Ítem
Acceso Abierto

Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente.

dc.contributor.advisorRamírez, Juan David
dc.creatorMedina Velasquez, Julián Esteban
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-02-16T23:44:21Z
dc.date.available2021-02-16T23:44:21Z
dc.date.created2021-01-25
dc.descriptionLa leishmaniasis es considerada una enfermedad tropical desatendida para la cual no se cuenta con una vacuna. Por otra parte, las drogas de primera elección han presentado un aumento en las fallas terapéuticas, entre otras causas por la adquisición de resistencia por parte de su agente etiológico dependiente de las características propias de cada especie (ej. manifestación clínica y distribución geográfica). Así, que comprender el mecanismo usado por el parásito para sobrevivir bajo la presión de tratamientos identificando probables blancos terapéuticos comunes y específicos es importante para el control de la leishmaniasis. Sin embargo, hasta el momento no se ha realizado un análisis donde se compare la expresión génica entre especies de Leishmania que exhiben diferentes características genéticas y biológicas reflejadas en las manifestaciones clínicas diferenciales asociadas. Aquí, aplicamos análisis comparativos de los perfiles transcriptómicos de líneas con resistencia inducida experimentalmente al antimonio trivalente (SbIII) de cinco especies de importancia médica (Subgénero L. (Leishmania): L. donovani, L. infantum y L. amazonensis; Subgénero L. (Viannia): L. panamensis y L. braziliensis), causantes de diferentes manifestaciones clínicas (que generalmente son Leishmaniasis cutánea para L. panamensis y L. amazonensis, mucocutánea para L. braziliensis y visceral para L. donovani y L. infantum) a partir de análisis funcionales de ontología y asignación de grupos ortólogos. Las líneas resistentes tenían respuestas diferenciales principalmente en procesos metabólicos, unión a compuestos y componentes membranales respecto a su contraparte sensible. Predominaron los genes ortólogos diferencialmente expresados asignados a las respuestas especie especificas con un total de 1426 genes propios. A nivel de la respuesta por subgénero no se encontraron genes compartidos entre las especies pertenecientes a L. (Leishmania) y solo 7 lo fueron entre aquellas pertenecientes a L. (Viannia). No se halló ningún gen diferencialmente expresado en común entre las 5 especies, pero se encontraron dos genes ortólogos sobrerregulados comunes entre 4 especies (L. donovani, L. braziliensis, L. amazonensis y L. panamensis) referidos a una proteína de unión a RNA y al complejo NAD(P)H citocromo B5 oxidorreductasa, asociados al control transcripcional y a la síntesis de novo del ácido linoleico, importantes en los mecanismos de resistencia a los antimoniales. Estos patrones obedecen probablemente el fenómeno multifactorial de la resistencia a drogas, dependiente de características intrínsecas del parásito y el entorno. Por ende, las aproximaciones especie específicas resultan más recomendables para la proposición de potenciales blancos terapéuticos.spa
dc.description.abstractLeishmaniasis is considered a neglected tropical disease for which there is no vaccine. On the other hand, first-line drugs have shown an increase in therapeutic failures, among other causes due to the acquisition of resistance by their etiological agent, depending on the characteristics of each species (eg, clinical manifestation and geographic distribution). Thus, understanding the mechanism used by the parasite to survive under the pressure of treatments by identifying probable common and specific therapeutic targets is important for the control of leishmaniasis. However, to date no analysis has been performed comparing gene expression between Leishmania species that exhibit different genetic and biological characteristics reflected in the associated differential clinical manifestations. Here, we apply comparative analyzes of the transcriptomic profiles of lines with experimentally induced resistance to trivalent antimony (SbIII) of five species of medical importance (Subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; Subgenus L. (Viannia): L. panamensis and L. braziliensis), causing different clinical manifestations (which are generally cutaneous Leishmaniasis for L. panamensis and L. amazonensis, mucocutaneous for L. braziliensis and visceral for L. donovani and L. infantum) a starting from functional analysis of ontology and assignment of orthologous groups. The resistant lines had differential responses mainly in metabolic processes, compound binding and membrane components with respect to their sensitive counterpart. metabolic, binding to membrane compounds and components relative to their sensitive counterpart. Differentially expressed orthologous genes assigned to species-specific responses predominated with a total of 1426 self genes. At the level of the response by subgenus, no shared genes were found among the species belonging to L. (Leishmania) and only 7 were found among those belonging to L. (Viannia). No differentially expressed gene was found in common among the 5 species, but two common upregulated orthologous genes were found among 4 species (L. donovani, L. braziliensis, L. amazonensis and L. panamensis) referred to an RNA-binding protein and the NAD (P) H cytochrome B5 oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, important in the mechanisms of resistance to antimonials. These patterns probably obey the multifactorial phenomenon of drug resistance, dependent on the intrinsic characteristics of the parasite and the environment. Therefore, species-specific approaches are more advisable for proposing potential therapeutic targets.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_30923
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/30923
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.source.bibliographicCitationAcino Brettmann, E. (2017). The Role of RNA Interference in the Control of Leishmania RNA virus 1 Infection. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1090spa
dc.source.bibliographicCitationAkhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., & Sereno, D. (2016). A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases, 10(3), e0004349. https://doi.org/10.1371/journal.pntd.0004349spa
dc.source.bibliographicCitationAkhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., … Sereno, D. (2017, October 1). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, Vol. 57, pp. 1–29. https://doi.org/10.1016/j.mam.2016.11.012spa
dc.source.bibliographicCitationAlemayehu, B., & Alemayehu, M. (2017). Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Science Journal, 11(4). https://doi.org/10.21767/1791-809x.1000519spa
dc.source.bibliographicCitationAnders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638spa
dc.source.bibliographicCitationAndrade, J. M & Murta, S. (2014). Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and –susceptible Leishmania braziliensis and Leishmania infantum lines. Parasites & Vectors, 7(1), 406–. doi:10.1186/1756-3305-7-406spa
dc.source.bibliographicCitationAndrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/spa
dc.source.bibliographicCitationAslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., … Wang, H. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic acids research, 38(Database issue), D457–D462. https://doi.org/10.1093/nar/gkp851spa
dc.source.bibliographicCitationAurrecoechea, C., Barreto, A., Basenko, E. Y., Brestelli, J., Brunk, B. P., Cade, S., … Zheng, J. (2017). EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45(D1), D581–D591. https://doi.org/10.1093/nar/gkw1105spa
dc.source.bibliographicCitationBañuls, A. L., Hide, M., & Prugnolle, F. (2007, January 1). Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Advances in Parasitology, Vol. 64, pp. 1–458. https://doi.org/10.1016/S0065-308X(06)64001-3spa
dc.source.bibliographicCitationBarrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017spa
dc.source.bibliographicCitationBiyani, N., Singh, A. K., Mandal, S., Chawla, B., & Madhubala, R. (2011). Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Molecular and Biochemical Parasitology, 179(2), 91–99. https://doi.org/10.1016/j.molbiopara.2011.06.004spa
dc.source.bibliographicCitationBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.spa
dc.source.bibliographicCitationBritto, C., Ravel, C., Bastien, P., Blaineau, C., Pagès, M., Dedet, J. P., & Wincker, P. (1998). Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, 222(1), 107–117. https://doi.org/10.1016/S0378-1119(98)00472-7spa
dc.source.bibliographicCitationBrotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899spa
dc.source.bibliographicCitationBurza, S., Croft, S. L. and Boelaert, M. (2018). Leishmaniasis. Lancet, 392, 951-970. doi: 10.1016/s0140-6736(18)31204-2.spa
dc.source.bibliographicCitationChakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of global infectious diseases, 2(2), 167–176. https://doi.org/10.4103/0974-777X.62887spa
dc.source.bibliographicCitationClayton, C. E. (2016, August 1). Gene expression in Kinetoplastids. Current Opinion in Microbiology, Vol. 32, pp. 46–51. https://doi.org/10.1016/j.mib.2016.04.018spa
dc.source.bibliographicCitationCroft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical microbiology reviews, 19(1), 111–126. https://doi.org/10.1128/CMR.19.1.111-126.2006spa
dc.source.bibliographicCitationde Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015, March 18). Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American Journal of Clinical Dermatology, Vol. 16, pp. 99–109. https://doi.org/10.1007/s40257-015-0114-zspa
dc.source.bibliographicCitationDenis, S., Carla, M., & Khatima, A. O. (2012). Antimony resistance and environment: Elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2, 200–203. https://doi.org/10.1016/j.ijpddr.2012.07.003spa
dc.source.bibliographicCitationDepledge, D. P., Evans, K. J., Ivens, A. C., Aziz, N., Maroof, A., Kaye, P. M., & Smith, D. F. (2009). Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 3(7), e476. https://doi.org/10.1371/journal.pntd.0000476spa
dc.source.bibliographicCitationDecuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., … Coombs, G. H. (2012). Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background. PLoS Neglected Tropical Diseases, 6(2), e1514. https://doi.org/10.1371/journal.pntd.0001514spa
dc.source.bibliographicCitationDillon, L. A., Okrah, K., Hughitt, V. K., Suresh, R., Li, Y., Fernandes, M. C., Belew, A. T., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M. (2015). Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic acids research, 43(14), 6799–6813. https://doi.org/10.1093/nar/gkv656spa
dc.source.bibliographicCitationDiotallevi, A., Buffi, G., Ceccarelli, M., Neitzke-Abreu, H. C., Gnutzmann, L. V., da Costa Lima, M. S., … Galluzzi, L. (2020). Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Tropica, 201, 105178. https://doi.org/10.1016/j.actatropica.2019.105178spa
dc.source.bibliographicCitationDobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635spa
dc.source.bibliographicCitationDostálová, A., & Volf, P. (2012). Leishmania development in sand flies: parasite-vector interactions overview. Parasites & vectors, 5, 276. https://doi.org/10.1186/1756-3305-5-276spa
dc.source.bibliographicCitationDouanne, N., Wagner, V., Roy, G., Leprohon, P., Ouellette, M., & Fernandez-Prada, C. (2020). MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 13, 28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003spa
dc.source.bibliographicCitationDoyle, M. (2019) Visualization of RNA-Seq results with Volcano Plot (Galaxy Training Materials). /training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html Online; accessed Sat Jan 09 2021spa
dc.source.bibliographicCitationDowning, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., … Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143–2156. https://doi.org/10.1101/gr.123430.111spa
dc.source.bibliographicCitationDumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., Pescher, P., … Domagalska, M. A. (2017). Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio, 8(3). https://doi.org/10.1128/mBio.00599-17spa
dc.source.bibliographicCitationEddaikra, N., Ait-Oudhia, K., Kherrachi, I., Oury, B., Moulti-Mati, F., Benikhlef, R., … Sereno, D. (2018). Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLOS Neglected Tropical Diseases, 12(3), e0006310. https://doi.org/10.1371/journal.pntd.0006310spa
dc.source.bibliographicCitationEl Fadili, K., Messier, N., Leprohon, P., Roy, G., Guimond, C., Trudel, N., Saravia, N. G., Papadopoulou, B., Légaré, D., & Ouellette, M. (2005). Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrobial agents and chemotherapy, 49(5), 1988–1993. https://doi.org/10.1128/AAC.49.5.1988-1993.2005spa
dc.source.bibliographicCitationFernandes, A. P., Canavaci, A. M. C., McCall, L. I., & Matlashewski, G. (2014). A2 and other visceralizing proteins of Leishmania: Role in pathogenesis and application for vaccine development. Sub-Cellular Biochemistry, 74, 77–101. https://doi.org/10.1007/978-94-007-7305-9_3spa
dc.source.bibliographicCitationFernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS neglected tropical diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871spa
dc.source.bibliographicCitationFraga, J., Montalvo, A. M., Van der Auwera, G., Maes, I., Dujardin, J. C., & Requena, J. M. (2013). Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infection, Genetics and Evolution, 18, 229–237. https://doi.org/10.1016/j.meegid.2013.05.020spa
dc.source.bibliographicCitationFrézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical reviews, 6(1), 119–132. https://doi.org/10.1007/s12551-013-0134-yspa
dc.source.bibliographicCitationGalluzzi, L., Ceccarelli, M., Diotallevi, A., Menotta, M., & Magnani, M. (2018, May 2). Real-time PCR applications for diagnosis of leishmaniasis. Parasites and Vectors, Vol. 11, pp. 1–13. https://doi.org/10.1186/s13071-018-2859-8spa
dc.source.bibliographicCitationHaldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular biology international, 2011, 571242. https://doi.org/10.4061/2011/571242spa
dc.source.bibliographicCitationHashiguchi, Y., & Gomez, E. A. (2018, June 28). Importance of Leishmania Species and Vector Sand Fly (Diptera: Psychodidae) Identification. Journal of Medical Entomology, Vol. 55, pp. 773–774. https://doi.org/10.1093/jme/tjy044spa
dc.source.bibliographicCitationHefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017, March 1). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, Vol. 33, pp. 162–174. https://doi.org/10.1016/j.pt.2016.11.003spa
dc.source.bibliographicCitationIantorno, S. A., Durrant, C., Khan, A., Sanders, M. J., Beverley, S. M., Warren, W. C., … Grigg, M. E. (2017). Gene expression in Leishmania is regulated predominantly by gene dosage. MBio, 8(5). https://doi.org/10.1128/mBio.01393-17spa
dc.source.bibliographicCitationJain, K., & Jain, N. K. (2015, June 11). Vaccines for visceral leishmaniasis: A review. Journal of Immunological Methods, Vol. 422, pp. 1–12. https://doi.org/10.1016/j.jim.2015.03.017spa
dc.source.bibliographicCitationJeddi, F., Mary, C., Aoun, K., Harrat, Z., Bouratbine, A., Faraut, F., Benikhlef, R., Pomares, C., Pratlong, F., Marty, P., & Piarroux, R. (2014). Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrobial agents and chemotherapy, 58(8), 4866–4874. https://doi.org/10.1128/AAC.02521-13spa
dc.source.bibliographicCitationLaffitte, M. N., Leprohon, P., Papadopoulou, B., & Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 2350. https://doi.org/10.12688/f1000research.9218.1spa
dc.source.bibliographicCitationLégaré, D., Richard, D., Mukhopadhyay, R., Stierhof, Y. D., Rosen, B. P., Haimeur, A., … Ouellette, M. (2001). The Leishmania ATP-binding Cassette Protein PGPA is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 276(28), 26301–26307. https://doi.org/10.1074/jbc.M102351200spa
dc.source.bibliographicCitationLeprohon, P., Légaré, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J., & Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic acids research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069spa
dc.source.bibliographicCitationLin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R. W., … Luo, J. (2016). VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLOS ONE, 11(4), e0154315. https://doi.org/10.1371/journal.pone.0154315spa
dc.source.bibliographicCitationLindoso, J., Costa, J., Queiroz, I. T., & Goto, H. (2012). Review of the current treatments for leishmaniases. Research and reports in tropical medicine, 3, 69–77. https://doi.org/10.2147/RRTM.S24764spa
dc.source.bibliographicCitationLlanes, A., Restrepo, C. M., Vecchio, G. Del, Anguizola, F. J., & Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep08550spa
dc.source.bibliographicCitationLove MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.spa
dc.source.bibliographicCitationManzano, J. I., García-Hernández, R., Castanys, S., & Gamarro, F. (2013). A new ABC half-transporter in leishmania major is involved in resistance to antimony. Antimicrobial Agents and Chemotherapy, 57(8), 3719–3730. https://doi.org/10.1128/AAC.00211-13spa
dc.source.bibliographicCitationMartin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200spa
dc.source.bibliographicCitationMarín, M., Aguilar, Y. A., Ramírez, J. R., Triana, O., & Muskus, C. E. (2008). Molecular and immunological analyses suggest the absence of hydrophilic surface proteins in Leishmania (Viannia) panamensis. Biomedica, 28(3), 423–432. https://doi.org/10.7705/biomedica.v28i3.80spa
dc.source.bibliographicCitationMaharjan, M., & Madhubala, R. (2015). Heat shock protein 70 (HSP70) expression in antimony susceptible/resistant clinical isolates of Leishmania donovani. Nepal Journal of Biotechnology, 3(1), 22–28. https://doi.org/10.3126/njb.v3i1.14225spa
dc.source.bibliographicCitationMathur, R., Das, R. P., Ranjan, A., & Shaha, C. (2015). Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB Journal, 29(10), 4201–4213. https://doi.org/10.1096/fj.15-272757spa
dc.source.bibliographicCitationMatrangolo, F. S. V., Liarte, D. B., Andrade, L. C., De Melo, M. F., Andrade, J. M., Ferreira, R. F., … Murta, S. M. F. (2013). Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Molecular and Biochemical Parasitology, 190(2), 63–75. https://doi.org/10.1016/j.molbiopara.2013.06.006spa
dc.source.bibliographicCitationMichaeli, S. (2011, April). Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiology, Vol. 6, pp. 459–474. https://doi.org/10.2217/fmb.11.20spa
dc.source.bibliographicCitationMonte-Neto, R., Laffitte, M. C., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS neglected tropical diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476spa
dc.source.bibliographicCitationMukherjee, S., Sen Santara, S., Das, S., Bose, M., Roy, J., & Adak, S. (2012). NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. The Journal of biological chemistry, 287(42), 34992–35003. https://doi.org/10.1074/jbc.M112.389338spa
dc.source.bibliographicCitationMukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., … Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Molecular Microbiology, 88(1), 189–202. https://doi.org/10.1111/mmi.12178spa
dc.source.bibliographicCitationMukherjee, A., Adhikari, A., Das, P., Biswas, S., Mukherjee, S., & Adak, S. (2018). Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochemical and Biophysical Research Communications, 503(1), 371–377. https://doi.org/10.1016/j.bbrc.2018.06.037spa
dc.source.bibliographicCitationNocua, P. A., Ramirez, C. A., Requena, J. M., & Puerta, C. J. (2017). Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasites and Vectors, 10(1), 610. https://doi.org/10.1186/s13071-017-2557-yspa
dc.source.bibliographicCitationOryan, A., & Akbari, M. (2016, October 1). Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, Vol. 9, pp. 925–932. https://doi.org/10.1016/j.apjtm.2016.06.021spa
dc.source.bibliographicCitationOvalle-Bracho, C., Camargo, C., Díaz-Toro, Y., & Parra-Muñoz, M. (2018). Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study. Biomedica, 38(1), 86–95. https://doi.org/10.7705/biomedica.v38i0.3632spa
dc.source.bibliographicCitationPatino, L. H., Imamura, H., Cruz-Saavedra, L., Pavia, P., Muskus, C., Méndez, C., … Ramírez, J. D. (2019). Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45538-9spa
dc.source.bibliographicCitationPatino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites and Vectors, 12(1). https://doi.org/10.1186/s13071-019-3603-8spa
dc.source.bibliographicCitationPeacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., … Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature genetics, 39(7), 839–847. https://doi.org/10.1038/ng2053spa
dc.source.bibliographicCitationPertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9, 304. https://doi.org/10.12688/f1000research.23297.2spa
dc.source.bibliographicCitationPessenda, G., & da Silva, J. S. (2020, July 1). Arginase and its mechanisms in Leishmania persistence. Parasite Immunology, Vol. 42. https://doi.org/10.1111/pim.12722spa
dc.source.bibliographicCitationPonte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052spa
dc.source.bibliographicCitationRabhi, I., Rabhi, S., Ben-Othman, R., Rasche, A., Consortium, S., Daskalaki, A., … Guizani-Tabbane, L. (2012). Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View. PLoS Neglected Tropical Diseases, 6(8), e1763. https://doi.org/10.1371/journal.pntd.0001763spa
dc.source.bibliographicCitationRashidi, S., Kalantar, K., Fernandez-Rubio, C., Anvari, E., Nguewa, P., & Hatam, G. (2020, February 1). Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathogens and Disease, Vol. 78. https://doi.org/10.1093/femspd/ftaa007spa
dc.source.bibliographicCitationRastrojo, A., García-Hernández, R., Vargas, P., Camacho, E., Corvo, L., Imamura, H., Dujardin, J. C., Castanys, S., Aguado, B., Gamarro, F., & Requena, J. M. (2018). Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International journal for parasitology. Drugs and drug resistance, 8(2), 246–264. https://doi.org/10.1016/j.ijpddr.2018.04.002spa
dc.source.bibliographicCitationRestrepo, C. M., Llanes, A., Cedeño, E. M., Chang, J. H., Álvarez, J., Ríos, M., … Lleonart, R. (2019). Environmental conditions may shape the patterns of genomic variations in Leishmania panamensis. Genes, 10(11). https://doi.org/10.3390/genes10110838spa
dc.source.bibliographicCitationRochette, A., Raymond, F., Ubeda, J. M., Smith, M., Messier, N., Boisvert, S., … Papadopoulou, B. (2008). Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 9(1), 1–26. https://doi.org/10.1186/1471-2164-9-255spa
dc.source.bibliographicCitationRogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., … Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21(12), 2129–2142. https://doi.org/10.1101/gr.122945.111spa
dc.source.bibliographicCitationRojas, R., Valderrama, L., Valderrama, M., Varona, M. X., Ouellette, M., & Saravia, N. G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. Journal of Infectious Diseases, 193(10), 1375–1383. https://doi.org/10.1086/503371spa
dc.source.bibliographicCitationRomero, G. A. S., De Farias Guerra, M. V., Paes, M. G., & De Oliveira Macêdo, V. (2001). Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: Therapeutic response to meglumine antimoniate. American Journal of Tropical Medicine and Hygiene, 65(5), 456–465. https://doi.org/10.4269/ajtmh.2001.65.456spa
dc.source.bibliographicCitationRugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149spa
dc.source.bibliographicCitationSingh, N. & Sundar, S. (2017). Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Experimental Parasitology, 176(), 30–45. doi:10.1016/j.exppara.2017.02.019spa
dc.source.bibliographicCitationSteverding D. (2017). The history of leishmaniasis. Parasites & vectors, 10(1), 82. https://doi.org/10.1186/s13071-017-2028-5spa
dc.source.bibliographicCitationSundar, S., & Chakravarty, J. (2015, February 1). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, Vol. 16, pp. 237–252. https://doi.org/10.1517/14656566.2015.973850spa
dc.source.bibliographicCitationSundar, S., Chakravarty, J., & Meena, L. P. (2019, January 2). Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, Vol. 7, pp. 1–10. https://doi.org/10.1080/21678707.2019.1552853spa
dc.source.bibliographicCitationTorres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: a review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1spa
dc.source.bibliographicCitationUbeda, J.-M., Raymond, F., Mukherjee, A., Plourde, M., Gingras, H., Roy, G., … Ouellette, M. (2014). Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 12(5), e1001868. https://doi.org/10.1371/journal.pbio.1001868spa
dc.source.bibliographicCitationUliana, S. R. B., Trinconi, C. T., & Coelho, A. C. (2018, April 1). Chemotherapy of leishmaniasis: Present challenges. Parasitology, Vol. 145, pp. 464–480. https://doi.org/10.1017/S0031182016002523spa
dc.source.bibliographicCitationUrrea, D. A., Duitama, J., Imamura, H., Álzate, J. F., Gil, J., Muñoz, N., … Triana-Chavez, O. (2018). Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-35778-6spa
dc.source.bibliographicCitationValero, N. N. H., & Uriarte, M. (2020, February 1). Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, Vol. 119, pp. 365–384. https://doi.org/10.1007/s00436-019-06575-5spa
dc.source.bibliographicCitationVanaerschot, M., Dumetz, F., Roy, S., Ponte-Sucre, A., Arevalo, J., & Dujardin, J. C. (2014). Treatment failure in leishmaniasis: Drug-resistance or another (epi-) phenotype? Expert Review of Anti-Infective Therapy, Vol. 12, pp. 937–946. https://doi.org/10.1586/14787210.2014.916614spa
dc.source.bibliographicCitationVanlerberghe, V., Diap, G., Guerin, P. J., Meheus, F., Gerstl, S., Stuyft, P. Van Der, & Boelaert, M. (2007). Drug policy for visceral leishmaniasis: A cost-effectiveness analysis. Tropical Medicine and International Health, 12(2), 274–283. https://doi.org/10.1111/j.1365-3156.2006.01782.xspa
dc.source.bibliographicCitationVerma, A., Bhandari, V., Deep, D. K., Sundar, S., Dujardin, J. C., Singh, R., & Salotra, P. (2017). Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. International Journal for Parasitology: Drugs and Drug Resistance, 7(3), 370–377. https://doi.org/10.1016/j.ijpddr.2017.10.004spa
dc.source.bibliographicCitationVermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P., & Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial agents and chemotherapy, 53(9), 3855–3859. https://doi.org/10.1128/AAC.00548-09spa
dc.source.bibliographicCitationWickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.spa
dc.source.bibliographicCitationYardley, V., Ortuño, N., Llanos‐Cuentas, A., Chappuis, F., Doncker, S. D., Ramirez, L., … Dujardin, J. (2006). American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility? The Journal of Infectious Diseases, 194(8), 1168–1175. https://doi.org/10.1086/507710spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectLeishmania donovanispa
dc.subjectLeishmania infantumspa
dc.subjectLeishmania amazonensisspa
dc.subjectLeishmania Vianniaspa
dc.subjectLeishmania panamensisspa
dc.subjectLeishmania braziliensisspa
dc.subjectEfectividad del Antimonio trivalente (SbIII) frente leishmaniaspa
dc.subjectGenómica y transcriptómica comparativa de Leishmaniaspa
dc.subjectPerfil transcriptómico de leishmaniaspa
dc.subject.ddcMicrobiologíaspa
dc.subject.keywordLeishmania donovanispa
dc.subject.keywordLeishmania infantumspa
dc.subject.keywordLeishmania amazonensisspa
dc.subject.keywordLeishmania Vianniaspa
dc.subject.keywordLeishmania panamensisspa
dc.subject.keywordLeishmania braziliensisspa
dc.subject.keywordEffectiveness of trivalent antimony (SbIII) against leishmaniaspa
dc.subject.keywordComparative genomics and transcriptomics of Leishmaniaspa
dc.subject.keywordLeishmania transcriptomic profilespa
dc.titleAnálisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente.spa
dc.title.TranslatedTitleComparative analysis of the transcriptional responses of five Leishmania species against trivalent antimony.eng
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 4 de 4
Cargando...
Miniatura
Nombre:
MedinaVelasquez-JulianEsteban-2021.pdf
Tamaño:
983.38 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal
Cargando...
Miniatura
Nombre:
MedinaVelasquez-JulianEsteban-1-2021.pdf
Tamaño:
1.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Material Suplementario 1
Cargando...
Miniatura
Nombre:
MedinaVelasquez-JulianEsteban-2-2021.pdf
Tamaño:
1.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Material Suplementario 2
Cargando...
Miniatura
Nombre:
MedinaVelasquez-JulianEsteban-3-2021.pdf
Tamaño:
388.28 KB
Formato:
Adobe Portable Document Format
Descripción:
Material Suplementario 3