Ítem
Acceso Abierto

¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?

dc.contributor.advisorSalazar, Camilo
dc.contributor.advisorRueda, Nicol
dc.creatorRamírez Romero, Juan Pablo
dc.creator.degreeBiólogoes
dc.creator.degreeLevelPregrado
dc.creator.degreetypeFull timees
dc.date.accessioned2022-08-25T20:14:28Z
dc.date.available2022-08-25T20:14:28Z
dc.date.created2022-08-08
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2024-08-25
dc.descriptionLos patrones de color en especies miméticas müllerianas están fuertemente relacionadas a la evolución de defensas químicas. Uno de los ejemplos clásicos de mimetismo son las mariposas heliconius donde hay una alta variación geográfica de anillos miméticos. A pesar de la amplia investigación que hay sobre la coloración y la toxicidad de este grupo de mariposas, la relación entre ambos caracteres aún no ha sido estudiada y se desconoce si la señal de advertencia es cuantitativamente honesta. En este estudio se cuantificaron los compuestos cianogénicos y los contrastes de color de dos anillos miméticos bajo condiciones de luz y dos modelos de visión de las aves. La relación entre estas dos variables se evaluó por medio de la implementación de modelos lineales (lm). No se encontró correlación entre la coloración y la toxicidad, pero si entre esta última y las especies. Adicionalmente, se encontró variación entre los perfiles químicos de especies de un mismo anillo, así como también entre localidades geográficas. La limitación del recurso, las relaciones filogenéticas y otros factores adicionales podrían contribuir a explicar la asociación de la toxicidad a un mismo patrón de coloración.es
dc.description.abstractColour patterns in müllerian mimetic species are strongly related to the evolution of chemical defences. One of the classic examples of mimicry is the Heliconius butterflies, where there is a high geographic variation of mimetic rings. Despite extensive research on the colouration and toxicity of this group of butterflies, the relationship between these two traits is still understudied, and whether the warning signal is quantitatively honest is unknown. In this study, cyanogenic compounds and colour contrasts of two mimetic rings were quantified under different light conditions and two models of bird vision. The correlation between these two variables was evaluated using linear models (lm). No correlation was found between colouration and toxicity, but there was a correlation between the latter and the species. In addition, variation was found between the chemical profiles of species in the same ring and between geographic locations. Other factors such as resource limitation (e.g. host plant) could explain the toxicity associated with the same colouration pattern.es
dc.description.embargo2022-09-19 13:55:01: Script de automatizacion de embargos. Correo 22ago2022: Solicito amablemente se cambie el acceso del documento de trabajo de grado que cargue en el repositorio de la universidad, de forma que este NO quede con acceso público. Esto por solicitud de mis directores de grado. El documento fue cargado el día 20 de agosto y su titulo es: ¿Es la coloración aposemática de las mariposas Heliconius una señal honesta de su toxicidad? Respuesta De acuerdo con su solicitud, el documento ha quedado embargado por 2 años hasta el 25 de agosto de 2024 en concordancia con las Políticas de Acceso Abierto de la Universidad. Si usted desea dejarlo con acceso abierto antes de finalizar dicho periodo o si por el contrario desea extender el embargo al finalizar este tiempo, puede enviar un correo a esta misma dirección realizando la solicitud. Tenga en cuenta que los documentos en acceso abierto propician una mayor visibilidad de su producción académica.
dc.format.extent25 ppes
dc.format.mimetypeapplication/pdfes
dc.identifier.doihttps://doi.org/10.48713/10336_34795
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/34795
dc.language.isospaes
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Ciencias Naturales
dc.publisher.programBiología
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccesses
dc.rights.accesoRestringido (Temporalmente bloqueado)es
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.source.bibliographicCitationArias, M., Meichanetzoglou, A., Elias, M., Rosser, N., de-Silva, D., Nay, B., & Llaurens, V. (2016). Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evolutionary Biology, 16(1). https://doi.org/10.1186/s12862-016-0843-5es
dc.source.bibliographicCitationBalogh, A., Gamberale-Stille, G., & Leimar, O. (2008). Learning and the mimicry spectrum: from quasi-Bates to super-Müller. Animal Behaviour, 76(5), 1591-1599. https://doi.org/10.1016/j.anbehav.2008.07.017es
dc.source.bibliographicCitationBates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. (2021). Lme4: Linear Mixed-Effects Models Using Eigen and S4. https://github.com/lme4/lme4/. Bergvall, U., & Leimar, O. (2005). Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology, 86(9), 2450-2460. https://doi.org/10.1890/04-0978es
dc.source.bibliographicCitationBlount, J., Speed, M., Ruxton, G., & Stephens, P. (2008). Warning displays may function as honest signals of toxicity. Proceedings Of The Royal Society B: Biological Sciences, 276(1658), 871-877. https://doi.org/10.1098/rspb.2008.1407es
dc.source.bibliographicCitationBlount, J., Rowland, H., Mitchell, C., Speed, M., Ruxton, G., Endler, J., & Brower, L. (2021). The price of defence: toxins, visual signals and oxidative state in an aposematic butterfly. https://doi.org/10.1101/2021.12.08.471400es
dc.source.bibliographicCitationBriolat, E., Burdfield-Steel, E., Paul, S., Rönkä, K., Seymoure, B., Stankowich, T., & Stuckert, A. (2018). Diversity in warning coloration: selective paradox or the norm?. Biological Reviews, 94(2), 388-414. https://doi.org/10.1111/brv.12460es
dc.source.bibliographicCitationBriolat, E., Zagrobelny, M., Olsen, C., Blount, J., & Stevens, M. (2018). Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.) *. Evolution, 72(7), 1460-1474. https://doi.org/10.1111/evo.13505es
dc.source.bibliographicCitationCortesi, F., & Cheney, K. (2010). Conspicuousness is correlated with toxicity in marine opisthobranchs. Journal Of Evolutionary Biology, 23(7), 1509-1518. https://doi.org/10.1111/j.1420-9101.2010.02018.xes
dc.source.bibliographicCitationCourville, A., Daw, N., & Touretzky, D. (2006). Bayesian theories of conditioning in a changing world. Trends In Cognitive Sciences, 10(7), 294-300. https://doi.org/10.1016/j.tics.2006.05.004es
dc.source.bibliographicCitationDarst, C., Cummings, M., & Cannatella, D. (2006). A mechanism for diversity in warning signals: Conspicuousness versus toxicity in poison frogs. Proceedings Of The National Academy Of Sciences, 103(15), 5852-5857. https://doi.org/10.1073/pnas.0600625103es
dc.source.bibliographicCitationDell’Aglio, D., Troscianko, J., Stevens, M., McMillan, W., & Jiggins, C. (2019). The conspicuousness of the toxic Heliconius butterflies across time and habitat. https://doi.org/10.1101/662155es
dc.source.bibliographicCitationDell'Aglio, D. D., Troscianko, J., McMillan, W. O., Stevens, M., & Jiggins, C. D. (2018). The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution; international journal of organic evolution, 72(10), 2156–2166. https://doi.org/10.1111/evo.13583es
dc.source.bibliographicCitationDumbacher, J., Spande, T., & Daly, J. (2000). Batrachotoxin alkaloids from passerine birds: A second toxic bird genus ( <i>Ifrita kowaldi</i> ) from New Guinea. Proceedings Of The National Academy Of Sciences, 97(24), 12970-12975. https://doi.org/10.1073/pnas.200346897es
dc.source.bibliographicCitationDumbacher, J., Deiner, K., Thompson, L., & Fleischer, R. (2008). Phylogeny of the avian genus Pitohui and the evolution of toxicity in birds. Molecular Phylogenetics And Evolution, 49(3), 774-781. https://doi.org/10.1016/j.ympev.2008.09.018es
dc.source.bibliographicCitationFinkbeiner, S., Briscoe, A., & Reed, R. (2014). Warning signals are seductive: Relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution, 68(12), 3410-3420. https://doi.org/10.1111/evo.12524es
dc.source.bibliographicCitationHart, N. (2002). Vision in the peafowl (Aves:Pavo cristatus). Journal Of Experimental Biology, 205(24), 3925-3935. https://doi.org/10.1242/jeb.205.24.3925es
dc.source.bibliographicCitationHart, N. S., Partridge, J. C., Cuthill, I. C., & Bennett, A. T. (2000). Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, 186(4), 375–387. https://doi.org/10.1007/s003590050437es
dc.source.bibliographicCitationHolen, Ø. (2013). Disentangling taste and toxicity in aposematic prey. Proceedings Of The Royal Society B: Biological Sciences, 280(1753), 20122588. https://doi.org/10.1098/rspb.2012.2588es
dc.source.bibliographicCitationIhalainen, E., Lindström, L., & Mappes, J. (2006). Investigating Müllerian mimicry: predator learning and variation in prey defences. Journal Of Evolutionary Biology, 20(2), 780- 791. https://doi.org/10.1111/j.1420-9101.2006.01234.xes
dc.source.bibliographicCitationJiggins, C. D. (2017). The ecology and evolution of Heliconius butterflies. Oxford University Press.es
dc.source.bibliographicCitationKikuchi, D., Herberstein, M., Barfield, M., Holt, R., & Mappes, J. (2021). Why aren't warning signals everywhere? On the prevalence of aposematism and mimicry in communities. Biological Reviews, 96(6), 2446-2460. https://doi.org/10.1111/brv.12760es
dc.source.bibliographicCitationKlein, A., & de Araújo, A. (2013). Sexual Size Dimorphism in the Color Pattern Elements of Two Mimetic Heliconius Butterflies. Neotropical Entomology, 42(6), 600-606. https://doi.org/10.1007/s13744-013-0157-xes
dc.source.bibliographicCitationKronforst, M., & Papa, R. (2015). The Functional Basis of Wing Patterning in Heliconius Butterflies: The Molecules Behind Mimicry. Genetics, 200(1), 1-19. https://doi.org/10.1534/genetics.114.172387es
dc.source.bibliographicCitationLee, T., Speed, M., & Stephens, P. (2011). Honest Signaling and the Uses of Prey Coloration. The American Naturalist, 178(1), E1-E9. https://doi.org/10.1086/660197es
dc.source.bibliographicCitationLewis, S., & Cratsley, C. (2008). Flash Signal Evolution, Mate Choice, and Predation in Fireflies. Annual Review Of Entomology, 53(1), 293-321. https://doi.org/10.1146/annurev.ento.53.103106.093346es
dc.source.bibliographicCitationLindström, L., Lyytinen, A., Mappes, J., & Ojala, K. (2006). Relative importance of taste and visual appearance for predator education in Müllerian mimicry. Animal Behaviour, 72(2), 323-333es
dc.source.bibliographicCitationLlaurens, V., Joron, M., & Théry, M. (2014). Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours?. Journal Of Evolutionary Biology, 27(3), 531-540. https://doi.org/10.1111/jeb.12317es
dc.source.bibliographicCitationMaan, M., & Cummings, M. (2012). Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators. The American Naturalist, 179(1), E1-E14. https://doi.org/10.1086/663197es
dc.source.bibliographicCitationMattila, A., Jiggins, C., Opedal, Ø., Montejo-Kovacevich, G., Pinheiro de castro, É., & McMillan, W. et al. (2021). Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. Peerj, 9, e11523. https://doi.org/10.7717/peerj.11523es
dc.source.bibliographicCitationMedina, I., Wallenius, T., & Head, M. (2019). No honesty in warning signals across life stages in an aposematic bug. Evolutionary Ecology, 34(1), 59-72. https://doi.org/10.1007/s10682- 019-10025-0es
dc.source.bibliographicCitationMochida, K., Kitada, M., Ikeda, K., Toda, M., Takatani, T., & Arakawa, O. (2013). Spatial and Temporal Instability of Local Biotic Community Mediate a Form of Aposematic Defense in Newts, Consisting of Carotenoid-Based Coloration and Tetrodotoxin. Journal Of Chemical Ecology, 39(9), 1186-1192. https://doi.org/10.1007/s10886-013-0342-8es
dc.source.bibliographicCitationMüller, F. (1878). Über die vortheile der mimicry bei schmetterlingenes
dc.source.bibliographicCitationPearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87(6), 532– 552. https://doi.org/10.1037/0033-295X.87.6.532es
dc.source.bibliographicCitationPinheiro de Castro, É., Zagrobelny, M., Zurano, J., Zikan Cardoso, M., Feyereisen, R., & Bak, S. (2019). Sequestration and biosynthesis of cyanogenic glucosides in passion vine butterflies and consequences for the diversification of their host plants. Ecology And Evolution, 9(9), 5079-5093. https://doi.org/10.1002/ece3.5062es
dc.source.bibliographicCitationPreißler, K., Gippner, S., Lüddecke, T., Krause, E., Schulz, S., Vences, M., & Steinfartz, S. (2019). More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of Zoology, 308(4), 293-300. https://doi.org/10.1111/jzo.12676es
dc.source.bibliographicCitationRowe, C., & Skelhorn, J. (2005). Colour biases are a question of taste. Animal Behaviour, 69(3), 587-594. https://doi.org/10.1016/j.anbehav.2004.06.010es
dc.source.bibliographicCitationSantos, J., Coloma, L., & Cannatella, D. (2003). Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proceedings Of The National Academy Of Sciences, 100(22), 12792-12797es
dc.source.bibliographicCitationSculfort, O., Castro, E., Kozak, K., Bak, S., Elias, M., Nay, B., & Llaurens, V. (2020). Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 10(5), 2677-2694. https://doi.org/10.1002/ece3.6044es
dc.source.bibliographicCitationSkelhorn, J. y Rowe, C. (2005). Saboreando la diferencia: ¿interactúan múltiples químicos de defensa en el mimetismo mülleriano?. Actas. Ciencias biológicas, 272 (1560), 339– 345. https://doi.org/10.1098/rspb.2004.2953es
dc.source.bibliographicCitationSpeed, M., & Ruxton, G. (2007). How bright and how nasty: Explaining diversity in warning signal strength. Evolution, 61(3), 623-635. https://doi.org/10.1111/j.1558- 5646.2007.00054.xes
dc.source.bibliographicCitationSpeed, M., & Turner, J. (1999). Learning and memory in mimicry: II. Do we understand the mimicry spectrum? Biological Journal Of The Linnean Society, 67(3), 281-312. https://doi.org/10.1111/j.1095-8312.1999.tb01935.xes
dc.source.bibliographicCitationStuckert, A., Saporito, R., & Summers, K. (2018). An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. Journal of Herpetology, 52(2), 201-208. https://doi.org/10.1670/17-047es
dc.source.bibliographicCitationSummers, K., Speed, M., Blount, J., & Stuckert, A. (2015). Are aposematic signals honest? A review. Journal Of Evolutionary Biology, 28(9), 1583-1599. https://doi.org/10.1111/jeb.12676es
dc.source.bibliographicCitationWhite, T., & Umbers, K. (2021). Meta-analytic evidence for quantitative honesty in aposematic signals. Proceedings Of The Royal Society B: Biological Sciences, 288(1949). https://doi.org/10.1098/rspb.2021.0679es
dc.source.bibliographicCitationWilts, B., Vey, A., Briscoe, A., & Stavenga, D. (2017). Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evolutionary Biology, 17(1). https://doi.org/10.1186/s12862-017-1073-1es
dc.source.bibliographicCitationWinters, A., Wilson, N., van den Berg, C., How, M., Endler, J., & Marshall, N. et al. (2018). Toxicity and taste: unequal chemical defences in a mimicry ring. Proceedings Of The Royal Society B: Biological Sciences, 285(1880), 20180457. https://doi.org/10.1098/rspb.2018.0457es
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectMimetismo müllerianoes
dc.subjectMariposas heliconiuses
dc.subjectContraste cromático y acromáticoes
dc.subjectCompuestos cianogénicoses
dc.subjectAposemátismoes
dc.subject.ddcBiologíaes
dc.subject.keywordMüllerian mimicryes
dc.subject.keywordHeliconius butterflieses
dc.subject.keywordChromatic and achromatic contrastes
dc.subject.keywordCyanogenic compoundses
dc.subject.keywordAposematismes
dc.title¿Es la coloración aposemática de las mariposas heliconius una señal honesta de su toxicidad?es
dc.title.TranslatedTitleIs the aposematic coloration of heliconius butterflies an honest sign of their toxicity?es
dc.typebachelorThesises
dc.type.documentTrabajo de gradoes
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradoes
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
RamirezRomero-JuanPablo-2022.pdf
Tamaño:
1.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis pregrado
Cargando...
Miniatura
Nombre:
RamirezRomero-JuanPablo-1-2022.pdf
Tamaño:
3.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Anexos