ĂŤtem
Embargo

Beyond perfection: about learning from errors, NAO, and the world of virtual reality

dc.contributor.advisorJiménez Hernández, Mario Fernando
dc.creatorAcosta Castillo, Dana Isabella
dc.creator.degreeProfesional en Matemáticas Aplicadas y Ciencias de la Computación
dc.creator.degreeLevelPregrado
dc.creator.degreetypeFull time
dc.date.accessioned2023-09-27T16:09:06Z
dc.date.available2023-09-27T16:09:06Z
dc.date.created2023-07-04
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2025-09-28
dc.descriptionLa realidad virtual (VR) ha experimentado avances significativos en los últimos años gracias a los avances tecnológicos. Se ha convertido en un factor clave en varios campos, incluida la interacción humano-robot (HRI, por sus siglas en inglés). En los estudios de HRI, se observó que las pruebas requerían muchos recursos y protocolos largos y consumidores de tiempo. La VR se utiliza cada vez más para probar robots, ya que permite crear entornos sin consumir tantos recursos. Esto es especialmente evidente en la educación, donde la tecnología de VR se utiliza para crear experiencias de aprendizaje inmersivas, como viajes virtuales que permiten a los estudiantes explorar sitios históricos y fenómenos científicos sin salir del aula. Además, la VR ofrece beneficios económicos al optimizar el tiempo, el espacio y los recursos. La telepresencia es una aplicación crítica de la VR en la relación HRI, permitiendo a los usuarios controlar y interactuar con robots de forma remota, mejorando la calidad y efectividad de la comunicación y la interacción entre humanos y robots. Se mencionan avances significativos en la historia de la robótica, desde Leonardo Da Vinci hasta robots modernos utilizados en tareas de asistencia, fabricación y más. La interacción natural entre humanos y robots es esencial, especialmente en tareas colaborativas, como la fabricación. Para lograr una interacción natural, es necesario comprender cómo los humanos se comunican entre sí, así como cómo perciben y responden a los robots. Esta información se utiliza para desarrollar protocolos de comunicación efectiva entre humanos y robots y para diseñar robots que puedan transmitir información y responder a las señales humanas de manera efectiva. La colaboración entre humanos y robots (HRC) se centra en estudiar y mejorar la relación entre humanos y robots que trabajan juntos en tareas comunes. La implementación de HRC suele ser costosa debido a los altos costos de robots, sensores y espacios controlados. La VR se presenta como una alternativa para reducir costos y facilitar este tipo de estudios. La investigación sugiere que las experiencias de VR son más cercanas a las interacciones con un robot real y que las pruebas en VR son más confiables y transferibles a las habilidades de un robot real. El estudio propone un taller de HRC basado en la VR para evaluar su viabilidad en comparación con las pruebas físicas en términos de eficiencia, costo y estrategia. También busca comparar los resultados y comportamientos de los participantes en entornos físicos y virtuales. La investigación se enfoca en el efecto Pratfall en humanos y robots y sus implicaciones para el desarrollo y uso de robots en entornos que requieren empatía e interacción social. Se llevan a cabo encuestas en dos grupos: uno en un entorno físico y otro en VR, recopilando datos para analizar resultados y discutir posibles influencias de género en las percepciones y respuestas de los participantes. El estudio se organiza en varias secciones que cubren antecedentes, métodos, resultados y discusiones, y concluye con reflexiones sobre futuros trabajos basados en los hallazgos del estudio.
dc.description.abstractThrough a series of instructions, collaborative human-robot interaction is sought to achieve the execution of a practical session in the field of robotics. In this sense, a program composed of a series of instructions related to a typical activity of a practical session in the area of digital electronic systems was proposed. Specifically, a basic session on the management of embedded systems, where students of engineering and computer science will be participants. Basic electronic elements and an embedded system were used to develop a practical session. These elements are usually found in a laboratory in the robotics field because they are part of the fundamental knowledge in such area. The practical session will be carried out through human-robot collaboration (HRC), were the set of instructions is a series of orders given by the NAO, which is a humanoid social robot, thus it is initially indicated to the participant where to locate the electronic elements within a robotics laboratory. Once the set of elements is available, the NAO provides instructions to implement a simple circuit for turning on an LED using an embedded system. In addition, during instructions, the NAO will intentionally give incorrect instructions to the participant without the participant being affected in any way by the said error. In addition, the HRC was implemented in a virtual environment. Different tests were carried out in Virtual Reality (VR) environments because fewer resources are required for their development. In this way, we intend to corroborate the use of VR to develop HRC work tests that are normally carried out in the physical world. In this sense, the same laboratory environment used in the physical world was designed in a virtual environment and the NAO robot. In this way, the participant perceives that he is in a familiar environment. The aim for the participant was to develop a practical robotics session both in the physical world and VR, and to turn on the LED, even with the wrong instructions given by NAO. In both physical and VR cases, the NAO will give instructions for the development of the session. To assess compliance with this objective, a quantitative evaluation will be carried out using the Godspeed, RoSaS, and SUS questionnaires, which allows the evaluation of the perception associated with the performance of the NAO behavior. In addition, the NARS and BFI questionnaires were used to evaluate the participants’ perceptions regarding their interaction with the NAO. The responses (numeric responses) will be classified on Likert scales, and from this information, it is possible to identify the effectiveness and acceptance of the NAO as a support tool for the proposed program. 65.22\% of participants were able to carry out collaborative human-robot work during the practical session. These results support the feasibility and potential of social assistance robots in collaborative environments and highlight the importance of considering error perception and emotional responses in the design of robotic interactions and virtual reality environments.
dc.format.extent80 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_41008
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/41008
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentEscuela de IngenierĂ­a, Ciencia y TecnologĂ­a
dc.publisher.programPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACC
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accesoRestringido (Temporalmente bloqueado)
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.source.bibliographicCitationPeláez, Antonio López (2000) Prospectiva, robótica avanzada y salud laboral. En: Prevención, trabajo y salud. Vol. 10; No. 6-2000; pp. 14-21
dc.source.bibliographicCitationSherwani, Fahad; Asad, Muhammad Mujtaba; Ibrahim, Babul Salam Kader K (2020) Collaborative robots and industrial revolution 4.0 (ir 4.0). En: 2020 International Conference on Emerging Trends in Smart Technologies. pp. 1-5
dc.source.bibliographicCitationDautenhahn, Kerstin (2007) Socially intelligent robots: dimensions of human--robot interaction. En: Philosophical transactions of the royal society B: Biological sciences. Vol. 362; No. 1480; pp. 679-704 : The Royal Society London;
dc.source.bibliographicCitationSerholt, Sofia; Ljungblad, Sara; Ní Bhroin, Niamh (2022) Introduction: special issue—critical robotics research. En: AI & SOCIETY. Vol. 37; No. 2; pp. 417-423 : Springer;
dc.source.bibliographicCitationPeláez, Antonio López (2000) Prospectiva, robótica avanzada y salud laboral. En: Prevención, Trabajo y Salud. Vol. 10; No. 6-2000; pp. 14-21
dc.source.bibliographicCitationTay, Benedict; Jung, Younbo; Park, Taezoon (2014) When stereotypes meet robots: the double-edge sword of robot gender and. En: Computers in Human Behavior. Vol. 38; pp. 75-84 : Elsevier;
dc.source.bibliographicCitationLiu, Oliver; Rakita, Daniel; Mutlu, Bilge; Gleicher, Michael (2017) Understanding human-robot interaction in virtual reality. En: 2017 26th IEEE international symposium on robot and human interactive. pp. 751-757
dc.source.bibliographicCitationRosenberg-Kima, Rinat; Koren, Yaacov; Yachini, Maya; Gordon, Goren (2019) Human-Robot-Collaboration (HRC): social robots as teaching assistants for. En: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction. pp. 522-523
dc.source.bibliographicCitationBelpaeme, Tony; Kennedy, James; Ramachandran, Aditi; Scassellati, Brian; Tanaka, Fumihide (2018) Social robots for education: A review. En: Science robotics. Vol. 3; No. 21; pp. eaat5954 : American Association for the Advancement of Science;
dc.source.bibliographicCitationNeto, Isabel; Johal, Wafa; Couto, Marta; Nicolau, Hugo; Paiva, Ana; Guneysu, Arzu (2020) Using tabletop robots to promote inclusive classroom experiences. En: Proceedings of the interaction design and children conference. pp. 281-292
dc.source.bibliographicCitationMirnig, Nicole; Stollnberger, Gerald; Miksch, Markus; Stadler, Susanne; Giuliani, Manuel; Tscheligi, Manfred (2017) To err is robot: How humans assess and act toward an erroneous social. En: Frontiers in Robotics and AI. pp. 21 : Frontiers;
dc.source.bibliographicCitationWeiss, Astrid; Bartneck, Christoph (2015) Meta analysis of the usage of the godspeed questionnaire series. En: 2015 24th IEEE International Symposium on Robot and Human Interactive. pp. 381-388
dc.source.bibliographicCitationJohn, Oliver P; Naumann, Laura P; Soto, Christopher J (2008) Paradigm shift to the integrative Big Five trait taxonomy: History,. : The Guilford Press;
dc.source.bibliographicCitationStroessner, Steven J (2020) On the social perception of robots: measurement, moderation, and. En: Living with robots. pp. 21-47 : Elsevier;
dc.source.bibliographicCitationKrägeloh, Christian U; Bharatharaj, Jaishankar; Sasthan Kutty, Senthil Kumar; Nirmala, Praveen Regunathan; Huang, Loulin (2019) Questionnaires to measure acceptability of social robots: a critical. En: Robotics. Vol. 8; No. 4; pp. 88 : MDPI;
dc.source.bibliographicCitationCarpinella, Colleen M; Wyman, Alisa B; Perez, Michael A; Stroessner, Steven J (2017) The robotic social attributes scale (RoSAS) development and validation. En: Proceedings of the 2017 ACM/IEEE International Conference on human-robot. pp. 254-262
dc.source.bibliographicCitationPan, Matthew Kxj; Croft, Elizabeth A; Niemeyer, GĂĽnter (2018) Evaluating social perception of human-to-robot handovers using the robot. En: Proceedings of the 2018 ACM/IEEE international conference on human-robot. pp. 443-451
dc.source.bibliographicCitationHahn, Elisabeth; Gottschling, Juliana; Spinath, Frank M (2012) Short measurements of personality--Validity and reliability of the GSOEP. En: Journal of Research in Personality. Vol. 46; No. 3; pp. 355-359 : Elsevier;
dc.source.bibliographicCitationBartneck, Christoph; Nomura, Tatsuya; Kanda, Takayuki; Suzuki, Tomohiro; Kennsuke, Kato (2005) A cross-cultural study on attitudes towards robots. : Lawrence Erlbaum Associates;
dc.source.bibliographicCitationArbib, Michael A; Fellous, Jean-Marc (2004) Emotions: from brain to robot. En: Trends in Cognitive Sciences. Vol. 8; No. 12; pp. 554-561 1364-6613; Disponible en: https://www.sciencedirect.com/science/article/pii/S1364661304002669; http://dx.doi.org/10.1016/j.tics.2004.10.004. Disponible en: 10.1016/j.tics.2004.10.004.
dc.source.bibliographicCitationStock-Homburg, Ruth (2022) Survey of emotions in human--robot interactions: Perspectives from robotic. En: International Journal of Social Robotics. Vol. 14; No. 2; pp. 389-411 : Springer;
dc.source.bibliographicCitationNitsch, Verena; Popp, Michael (2014) Emotions in robot psychology. En: Biological cybernetics. Vol. 108; pp. 621-629 : Springer;
dc.source.bibliographicCitationPackard, Christine; Boelk, Tayler; Andres, James; Edwards, Chad; Edwards, Autumn; Spence, Patric R (2019) The pratfall effect and interpersonal impressions of a robot that forgets. En: 2019 14th ACM/IEEE International Conference on Human-Robot Interaction. pp. 524-525
dc.source.bibliographicCitationVieira, Daniel; The Psychological Dilemma with the Rise of Artificial Intelligence.
dc.source.bibliographicCitationJohn, Oliver P; Naumann, Laura P; Soto, Christopher J (2008) Paradigm shift to the integrative Big Five trait taxonomy: History,. : The Guilford Press;
dc.source.bibliographicCitationJohn, Oliver P; Donahue, Eileen M; Kentle, Robert L (1991) Big five inventory. En: Journal of Personality and Social Psychology.
dc.source.bibliographicCitationBrooke, John (2013) SUS: a retrospective. En: Journal of usability studies. Vol. 8; No. 2; pp. 29-40 : Usability Professionals' Association Bloomingdale, IL;
dc.source.bibliographicCitationLewis, James R (1995) Computer system usability questionnaire. En: International Journal of Human-Computer Interaction.
dc.source.bibliographicCitationLevis, Diego (2006) ?` Qué es la realidad virtual. En: Mateus, S. , & Giraldo, JE (2012). “Diseño de un modelo 3D del Politécnico.
dc.source.bibliographicCitationLee, Seung Hak; Jung, Hae-Yoon; Yun, Seo Jung; Oh, Byung-Mo; Seo, Han Gil (2020) Upper extremity rehabilitation using fully immersive virtual reality games. En: Pm&r. Vol. 12; No. 3; pp. 257-262 : Wiley Online Library;
dc.source.bibliographicCitationDrew, Mandy R; Falcone, Brooke; Baccus, Wendy L (2018) What does the system usability scale (SUS) measure? validation using think. En: Design, User Experience, and Usability: Theory and Practice: 7th. pp. 356-366
dc.source.bibliographicCitationHinds, Pamela J; Roberts, Teresa L; Jones, Hank (2004) Whose job is it anyway? A study of human-robot interaction in a. En: Human--Computer Interaction. Vol. 19; No. 1-2; pp. 151-181 : Taylor & Francis;
dc.source.bibliographicCitationCavallo, Filippo; Esposito, Raffaele; Limosani, Raffaele; Manzi, Alessandro; Bevilacqua, Roberta; Felici, Elisa; Di Nuovo, Alessandro; Cangelosi, Angelo; Lattanzio, Fabrizia; Dario, Paolo; Others, (2018) Robotic services acceptance in smart environments with older adults: user. En: Journal of medical Internet research. Vol. 20; No. 9; pp. e9460 : JMIR Publications Inc., Toronto, Canada;
dc.source.bibliographicCitationConti, Christopher J; Varde, Aparna S; Wang, Weitian (2022) Human-robot collaboration with commonsense reasoning in smart. En: IEEE Transactions on Automation Science and Engineering. Vol. 19; No. 3; pp. 1784-1797 : IEEE;
dc.source.bibliographicCitationAntonelli, Dario; Bruno, Giulia (2023) Human--Robot Collaboration in Industry: Threats and Opportunities. En: Smart and Sustainable Manufacturing Systems for Industry 4.0. pp. 65-83 : CRC Press;
dc.source.bibliographicCitationNawaz, Ather; Skjæret, Nina; Ystmark, Kristine; Helbostad, Jorunn L; Vereijken, Beatrix; Svanæs, Dag (2014) Assessing seniors' user experience (UX) of exergames for balance training. En: Proceedings of the 8th Nordic conference on human-computer interaction:. pp. 578-587
dc.source.bibliographicCitationZhao, Rui; Wang, Kang; Divekar, Rahul; Rouhani, Robert; Su, Hui; Ji, Qiang (2018) An immersive system with multi-modal human-computer interaction. En: 2018 13th IEEE International Conference on Automatic Face & Gesture. pp. 517-524
dc.source.bibliographicCitationKaya, Aycan; Ozturk, Reha; Altin Gumussoy, Cigdem (2019) Usability measurement of mobile applications with system usability scale. En: Industrial Engineering in the Big Data Era: Selected Papers from the. pp. 389-400
dc.source.bibliographicCitationRiek, Laurel D (2012) Wizard of oz studies in hri: a systematic review and new reporting. En: Journal of Human-Robot Interaction. Vol. 1; No. 1; pp. 119-136 : Journal of Human-Robot Interaction Steering Committee;
dc.source.bibliographicCitationRichert, Anja; Müller, Sarah; Schröder, Stefan; Jeschke, Sabina (2018) Anthropomorphism in social robotics: Empirical results on human--robot. En: AI & SOCIETY. Vol. 33; pp. 413-424 : Springer;
dc.source.bibliographicCitationShin, Dong-Hee; Choo, Hyungseung (2011) Modeling the acceptance of socially interactive robotics: Social presence. En: Interaction Studies. Vol. 12; No. 3; pp. 430-460 : John Benjamins;
dc.source.bibliographicCitationHanna, Atieh; Larsson, Simon; Götvall, Per-Lage; Bengtsson, Kristofer (2022) Deliberative safety for industrial intelligent human-robot collaboration:. En: Robotics and Computer-Integrated Manufacturing. Vol. 78; pp. 102386 : Elsevier;
dc.source.bibliographicCitationBreazeal, Cynthia (2004) Function meets style: insights from emotion theory applied to HRI. En: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications. Vol. 34; No. 2; pp. 187-194 : IEEE;
dc.source.bibliographicCitationHonig, Shanee; Oron-Gilad, Tal (2018) Understanding and resolving failures in human-robot interaction:. En: Frontiers in psychology. Vol. 9; pp. 861 : Frontiers Media SA;
dc.source.bibliographicCitationGabrysiak, Gregor; Giese, Holger; Seibel, Andreas (2011) Towards next generation design thinking: scenario-based prototyping for. En: Design thinking: Understand--improve--apply. pp. 219-236 : Springer;
dc.source.bibliographicCitationReiners, Dirk; Davahli, Mohammad Reza; Karwowski, Waldemar; Cruz-Neira, Carolina (2021) The Combination of Artificial Intelligence and Extended Reality: A. En: Frontiers in Virtual Reality. Vol. 2; pp. 721933 : Frontiers Media SA;
dc.source.bibliographicCitationAlqahtani, Asmaa Saeed; Daghestani, Lamya Foaud; Ibrahim, Lamiaa Fattouh (2017) Environments and system types of virtual reality technology in STEM: A. En: International Journal of Advanced Computer Science and Applications. Vol. 8; No. 6;
dc.source.bibliographicCitationWiederhold, Brenda K; Bouchard, Stéphane (2014) Advances in virtual reality and anxiety disorders. : Springer;
dc.source.bibliographicCitationMaples-Keller, Jessica L; Yasinski, Carly; Manjin, Nicole; Rothbaum, Barbara Olasov (2017) Virtual reality-enhanced extinction of phobias and post-traumatic stress. En: Neurotherapeutics. Vol. 14; pp. 554-563 : Springer;
dc.source.bibliographicCitationBernsen, Niels Ole; Dybkjær, Hans; Dybkjær, Laila (1994) Wizard of oz prototyping: How and when. En: Proc. CCI Working Papers Cognit. Sci. /HCI, Roskilde, Denmark.: Citeseer;
dc.source.bibliographicCitationDow, Steven; Lee, Jaemin; Oezbek, Christopher; MacIntyre, Blair; Bolter, Jay David; Gandy, Maribeth (2005) Wizard of Oz interfaces for mixed reality applications. En: CHI'05 extended abstracts on human factors in computing systems. pp. 1339-1342
dc.source.bibliographicCitationGreen, Paul; Wei-Haas, Lisa (1985) The rapid development of user interfaces: Experience with the Wizard of Oz. En: Proceedings of the Human Factors Society Annual Meeting. Vol. 29; pp. 470-474
dc.source.bibliographicCitationMarge, Matthew; Bonial, Claire; Byrne, Brendan; Cassidy, Taylor; Evans, A William; Hill, Susan G; Voss, Clare (2017) Applying the Wizard-of-Oz technique to multimodal human-robot dialogue. En: arXiv preprint arXiv:1703. 03714.
dc.source.bibliographicCitationRagni, Marco; Rudenko, Andrey; Kuhnert, Barbara; Arras, Kai O (2016) Errare humanum est: Erroneous robots in human-robot interaction. En: 2016 25th IEEE International symposium on robot and human interactive. pp. 501-506
dc.source.bibliographicCitationAronson, Elliot; Mills, Judson (1959) The effect of severity of initiation on liking for a group. En: The Journal of Abnormal and Social Psychology. Vol. 59; No. 2; pp. 177 : American Psychological Association;
dc.source.bibliographicCitationMiller, Dale T; Ross, Michael (1975) Self-serving biases in the attribution of causality: Fact or fiction?. En: Psychological bulletin. Vol. 82; No. 2; pp. 213 : American Psychological Association;
dc.source.bibliographicCitationKelley, Harold H; Jones, Edward E; Kanouse, David E (1971) Attribution: Perceiving the causes of behavior. En: New York.
dc.source.bibliographicCitationReason, James (2000) Human error: models and management. En: Bmj. Vol. 320; No. 7237; pp. 768-770 : British Medical Journal Publishing Group;
dc.source.bibliographicCitationSenders, John W; Moray, Neville P (2020) Human error: Cause, prediction, and reduction. : CRC Press;
dc.source.bibliographicCitationKruglanski, Arie W; Ajzen, Icek (1983) Bias and error in human judgment. En: European Journal of Social Psychology. Vol. 13; No. 1; pp. 1-44 : Wiley Online Library;
dc.source.bibliographicCitationLiu, Hin-Yan; Maas, Matthijs; Danaher, John; Scarcella, Luisa; Lexer, Michaela; Van Rompaey, Leonard (2020) Artificial intelligence and legal disruption: a new model for analysis. En: Law, Innovation and Technology. Vol. 12; No. 2; pp. 205-258 : Taylor & Francis;
dc.source.bibliographicCitationLatorre, José I (2019) Ética para máquinas.
dc.source.bibliographicCitationCrowelly, Charles R; Villanoy, Michael; Scheutzz, Matthias; Schermerhornz, Paul (2009) Gendered voice and robot entities: perceptions and reactions of male and. En: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 3735-3741
dc.source.bibliographicCitationD'Agostini, Franca (2019) Apología de la hermenéutica: comentarios y observaciones al margen de.
dc.source.bibliographicCitationSchulz, Kathryn (2015) En Defensa del Error: Un ensayo sobre el arte de equivocarse. Vol. 88; Siruela;
dc.source.bibliographicCitationFrankfurt, Harry G (2006) ON BULLSITH: SOBRE LA MANIPULACIÓN DE LA VERDAD.
dc.source.bibliographicCitationPearson, Karl (1929) Laplace. En: Biometrika. pp. 202-216 : JSTOR;
dc.source.bibliographicCitationBorasi, Raffaella (1987) Exploring mathematics through the analysis of errors. En: For the learning of Mathematics. Vol. 7; No. 3; pp. 2-8 : JSTOR;
dc.source.bibliographicCitationYates, David R; Vaessen, Christophe; Roupret, Morgan (2011) From Leonardo to da Vinci: the history of robot-assisted surgery in. En: BJU international. Vol. 108; No. 11; pp. 1708-1713 : Wiley Online Library;
dc.source.bibliographicCitationHockstein, Neil G; Gourin, C G; Faust, R A; Terris, David J (2007) A history of robots: from science fiction to surgical robotics. En: Journal of robotic surgery. Vol. 1; pp. 113-118 : Springer;
dc.source.bibliographicCitationLee, C S George (1982) Robot arm kinematics, dynamics, and control. En: Computer. Vol. 15; No. 12; pp. 62-80 : IEEE Computer Society;
dc.source.bibliographicCitationSingh, Ashish; Young, James E (2012) Animal-inspired human-robot interaction: A robotic tail for communicating. En: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction. pp. 237-238
dc.source.bibliographicCitationDautenhahn, Kerstin (2007) Socially intelligent robots: dimensions of human--robot interaction. En: Philosophical transactions of the royal society B: Biological sciences. Vol. 362; No. 1480; pp. 679-704 : The Royal Society London;
dc.source.bibliographicCitationMorrison, Douglas; Tow, Adam W; Mctaggart, Matt; Smith, R; Kelly-Boxall, Norton; Wade-Mccue, Sean; Erskine, Jordan; Grinover, Riccardo; Gurman, Alec; Hunn, T; Others, (2018) Cartman: The low-cost cartesian manipulator that won the amazon robotics. En: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. 7757-7764
dc.source.bibliographicCitationKukde, Manisha; Nagpurkar, Sanchita; Dhakulkar, Akshay; Amdare, Akshay (2018) Automatic & manual vacuum cleaning robot. En: International Research Journal of Engineering and Technology (IRJET). Vol. 5; No. 02; pp. 2196-2198
dc.source.bibliographicCitationCasper, Jennifer; Murphy, Robin R (2003) Human-robot interactions during the robot-assisted urban search and rescue. En: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). Vol. 33; No. 3; pp. 367-385 : IEEE;
dc.source.bibliographicCitationMarvel, Jeremy A; Bagchi, Shelly; Zimmerman, Megan; Antonishek, Brian (2020) Towards effective interface designs for collaborative HRI in. En: ACM Transactions on Human-Robot Interaction (THRI). Vol. 9; No. 4; pp. 1-55 : ACM New York, NY, USA;
dc.source.bibliographicCitationPowers, Aaron; Kiesler, Sara (2006) The advisor robot: tracing people's mental model from a robot's physical. En: Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot. pp. 218-225
dc.source.bibliographicCitationDalgarno, Barney; Lee, Mark J W (2010) What are the learning affordances of 3-D virtual environments?. En: British journal of educational technology. Vol. 41; No. 1; pp. 10-32 : Wiley Online Library;
dc.source.bibliographicCitationStergiopoulou, Maria; Karatrantou, Anthi; Panagiotakopoulos, Chris (2017) Educational robotics and STEM education in primary education: a pilot. En: Educational Robotics in the Makers Era 1. pp. 88-103
dc.source.bibliographicCitationAsad, Muhammad Mujtaba; Naz, Aisha; Churi, Prathamesh; Tahanzadeh, Mohammad Mehdi (2021) Virtual reality as pedagogical tool to enhance experiential learning: a. En: Education Research International. Vol. 2021; pp. 1-17 : Hindawi Limited;
dc.source.bibliographicCitationAzukas, M Elizabeth (2019) Cultivating blended communities of practice to promote personalized. En: Journal of online learning research. Vol. 5; No. 3; pp. 251-274 : Association for the Advancement of Computing in Education (AACE);
dc.source.bibliographicCitationBates, David W; Cohen, Michael; Leape, Lucian L; Overhage, J Marc; Shabot, M Michael; Sheridan, Thomas (2001) Reducing the frequency of errors in medicine using information technology. En: Journal of the American Medical Informatics Association. Vol. 8; No. 4; pp. 299-308 : BMJ Group BMA House, Tavistock Square, London, WC1H 9JR;
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectHRI
dc.subjectRobĂłtica
dc.subjectVR
dc.subjectErrores
dc.subjectRealidad virtual
dc.subject.keywordHRI
dc.subject.keywordHRC
dc.subject.keywordErrors
dc.subject.keywordRobotics
dc.titleBeyond perfection: about learning from errors, NAO, and the world of virtual reality
dc.title.TranslatedTitleMás allá de la perfección: sobre aprender de los errores, NAO y el mundo de la realidad virtual
dc.typebachelorThesis
dc.type.documentTrabajo de grado
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de grado
local.department.reportEscuela de IngenierĂ­a, Ciencia y TecnologĂ­a
Archivos
Bloque original
Mostrando1 - 4 de 4
Cargando...
Miniatura
Nombre:
Beyond_perfection_learning_from_errors.pdf
Tamaño:
21.45 MB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Cargando...
Miniatura
Nombre:
Appendix_1.pdf
Tamaño:
273.16 KB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Cargando...
Miniatura
Nombre:
Appendix_2.pdf
Tamaño:
8.87 MB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Cargando...
Miniatura
Nombre:
references.ris
Tamaño:
22.76 KB
Formato:
DescripciĂłn: