Ítem
Acceso Abierto

Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease

dc.contributor.advisorRamírez, Juan David
dc.creatorArias-Giraldo, Luisa M.
dc.creatorMuñoz, Claudia Marina
dc.creatorHernández Castro, Diana Carolina
dc.creatorHerrera Ossa, Giovanny Andrés
dc.creatorCaicedo Garzón, Valentina
dc.creatorVelásquez-Ortiz, Natalia
dc.creatorCantillo, Omar
dc.creatorUrbano, Plutarco
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2019-02-11T19:12:51Z
dc.date.available2019-02-11T19:12:51Z
dc.date.created2019-02-05
dc.date.issued2019
dc.descriptionSe realizó una primera caracterización del bacterioma intestinal de triatominos capturados en condiciones naturales en Colombia dada la falta de información sobre este bacterioma y los cambios que puede tener cuando Trypanosoma cruzi está presente o la fuente alimenticia del insecto cambiaspa
dc.description.abstractWe provide a first characterization of the gut bacteriome of triatomines captured in natural conditions in Colombia given the lack of information about this bacteriome and the possible changes it can undergo when Trypanosoma cruzi is present or the feeding source of the triatomine variesspa
dc.description.embargo2021-02-12 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-02-11
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_19038
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/19038
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationRassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388–402.spa
dc.source.bibliographicCitationZingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4.spa
dc.source.bibliographicCitationTyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol. 2001;31:472–81.spa
dc.source.bibliographicCitationAzambuja P, Ratcliffe NA, Garcia ES. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. An Acad Bras Cienc. 2005;77:397–404.spa
dc.source.bibliographicCitationVallejo GA, Guhl F, Schaub GA. Triatominae–Trypanosoma cruzi/T. rangeli: vector–parasite interactions. Acta Trop. 2009;110:137–47.spa
dc.source.bibliographicCitationDíaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: Asymmetric responses of bacteria to an infected blood meal. Parasit Vectors 2016;9:1–11.spa
dc.source.bibliographicCitationde Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, et al. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi -triatomine interactions. Acta Trop. 2018;183:23–31.spa
dc.source.bibliographicCitationWeiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.spa
dc.source.bibliographicCitationCastro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One 2012;7:e36591.spa
dc.source.bibliographicCitationGarcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010;26:499–505.spa
dc.source.bibliographicCitationVieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figuereido MB, Gumiel M, et al. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors 2015;8:135.spa
dc.source.bibliographicCitationGonzález J, Azzato F, Ambrosio G, Milei J. Pathogenesis of chronic chagasic myocarditis. In: Diagnosis and Treatment of Myocarditis. InTech. Epub ahead of print 8 May 2013. DOI: 10.5772/55387.spa
dc.source.bibliographicCitationOtálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E. Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev Chil Hist Nat. 2015;88:4.spa
dc.source.bibliographicCitationGuhl F, Pinto N, Aguilera G. Sylvatic triatominae: A new challenge in vector control transmission. Mem Inst Oswaldo Cruz. 2009;104:71–5.spa
dc.source.bibliographicCitationGuhl F, Aguilera G, Pinto N, Vergara D. Updated geographical distribution and ecoepidemiology of the triatomine fauna (Reduviidae: Triatominae) in Colombia. Biomédica 2007;27:143.spa
dc.source.bibliographicCitationCruz-Guzmán PJ, Morocoima A, Chique JD, Ramonis-Quintero J, Toquero Uzcátegui M, Carrasco HJ. Psammolestes arthuri naturally infected with Trypanosoma cruzi found in sympatry with Rhodnius prolixus and Triatoma maculata on bird nests in Anzoátegui state, Venezuela. Saber, Universidad de Oriente, Venezuela 2014;26:428–40 .spa
dc.source.bibliographicCitationda Mota FF, Marinho LP, Moreira CJ, Lima MM, Mello CB, Garcia ES, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6:e1631.spa
dc.source.bibliographicCitationGumiel M, da Mota FF, Rizzo V de S, Sarquis O, de Castro DP, Lima MM, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 2015;8:245.spa
dc.source.bibliographicCitationRodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša, V, et al. Microbiomes of North American Triatominae: The grounds for Chagas disease epidemiology. Front Microbiol. 2018;9:1167.spa
dc.source.bibliographicCitationOrantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018;12:e0006730.spa
dc.source.bibliographicCitationDumonteil E, Ramirez-Sierra M-J, Pérez-Carrillo S, Teh-Poot C, Herrera C, Gourbière S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep. 2018;8:4140.spa
dc.source.bibliographicCitationWHO. Weekly epidemiological record 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates http://www.who.int/wer/2015/wer9006.pdf?ua=1. Accessed 2 May 2018.spa
dc.source.bibliographicCitationPeña-García VH, Gómez-Palacio AM, Triana-Chávez O, Mejía-Jaramillo AM. Eco-epidemiology of Chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg. 2014;91:1116–24.spa
dc.source.bibliographicCitationValença-Barbosa C, Fernandes FA, Santos HLC, Sarquis O, Harry M, Almeida CE, et al. Molecular identification of food sources in Triatomines in the Brazilian Northeast: Roles of goats and rodents in Chagas disease epidemiology. Am J Trop Med Hyg. 2015;93:994–7.spa
dc.source.bibliographicCitationHernández C, Salazar C, Brochero H, Teherán A, Buitrago LS, Vera M, et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units. Parasit Vectors 2016;9:620.spa
dc.source.bibliographicCitationGeorgieva AY, Gordon ERL, Weirauch C. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens. PeerJ 2017;5:e3826.spa
dc.source.bibliographicCitationEichler S, Schaub GA. Development of symbionts in Triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100:17–27.spa
dc.source.bibliographicCitationMontoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared with Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018;178:327–32.spa
dc.source.bibliographicCitationPompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Mol Ecol. 2012;21:1931–50.spa
dc.source.bibliographicCitationNoireau F, Abad-Franch F, Valente SA, Dias-Lima A, Lopes CM, Cunha V, et al. Trapping Triatominae in silvatic habitats. Mem Inst Oswaldo Cruz. 2002;97:61–3.spa
dc.source.bibliographicCitationDuffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, et al. Analytical performance of a multiplex real-time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013;7:e2000.spa
dc.source.bibliographicCitationRamirez JD, Guhl F, Umezawa ES, Morillo CA, Rosas F, Marin-Neto JA, et al. Evaluation of adult chronic Chagas’ heart disease diagnosis by molecular and serological methods. J Clin Microbiol. 2009;47:3945–51.spa
dc.source.bibliographicCitationSadowsky MJ, Staley C, Heiner C, Hall R, Kelly CR, Brandt L, et al. Analysis of gut microbiota – An ever changing landscape. Gut Microbes 2017;8:268–75.spa
dc.source.bibliographicCitationCaporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–6.spa
dc.source.bibliographicCitationPellecer MJ, Dorn PL, Bustamante DM, Rodas A, Monroy MC. Vector blood meals are an early indicator of the effectiveness of the Ecohealth approach in halting Chagas transmission in Guatemala. Am J Trop Med Hyg. 2013;88:638–44.spa
dc.source.bibliographicCitationWaleckx E, Suarez J, Richards B, Dorn PL. Triatoma sanguisuga blood meals and potential for Chagas disease, Louisiana, USA. Emerg Infect Dis. 2014;20:2141–3.spa
dc.source.bibliographicCitationWang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.spa
dc.source.bibliographicCitationCaporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.spa
dc.source.bibliographicCitationEdgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–1.spa
dc.source.bibliographicCitationKrzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.spa
dc.source.bibliographicCitationSilva MBA, Menezes KR, Farias MCG, Andrade MS, Victor CCA, Lorosa ES, et al. Description of the feeding preferences of triatominae in the Chagas disease surveillance study for the State of Pernambuco, Brazil (Hemiptera: Reduviidae). Rev Soc Bras Med Trop. 2017;50:543–546.spa
dc.source.bibliographicCitationOliveira JL, Cury JC, Gurgel-Gonçalves R, Bahia AC, Monteiro FA. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl Trop Dis. 2018;12:e0006709.spa
dc.source.bibliographicCitationEngel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.spa
dc.source.bibliographicCitationVieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016;9:119.spa
dc.source.bibliographicCitationYun J-H, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64.spa
dc.source.bibliographicCitationGarcia ES, Castro DP, Figueiredo MB, Azambuja P. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)--a review. Mem Inst Oswaldo Cruz. 2010;105:605–10.spa
dc.source.bibliographicCitationVentura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548.spa
dc.source.bibliographicCitationShin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.spa
dc.source.bibliographicCitationBradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome 2017;5:36.spa
dc.source.bibliographicCitationWexler HM. Bacteroides: the Good, the Bad, and the Nitty-Gritty. Clin Microbiol Rev. 2007;20:593–621.spa
dc.source.bibliographicCitationThomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93.spa
dc.source.bibliographicCitationRamakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28:9–17.spa
dc.source.bibliographicCitationSalem H, Kreutzer E, Sudakaran S, Kaltenpoth M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol. 2013;15:1956–68.spa
dc.source.bibliographicCitationWang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol. 2018;27:2972–85.spa
dc.source.bibliographicCitationHehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908–12.spa
dc.source.bibliographicCitationPais R, Lohs C, Wu Y, Wang J, Aksoy S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the Tsetse fly. Appl Environ Microbiol. 2008;74:5965–74.spa
dc.source.bibliographicCitationWeiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system evelopment in the Tsetse fly. J Immunol. 2012;188:3395–403.spa
dc.source.bibliographicCitationEngel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A. 2012;109:11002–7.spa
dc.source.bibliographicCitationVillegas LM, Pimenta PFP. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014;109:672–84.spa
dc.source.bibliographicCitationEspino CI, Gómez T, González G, Brazil do Santos MF, Solano J, Sousa O, et al. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol. 2009;75:547–50.spa
dc.source.bibliographicCitationDi Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102.spa
dc.source.bibliographicCitationSkennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, et al. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J. 2016;10:2679–92.spa
dc.source.bibliographicCitationRibeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, et al. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis. 2014;8:e2594.spa
dc.source.bibliographicCitationKollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol. 2004;13:569–79.spa
dc.source.bibliographicCitationAraújo CAC, Waniek PJ, Stock P, Mayer C, Jansen AM, Schaub GA. Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem Mol Biol. 2006;36:547–60.spa
dc.source.bibliographicCitationBussacos ACM, Nakayasu ES, Hecht MM, Assumpção TC, Parente JA, Soares CM, et al. Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals. J Proteomics 2011;74:1693–700.spa
dc.source.bibliographicCitationKato H, Jochim RC, Gomez EA, Tsunekawa S, Valenzuela JG, Hashiguchi Y. Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease. Acta Trop. 2017;174:122–9.spa
dc.source.bibliographicCitationNevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis. 2018;12:e0006243.spa
dc.source.bibliographicCitationPeña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O. High-resolution melting (HRM) of the cytochrome B bene: a powerful approach to identify blood-meal sources in Chagas disease vectors. PLoS Negl Trop Dis. 2012;6:e1530.spa
dc.source.bibliographicCitationMeiser CK, Piechura H, Werner T, Dittmeyer-Schäfer S, Meyer HE, Warscheid B, et al. Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol. 2010;40:345–53.spa
dc.source.bibliographicCitationLucero DE, Ribera W, Pizarro JC, Plaza C, Gordon LW, Peña Jr R, et al. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning. PLoS Negl Trop Dis. 2014;8:e3365.spa
dc.source.bibliographicCitationLuitgards-Moura JF, Vargas AB, Almeida CE, Magno Esperança G, Agapito-Souza R, Folly-Ramos E, et al. A Triatoma maculata (Hemiptera, Reduviidae, Triatominae) population from Roraima, Amazon region, Brazil, has some bionomic characteristics of a potential Chagas disease vector. Rev Inst Med Trop Sao Paulo 2005;47 :131–7.spa
dc.source.bibliographicCitationCantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo AM, Calle J, Triana O. Distribution and ecoepidemiology of the triatomine fauna (Hemiptera: Reduviidae) in Margarita Island, Bolívar, Colombia . Biomédica 2010;30:382.spa
dc.source.bibliographicCitationEscandón-Vargas K, Muñoz-Zuluaga CA, Salazar L. Blood-feeding of Rhodnius prolixus. Biomédica 2017;37:299.spa
dc.source.bibliographicCitationCrawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci. 2009;106:11276–81.spa
dc.source.bibliographicCitationCostello EK, Gordon JI, Secor SM, Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010;4:1375–85.spa
dc.source.bibliographicCitationNi J, Yan Q, Yu Y, Zhang T. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87:704–14.spa
dc.source.bibliographicCitationRabinovich JE, Kitron UD, Obed Y, Yoshioka M, Gottdenker N, Chaves LF. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 2011;106:479–94.spa
dc.source.bibliographicCitationSchofield CJ. Biosystematics and evolution of the Triatominae. Cad Saude Publica. 2000;16:S89–92.spa
dc.source.bibliographicCitationMonteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease. Adv Parasitol. 2018;99:265-344.spa
dc.source.bibliographicCitationMoraes AM, Junqueira AC, Costa GL, Celano V, Oliveira PC, Coura JR. Fungal flora of the digestive tract of 5 species of triatomines vectors of Trypanosoma cruzi, Chagas 1909. Mycopathologia 2001;151:41–8.spa
dc.source.bibliographicCitationMiller KE, Hopkins K, Inward DJG, Vogler AP. Metabarcoding of fungal communities associated with bark beetles. Ecol Evol. 2016;6:1590–600.spa
dc.source.bibliographicCitationMalacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G. A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol. 2017;73:677–84.spa
dc.source.bibliographicCitationDuarte APM, Ferro M, Rodrigues A, Bacci M Jr, Nagamoto NS, Forti LC, et al. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016;109:1235–43.spa
dc.source.bibliographicCitationLage-Moraes AM, Reis-de-Figueiredo A, Vieira-Junqueira AC, Lara-da-Costa G, Aguiar RK, Cunha-de-Oliveira P. Fungal flora of the digestive tract of Panstrongylus megistus (Reduviidae) used for experimental xenodiagnosis of Trypanosoma (Schizotripanum) cruzi Chagas, 1909. Rev Iberoam Micol. 2001;18:79–82.spa
dc.source.bibliographicCitationMoraes AML de, Junqueira ACV, Celano V, Lara da Costa G, Rodrigues Coura J. Fungal flora of the digestive tract of Rhodnius prolixus, Rhodnius neglectus, Diptelanogaster maximus and Panstrongylus megistus, vectors of Trypanosoma cruzi, Chagas, 1909. Brazilian J Microbiol. 2004;35:288–91.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectSecuenciación de última generaciónspa
dc.subjectBacteriomaspa
dc.subjectTriatominaespa
dc.subjectTrypanosoma cruzispa
dc.subjectFuente alimenticiaspa
dc.subject.ddcEnfermedadesspa
dc.subject.keywordNext-generation sequencingspa
dc.subject.keywordBacteriomespa
dc.subject.keywordTriatominaespa
dc.subject.keywordTrypanosoma cruzispa
dc.subject.keywordFeeding sourcespa
dc.subject.lembEnfermedad de chagasspa
dc.subject.lembHemipterosspa
dc.titlePortraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas diseasespa
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
AriasGiraldo-LuisaMaria-2019.pdf
Tamaño:
250.61 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal
Cargando...
Miniatura
Nombre:
Imagenes_Arias_Giraldo_Luisa_Maria.zip
Tamaño:
3.25 MB
Formato:
Compressed Archive File
Descripción: