Ítem
Acceso Abierto

Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia

dc.contributorHerrera, Giovanny
dc.contributorMuñoz, Marina
dc.contributorSánchez-Herrera, Melissa
dc.contributorBrown, Anya
dc.contributorKhazan, Emily
dc.contributor.advisorRamírez, Juan David
dc.contributor.advisorSalazar, Camilo
dc.creatorLuna-Niño, Nicolás
dc.creator.degreeBiólogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-02-16T20:32:40Z
dc.date.available2021-02-16T20:32:40Z
dc.date.created2021-01-18
dc.descriptionEstudios en las mariposas del género de Heliconius (Lepidoptera: Nymphalidae) han permitido entender los mecanismos que promueven la especiación y adaptación en el neotrópico. Análisis de la microbiota en estos insectos reportan variaciones interespecíficas e intraespecíficas, las cuales no están asociadas directamente a la depredación de polen. Además, se desconoce si los ecosistemas geográficos donde cohabitan mariposas con diferentes anillos miméticos afectan la microbiota de estos individuo. Este estudio utilizó amplicon-based sequencing del gen ARNr-16S en 66 muestras que corresponden a 4 especies de distintas regiones biogeográficas de Colombia: Heliconius clysonymus (n = 4), Heliconius erato (n = 24), Heliconius melpomene (n = 19) y Heliconius cydno (n = 19). La microbiota de Heliconius está dominada por los géneros Commensalibacter, Enterococcus, Spiroplasma y Orbus, donde sus abundancias difieren entre especies y subespecies, las cuales habitan diferentes provincias biogeográficas de Colombia. También, las agrupaciones de la microbiota por especie no reflejan totalmente sus relaciones filogenéticas. A pesar de la amplia diversidad de especies y subespecies de Heliconius en Colombia, este estudio encontró que las abundancias de las comunidades de su microbiota varían a partir de las condiciones ambientales de los ecosistemas en los que habitan y no presentan un patrón especie-específicospa
dc.description.abstractPrevious studies on Heliconius butterflies (Lepidoptera: Nymphalidae) have provided information to understand the mechanisms facilitating speciation and adaptation across the Neotropic realm. The analyses of the microbiota in these insects have shown interspecific and intraspecific variations, which were not directly associated with pollen predation. It remains unclear if the geographic ecosystems where butterflies with different mimicry rings cohabit affect the microbiota in these organisms. In this study, amplicon-based sequencing of the 16S rRNA gene was performed on 66 samples corresponding to four species from different biogeographic regions in Colombia, namely, Heliconius clysonymus (n = 4), Heliconius erato (n = 24), Heliconius melpomene (n = 19) and Heliconius cydno (n = 19). The predominant genera in Heliconius microbiota were Commensalibacter, Enterococcus, Spiroplasma and Orbus, with different abundances among species and subspecies inhabiting different biogeographic provinces in Colombia. Moreover, the microbiota clusters by species did not completely reflect their phylogenetic relationships. Despite the wide diversity of species and subspecies of Heliconius present in Colombia, this study demonstrated that the abundance of communities in the microbiota varied based on the environmental conditions of the ecosystems they inhabit and no species-specific pattern was observed.spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_30921
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/30921
dc.language.isospaspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologíaspa
dc.rightsAtribución-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.5/co/
dc.source.bibliographicCitationMarchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 1–3 (2015) doi:10.1186/s40168-015-0094-5.spa
dc.source.bibliographicCitationPascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).spa
dc.source.bibliographicCitationTrivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).spa
dc.source.bibliographicCitationWang, Y. & Rozen, D. E. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl. Environ. Microbiol. 83, (2017).spa
dc.source.bibliographicCitationMao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).spa
dc.source.bibliographicCitationEngel, P. & Moran, N. A. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).spa
dc.source.bibliographicCitationWang, Y., Gilbreath, T. M., Kukutla, P., Yan, G. & Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6, 1–9 (2011).spa
dc.source.bibliographicCitationAnderson, K. E. et al. The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 6, 1–16 (2018).spa
dc.source.bibliographicCitationSantos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E. & Morin, S. Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 14, 847–856 (2020).spa
dc.source.bibliographicCitationChu, C.-C., Spencer, J. L., Curzi, M. J., Zavala, J. A. & Seufferheld, M. J. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc. Natl. Acad. Sci. 110, 11917–11922 (2013).spa
dc.source.bibliographicCitationKim, J. M. et al. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol. 55, 21–30 (2017).spa
dc.source.bibliographicCitationHuang, S. & Zhang, H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One 8, e57169 (2013).spa
dc.source.bibliographicCitationRocha, M. R., Barbosa dos Santos, L. M., Paulo Vicente, A. C. & Maciel-de-Freitas, R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem. Inst. Oswaldo Cruz 111, 577–587 (2016).spa
dc.source.bibliographicCitationFerguson, L. V. et al. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357–2368 (2018).spa
dc.source.bibliographicCitationChen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).spa
dc.source.bibliographicCitationShukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705 (2020).spa
dc.source.bibliographicCitationPrado, A., Marolleau, B., Vaissière, B. E., Barret, M. & Torres-Cortes, G. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10, 3575 (2020).spa
dc.source.bibliographicCitationSchilder, R. J. & Stewart, H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. J. Exp. Biol. 222, 1–10 (2019).spa
dc.source.bibliographicCitationFeldhaar, H. Bacterial symbionts as mediators of ecologically. Ecol. Entomol. 36, 533–543 (2011).spa
dc.source.bibliographicCitationKešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J 14, 801–814 (2020).spa
dc.source.bibliographicCitationBosmans, L. et al. Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9, 1–14 (2018).spa
dc.source.bibliographicCitationHammer, T. J., Dickerson, J. C., McMillan, W. O. & Fierer, N. Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl. Environ. Microbiol. (2020) doi:10.1128/AEM.02007-20.spa
dc.source.bibliographicCitationJiggins, C. D. The Ecology and Evolution of Heliconius Butterflies. (2017). doi:10.1093/acprof:oso/9780199566570.001.0001.spa
dc.source.bibliographicCitationScoble, M. J. The Lepidoptera: Form, Function and Diversity. (Oxford University Press, 1995). doi:https://doi.org/10.1093/aesa/88.4.590.spa
dc.source.bibliographicCitationYoung, F. J. & Montgomery, S. H. Pollen feeding in Heliconius butterflies: the singular evolution of an adaptive suite. Proc. R. Soc. B Biol. Sci. 287, 20201304 (2020).spa
dc.source.bibliographicCitationOpitz, S. E. W. & Müller, C. Plant chemistry and insect sequestration. Chemoecology 19, 117–154 (2009).spa
dc.source.bibliographicCitationHammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS One 9, e86995 (2014).spa
dc.source.bibliographicCitationvan Schooten, B., Godoy-Vitorino, F., McMillan, W. O. & Papa, R. Conserved microbiota among young Heliconius butterfly species. PeerJ 6, e5502 (2018).spa
dc.source.bibliographicCitationRavenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).spa
dc.source.bibliographicCitationPernice, M., Simpson, S. J. & Ponton, F. Towards an integrated understanding of gut microbiota using insects as model systems. J. Insect Physiol. (2014) doi:10.1016/j.jinsphys.2014.05.016.spa
dc.source.bibliographicCitationJordan, H. R. & Tomberlin, J. K. Abiotic and biotic factors regulating inter-kingdom engagement between insects and microbe activity on vertebrate remains. Insects 8, (2017).spa
dc.source.bibliographicCitationDonkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol. Evol. 8, 4743–4756 (2018).spa
dc.source.bibliographicCitationLi, P., Liang, H., Lin, W.-T., Feng, F. & Luo, L. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol. 81, 5144–5156 (2015).spa
dc.source.bibliographicCitationAndrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).spa
dc.source.bibliographicCitationEwels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).spa
dc.source.bibliographicCitationCallahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).spa
dc.source.bibliographicCitationQuast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).spa
dc.source.bibliographicCitationMcMurdie, P. J. & Holmes, S. phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).spa
dc.source.bibliographicCitationR Core Team. R: A Language and environment for statistical computing. (2020)spa
dc.source.bibliographicCitationMorrone, J. J. Biogeographical regionalisation of the Neotropical region. vol. 3782 (2014).spa
dc.source.bibliographicCitationLahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 2.1.28. (2017).spa
dc.source.bibliographicCitationMartijn, G. & Teunisse. Fantaxtic plots from phyloseq data. (2017).spa
dc.source.bibliographicCitationHaynes, W. Benjamini–Hochberg Method. in Encyclopedia of Systems Biology 78–78 (Springer New York, 2013). doi:10.1007/978-1-4419-9863-7_1215.spa
dc.source.bibliographicCitationParadis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).spa
dc.source.bibliographicCitationKozak, K. R. M. K., Ahlberg, N. I. W., Eild, A. N. F. E. N. & Asmahapatra, K. A. K. D. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).spa
dc.source.bibliographicCitationGalili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).spa
dc.source.bibliographicCitationRevell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).spa
dc.source.bibliographicCitationYun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).spa
dc.source.bibliographicCitationPaniagua, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 1–14 (2018).spa
dc.source.bibliographicCitationTagliavia, M., Messina, E., Manachini, B., Cappello, S. & Quatrini, P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver ( Coleoptera: Curculionidae). 1–11 (2014).spa
dc.source.bibliographicCitationMuratore, M., Sun, Y. & Prather, C. Environmental nutrients alter bacterial and fungal gut microbiomes in the common meadow katydid, Orchelimum vulgare. Front. Microbiol. 11, (2020).spa
dc.source.bibliographicCitationGonzález-Serrano, F. et al. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).spa
dc.source.bibliographicCitationAnbutsu, H. & Fukatsu, T. Spiroplasma as a model insect endosymbiont. Environ. Microbiol. Rep. 3, 144–153 (2011).spa
dc.source.bibliographicCitationBi, J. & Wang, Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. 846–858 (2020) doi:10.1111/1744-7917.12731.spa
dc.source.bibliographicCitationKautz, S., Rubin, B. E. R. & Moreau, C. S. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche A J. Entomol. 2013, 1–11 (2013).spa
dc.source.bibliographicCitationBallinger, M. J. & Perlman, S. J. The defensive Spiroplasma. Curr. Opin. Insect Sci. 32, 36–41 (2019).spa
dc.source.bibliographicCitationSanada-Morimura, S., Matsumura, M. & Noda, H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J. Hered. 104, 821–829 (2013).spa
dc.source.bibliographicCitationTabata, J. et al. Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb. Ecol. 61, 254–263 (2011).spa
dc.source.bibliographicCitationTelschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One 2, e701 (2007).spa
dc.source.bibliographicCitationMuñoz, A. G., Salazar, C., Castaño, J., Jiggings, C. D. & Linares, M. Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J. Evol. Biol. 23, 1312–1320 (2010).spa
dc.source.bibliographicCitationCrotti, E. et al. Acetic acid bacteria as symbionts of insects. in Acetic Acid Bacteria 121–142 (Springer Japan, 2016). doi:10.1007/978-4-431-55933-7_5.spa
dc.source.bibliographicCitationServin-Garciduenas, L. E., Sanchez-Quinto, A. & Martinez-Romero, E. Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering monarch butterflies. Genome Announc. 2, (2014).spa
dc.source.bibliographicCitationSchmid, R. B., Lehman, R. M., Brözel, V. S. & Lundgren, J. G. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae). Florida Entomol. 97, 575–584 (2014).spa
dc.source.bibliographicCitationLee, J.-H., Lee, K.-A. & Lee, W.-J. Microbiota, gut physiology, and insect immunity. in Advances in Insect Physiology (ed. Ligoxygakis, P.) 111–138 (2017). doi:10.1016/bs.aiip.2016.11.001.spa
dc.source.bibliographicCitationChouaia, B. et al. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol. Evol. 6, 912–920 (2014).spa
dc.source.bibliographicCitationVilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, (2016).spa
dc.source.bibliographicCitationAlves, J. M. P. et al. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 5, 338–350 (2013).spa
dc.source.bibliographicCitationKostygov, A. Y. et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio 7, (2016).spa
dc.source.bibliographicCitationPalomino-Ángel, S., Anaya-Acevedo, J. A. & Botero, B. A. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America. Atmos. Res. 217, 37–48 (2019).spa
dc.source.bibliographicCitationMorrone, J. J. Biogeografía de América Latina y el Caribe. (Zaragoza, 2001).spa
dc.source.bibliographicCitationLondoño-Murcia, M. C., Tellez-Valdés, O. & Sánchez-Cordero, V. Environmental heterogeneity of World Wildlife Fund for Nature ecoregions and implications for conservation in Neotropical biodiversity hotspots. Environ. Conserv. 37, 116–127 (2010).spa
dc.source.bibliographicCitationRuiz Rodríguez, S. L. et al. Diversidad biológica y cultural del sur de la Amazonia colombiana - Diagnóstico. (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Corpoamazonia, Instituto Sinchi, Parques Nacionales Naturales, 2007).spa
dc.source.bibliographicCitationKilleen, T. J., Douglas, M., Consiglio, T., Jørgensen, P. M. & Mejia, J. Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 34, 1357–1373 (2007).spa
dc.source.bibliographicCitationLópez, C. E. Landscapes variability and the early peopling of the inter-Andean Magdalena Valley, Colombia (South America). Quat. Int. (2020) doi:10.1016/j.quaint.2020.10.012.spa
dc.source.bibliographicCitationKattan, G. H., Franco, P., Rojas, V. & Morales, G. Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J. Biogeogr. 31, 1829–1839 (2004).spa
dc.source.bibliographicCitationSteele, P. R. Taxonomic revision of the Neotropical genus Psiguria (Cucurbitaceae). Syst. Bot. 35, 341–357 (2010).spa
dc.source.bibliographicCitationKieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors 12, 1–13 (2019)spa
dc.source.bibliographicCitationKoskinioti, P. et al. The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomol. Exp. Appl. 1–12 (2019) doi:10.1111/eea.12764.spa
dc.source.bibliographicCitationSeabourn, P., Spafford, H. & Yoneishi, N. The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Nefleted Trop. Dis. 14, 1–21 (2020).spa
dc.source.bibliographicCitationPalacios-Mayoral, V. D., Palacios-Mosquera, L. & Jiménez-Ortega, A. M. Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea) asociadas con tres hábitats en el corregimiento de Pacurita, municipio de Quibdó, Chocó, Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 237 (2018).spa
dc.source.bibliographicCitationMuñoz, A. G., Baxter, S. W., Linares, M. & Jiggins, C. D. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evol. Biol. 11, 358 (2011).spa
dc.source.bibliographicCitationBrooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLOS Biol. 14, e2000225 (2016).spa
dc.source.bibliographicCitationTinker, K. A. & Ottesen, E. A. Phylosymbiosis across deeply diverging lineages of omnivorous cockroaches (Order Blattodea). Appl. Environ. Microbiol. 86, (2020).spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectEstudios microbiológicos en mariposasspa
dc.subjectMariposas del género de Heliconius (Lepidoptera: Nymphalidae)spa
dc.subjectAnálisis de Microbiota en insectosspa
dc.subjectCommensalibacter, Enterococcus, Spiroplasma y Orbus en Mariposasspa
dc.subject.ddcMicrobiologíaspa
dc.subject.keywordMicrobiological studies in butterfliesspa
dc.subject.keywordButterflies of the genusspa
dc.subject.keywordButterflies of the genus Heliconius (Lepidoptera: Nymphalidae)spa
dc.subject.keywordMicrobiota analysis in insectsspa
dc.subject.keywordCommensalibacter, Enterococcus, Spiroplasma and Orbus in Butterfliesspa
dc.titleVariación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombiaspa
dc.title.TranslatedTitleGeographical variation of the microbiota in four species of the genus Heliconius (Lepidoptera: Nymphalidae) in Colombiaeng
dc.typebachelorThesiseng
dc.type.documentArtículospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 2 de 2
Cargando...
Miniatura
Nombre:
LunaNino-Nicolas-2021.pdf
Tamaño:
430.72 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal
Cargando...
Miniatura
Nombre:
LunaNino-Nicolas-1-2021.rar
Tamaño:
20.95 MB
Formato:
Compressed Archive File
Descripción:
Figuras y tablas correspondientes al artículo principal