. luddeckei y D. molitor son una misma especie y no linajes independientes. Por último, los SNPs encontrados en el gen MC1R no se correlacionan con los polimorfismos de color de la especie D. molitor y no corresponden a los cambios previamente identificados en dendrobátidos.spa
dc.description.abstractThe frog species Dendropsophus molitor belong to Hylidae family and is distributed in the Colombian Eastern Cordillera from Boyacá to Norte de Santander. This species is closely related to D. luddeckei, D. pelidna and D. meridensis which belong to a clade whose internal relations between lineages are controversial. We performed morphological, phylogenetic and population structure analyzes in D. molitor populations using the mitochondrial genes 12S, 16S and COI and the nuclear gene POMC to assess the legitimacy of D. luddeckei. In addition, we determined whether the changes (SNPs) in the MC1R gene fragment are correlated to color polymorphisms found in both species. We obtained two slightly differentiated internal clades that cluster populations by geography in the phylogenetic analysis. Moreover, genetic diversity and genetic differentiation statistics, morphological traits and species delimitation analysis show that D. luddeckei and D. molitor are the same species instead of independent lineages. Finally, the SNPs found in the MC1R gene do not correlate to D. molitor color polymorphisms and do not correspond to the changes previously identified in dendrobatid species.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_20863
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/20863
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationArenas-Rodríguez A, Rubiano Vargas JF, Hoyos JM. 2018. Comparative description and ossification patterns of Dendropsophus labialis (Peters, 1863) and Scinax ruber (Laurenti, 1758) (Anura: Hylidae). PeerJ 6: e4525.spa
dc.source.bibliographicCitationBickford D, Lohman DJ, Sodhi NS et al. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22(3): 148–155.spa
dc.source.bibliographicCitationBouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Computational Biology 10(4): e1003537.spa
dc.source.bibliographicCitationChenuil A, Cahill A E, Délémontey N, Du Luc E, Fanton H. 2019. Problems and Questions Posed by Cryptic Species. A Framework to Guide Future Studies. In: Casetta E, Da Silva J, Vecchi D, eds. Assessing to Conserving Biodiversity: Conceptual and Practical Challenges. Springer International Publishing, 79-106.spa
dc.source.bibliographicCitationClement M, Snell Q, Walke P, Posada D, Crandall, K. 2002. TCS: estimating gene genealogies. Proc 16th Int Parallel Distrib Process Symp 2:184.spa
dc.source.bibliographicCitationCrawford AJ. 2003. Relative Rates of Nucleotide Substitution in Frogs. J Mol Evol 57: 636–641spa
dc.source.bibliographicCitationDarriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.spa
dc.source.bibliographicCitationDessinioti C, Antoniou C, Katsambas A, Stratigos AJ. 2011. Melanocortin 1 Receptor Variants: Functional Role and Pigmentary Associations. Photochemistry and Photobiology 87(5): 978–987.spa
dc.source.bibliographicCitationDonnellan S, Adams M, Hutchinson M, Baverstock P. 1993. The identification of cryptic species in the Australian herpetofauna: a high research priority. Herpetology in Australia: 121-126.1.spa
dc.source.bibliographicCitationFaivovich J, Haddad C, Garcia P, Frost D, Campbell J, Wheeler W. 2005. Systematic Review of the Frog Family Hylidae, With Special Reference to Hylinae: Phylogenetic Analysis and Taxonomic Revision. Bulletin of the American Museum of Natural History 294: 240.spa
dc.source.bibliographicCitationGalarza G. 2014. Importancia de la distancia y el ambiente en la estructura genética de anuros neotropicales. Tesis de Grado, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.spa
dc.source.bibliographicCitationGallina-Tessaro S, López-González C. 2012. Manual de técnicas para el estudio de la fauna. Instituto de Ecología, A.C., Universidad Autónoma de Querétaro, INE–Semarnat. México, D.F.spa
dc.source.bibliographicCitationGuarnizo CE, Escallon C, Cannatella D. 2012. Congruence Between Acoustic Traits and Genealogical History Reveals a New Species of Dendropsophus (Anura: Hylidae) in the High Andes of Colombia. Herpetologica 68(4): 523-540.spa
dc.source.bibliographicCitationGuarnizo CE, Armesto O, Acevedo A. 2014. Dendropsophus labialis (Catálogo de Anfibios y Reptiles de Colombia) 2(2): 56-6.spa
dc.source.bibliographicCitationGuarnizo CE, Amézquita A, Bermingham E. 2009. The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution 50(1): 84–92.spa
dc.source.bibliographicCitationGarcia-R JC, Mendoza ÁM, Ospina O, Cardenas H, Castro F. 2014. A Morphometric and Molecular Approach to Define Three Closely Related Species of Frogs of the Genus Pristimantis (Anura: Craugastoridae) from the Cordillera Occidental in Colombia. Journal of Herpetology 48(2): 220–227.spa
dc.source.bibliographicCitationHeyer W, De Sá R, Rettig A. 2005. Sibling species, advertisement calls, and reproductive isolation in frogs of the Leptodactylus pentadactylus species cluster (Amphibia, Leptodactylidae). Herpetologia Petropolitana: 35-39.spa
dc.source.bibliographicCitationHubbard JK, Uy JAC, Hauber ME, Hoekstra HE, Safran RJ. 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics 26(5): 231–239.spa
dc.source.bibliographicCitationKöhler J, Jansen M, Rodríguez A et al. 2017. The use of bioacoustics in anuran taxonomy: Theory, terminology, methods and recommendations for best practice. Zootaxa 4251.spa
dc.source.bibliographicCitationKumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution 34: 1812-1819.spa
dc.source.bibliographicCitationKumar S, Stecher G, Li M, Knyaz C, Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547–1549.spa
dc.source.bibliographicCitationLibrado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452.spa
dc.source.bibliographicCitationLitvinchuk S, Rozanov YM, Skorinov D. 2004. On cryptic species (from the example of amphibians). Entomological Review 84: S75–S98.spa
dc.source.bibliographicCitationNascimento JD, Da Rosa JA, Salgado-Roa FC, Hernández C, Pardo-Diaz C. et al. 2019. Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. Taquarussuensis (da Rosa et al., 2017) and R. Neglectus (Lent, 1954) the same species? PLoS One 14(2): e0211285.spa
dc.source.bibliographicCitationNavas CA. 2006. Patterns of distribution of anurans in high Andean tropical elevations: Insights from integrating biogeography and evolutionary physiology. Integrative and Comparative Biology 46(1): 82–91.spa
dc.source.bibliographicCitationNguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–74.spa
dc.source.bibliographicCitationPosso-Terranova A, Andrés J. 2017. Diversification and convergence of aposematic phenotypes: truncated receptors and cellular arrangements mediate rapid evolution of coloration in harlequin poison frogs. Evolution 71(11): 2677–2692.spa
dc.source.bibliographicCitationRambaut A. 2014. FigTree v 1.4.1, A Tree Figure Drawing Tool. Available: http://tree.bio.ed.ac.uk/software/figtree/. [11 Diciembre 2019].spa
dc.source.bibliographicCitationRambaut A, Drummond AJ, Xie D, Baele G and Suchard MA. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology: syy032spa
dc.source.bibliographicCitationReichert MS. 2011. Effects of multiple-speaker playbacks on aggressive calling behavior in the treefrog Dendropsophus ebraccatus. Behavioral Ecology and Sociobiology 65(9): 1739–1751.spa
dc.source.bibliographicCitationRivera-Correa M, Gutiérrez-Cárdenas PDA. 2012. A new highland species of treefrog of the Dendropsophus columbianus group (Anura: Hylidae) from the Andes of Colombia. Zootaxa 3486: 50-62.spa
dc.source.bibliographicCitationRoux C, Fraisse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS biology 14(12): e2000234.spa
dc.source.bibliographicCitationRuiz-Carranza P, Ardila-Robayo M, Lynch J. 1996. Lista actualizada de la fauna Amphibia de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 20: 365–415.spa
dc.source.bibliographicCitationSimmons JE. 2002 Herpetological Collecting and Collections Management, Revised Edition. Herpetological Circulars 31: 153. Salt Lake City UT: Society for the Study of Amphibians and Reptiles.spa
dc.source.bibliographicCitationSolís-Lemus S, Knowles L, Ané C. 2014. Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution 69(2): 492-507.spa
dc.source.bibliographicCitationStamatakis A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics.spa
dc.source.bibliographicCitationStruck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov V et al. (2018). Finding Evolutionary Processes Hidden in Cryptic Species. Trends in Ecology & Evolution 33(3): 153–163.spa
dc.source.bibliographicCitationStuckert AM, Moore E, Coyle K, Davison I, MacManes M, Roberts R, Summers K. 2019. Variation in pigmentation gene expression is associated with distinct aposematic color morphs in the poison frog Dendrobates auratus. BMC Evolutionary Biology 19(85).spa
dc.source.bibliographicCitationSummers K, Cronin TW, Kennedy T. 2004. Crossbreeding of Distinct Color Morphs of the Strawberry Poison Frog (Dendrobates pumilio) from the Bocas del Toro Archipelago, Panama. Journal of Herpetology 38(1): 1-8.spa
dc.source.bibliographicCitationToledo LF, Martins IA, Bruschi DP, Passos MA, Alexandre C, Haddad CFB. 2014. The anuran calling repertoire in the light of social context. Acta Ethologica 18(2): 87–99.spa
dc.source.bibliographicCitationUlloa, C. 2003. Efecto de la distancia geografica sobre el aislamiento reproductivo entre poblaciones de la rana Hyla labialis (Anura: Hylidae) Tesis de pregrado. Universidad de los Andes, Bogotá D.C., Colombia.spa
dc.source.bibliographicCitationVences M, Thomas M, Bonett RM, Vieites DR. 2005. Deciphering amphibian diversity through DNA barcoding: Chances and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1462): 1859–1868.spa
dc.source.bibliographicCitationVences M, Wake DB. 2007. Speciation, species boundaries and phylogeography of amphibians. Amphibian Biology. Systematics 6: 2613–2660.spa
dc.source.bibliographicCitationVestergaard JS, Twomey E, Larsen R, Summers K, Nielsen R. 2015. Number of genes controlling a quantitative trait in a hybrid zone of the aposematic frog Ranitomeya imitator. Proc. R. Soc. B Biol. Sci 282.spa
dc.source.bibliographicCitationVitt LJ, Caldwell JP. 2014. Herpetology. An Introductory Biology of Amphibians and Reptiles (4ta ed.) San Diego, USA: Elsevierspa
dc.source.bibliographicCitationWatters JL, Cummings ST, Flanagan RL, Siler CD. 2016. Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072(4): 477–495.spa
dc.source.bibliographicCitationZachos FE. 2014. Taxonomic inflation, the Phylogenetic Species Concept and lineages in the Tree of Life - a cautionary comment on species splitting. Journal of Zoological Systematics and Evolutionary Research 53(2): 180–184.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectDendropsophusspa
dc.subjectPolimorfismos de colorspa
dc.subjectSobreestimaciónspa
dc.subjectReceptor 1 de la Melanocortina (MC1R)spa
dc.subject.ddcVertebrados de sangre fría, Pecesspa
dc.subject.keywordDendropsophusspa
dc.subject.keywordOverestimationspa
dc.subject.keywordColor polymorphismsspa
dc.subject.keywordMelanocortin 1 Receptor (MC1R)spa
dc.subject.lembRanas sabaneraspa
dc.subject.lembRana Andinasspa
dc.subject.lembAnuros-Correlación genéticaspa
dc.subject.lembAnfibios-Relaciones filogenéticasspa
dc.titleSobreestimación de especies en el género Dendropsophus (Anura: Hylidae) y la importancia del locus MC1R en delimitar su polimorfismo de colorspa
dc.title.TranslatedTitleOver-estimation of species in the genus Dendropsophus (Anura: Hylidae) and the importance of the MC1R locus in delimiting its color polymorphismeng
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
AriasCardenas-DianaAlexandra-2020.pdf
Tamaño:
3.22 MB
Formato:
Adobe Portable Document Format
Descripción: