Ítem
Solo Metadatos

Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data

dc.creatorHossein Ansari, Amirspa
dc.creatorJoseph Cherian, Perumpillichiraspa
dc.creatorCaicedo Dorado, Alexander
dc.creatorJansen, Katrienspa
dc.creatorDereymaeker, Anneleenspa
dc.date.accessioned2020-08-19T14:41:22Z
dc.date.available2020-08-19T14:41:22Z
dc.date.created2017-09-11spa
dc.description.abstractIn neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test.eng
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.1109/JBHI.2017.2750769
dc.identifier.issnISSN: 2168-2194
dc.identifier.issnEISSN: 2168-2208
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/27213
dc.language.isoengspa
dc.publisherIEEEspa
dc.relation.citationEndPage1123
dc.relation.citationIssueNo. 4
dc.relation.citationStartPage1114
dc.relation.citationTitleIEEE Journal of Biomedical and Health Informatics
dc.relation.citationVolumeVol. 22
dc.relation.ispartofIEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2194;EISSN: 2168-2208, Vol.22, No.4 (July 2018); pp. 1114 - 1123spa
dc.relation.urihttps://ieeexplore.ieee.org/document/8030998spa
dc.rights.accesRightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.accesoRestringido (Acceso a grupos específicos)spa
dc.sourceIEEE Journal of Biomedical and Health Informaticsspa
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subject.keywordAutomated neonatal seizure detectionspa
dc.subject.keywordMulti-scored EEG databasespa
dc.subject.keywordPerformance measurement metricsspa
dc.titleWeighted performance metrics for automatic neonatal seizure detection using multi-scored EEG dataspa
dc.title.TranslatedTitleMétricas de rendimiento ponderadas para la detección automática de convulsiones neonatales utilizando datos de EEG de múltiples puntuacionesspa
dc.typearticleeng
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.type.spaArtículospa
Archivos
Colecciones