Ítem
Embargo

Use of native soil as inoculum for the restoration of soil microorganisms in Juglans neotropica

dc.contributor.advisorCorrales Osorio, Adriana
dc.creatorCarrillo Ramírez, Mariana
dc.creatorCorrales Osorio, Adriana
dc.creatorBravo Pedraza, William Javier
dc.creator.degreeBiólogo
dc.creator.degreeLevelPregrado
dc.creator.degreetypeFull time
dc.date.accessioned2024-04-01T16:32:14Z
dc.date.available2024-04-01T16:32:14Z
dc.date.created2024-03-22
dc.date.embargoEndinfo:eu-repo/date/embargoEnd/2026-04-02
dc.descriptionJuglans neotropica es una especie arbórea en peligro, amenazada principalmente por la disminución de su hábitat y su alto valor comercial por su producción de madera y nueces, por lo que es urgente encontrar estrategias de conservación para la especie en los ecosistemas sudamericanos. Se sabe que J. neotropica forma relaciones simbióticas con hongos asociados a las raíces, incluidas las micorrizas arbusculares (HMA), que desempeñan un papel fundamental en la supervivencia de las plántulas al mejorar la absorción de nutrientes (Mortier et al. 2020). Normalmente, el microbioma del suelo queda totalmente olvidado cuando se trata de planes de conservación y restauración de ecosistemas, aunque conocemos su importancia para el desarrollo y supervivencia de las plantas. En nuestro estudio, implementamos tres tipos de inóculo nativo de Juglans en el suelo en plántulas de vivero para observar la influencia de esto en el crecimiento de las plántulas. Encontramos que las plántulas de J.neotropica se ven influenciadas positivamente en su crecimiento cuando se siembran con inóculo de suelo nativo de árboles adultos conespecíficos, el cual podría contener un microbioma que puede mejorar su rendimiento, asimismo, encontramos una alta abundancia de fitopatógenos dentro de las muestras correspondientes a plántulas que fueron sembradas con turba estéril comercial. Nuestros resultados resaltan la importancia de incluir el microbioma del suelo en los procesos de propagación para aumentar el crecimiento, la salud y la supervivencia de las plántulas.
dc.description.abstractJuglans neotropica is an Endangered tree species threatened mainly by declines in habitat and its high commercial value for its timber and nut production, and therefore, it is urgent to find conservation strategies for the species in South American ecosystems. J. neotropica is known to form symbiotic relationships with root-associated fungi, including arbuscular mycorrhizae (AMF), which plays a fundamental role in seedling survival by improving nutrient uptake (Mortier et al. 2020). Normally, the soil microbiome is totally forgotten when it comes to ecosystem conservation and restoration plans, even though we know its importance for the development and survival of plants. In our study, we implemented three types of native soil inoculum of Juglans in nursery seedlings to observe the influence of this on seedling growth. We found that the seedlings of J.neotropica are positively influenced in their growth when they are planted with inoculum of native soil from conspecific adult trees, which could contain a microbiome that can improve their yield, likewise, we found a high abundance of phytopathogens within the samples corresponding to seedlings that were planted with commercial sterile peat. Our results highlight the importance of including the soil microbiome in propagation processes to increase seedling growth, health, and survival.
dc.description.sponsorshipWildlife Conservation Society (WCS)
dc.format.extent26 pp
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_42383
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/42383
dc.language.isoeng
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Ciencias Naturales
dc.publisher.programBiología
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.accesRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accesoRestringido (Temporalmente bloqueado)
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source.bibliographicCitationAchatz, M., & Rillig, M. C. (2014). Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biology and Biochemistry, 78, 76-82. https://doi.org/10.1016/j.soilbio.2014.07.008
dc.source.bibliographicCitationAchatz, M., Morris, E. K., Müller, F., Hilker, M., & Rillig, M. C. (2014). Soil hypha‐mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Functional Ecology, 28(4), 1020-1029. https://doi.org/10.1111/1365-2435.12208
dc.source.bibliographicCitationÁlvarez García, L. López Marentes, S. Manchego Manotas, M. (2022). Delimitación de La Cuenca Cucuana, Precipitación.
dc.source.bibliographicCitationAmericas Regional Workshop (Conservation & Sustainable Management of Trees, Costa Rica, November 1996). 1998. Juglans neotropica. The IUCN Red List of Threatened Species 1998: e.T32078A9672729. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T32078A9672729.en. Accessed on 14 December 2023.
dc.source.bibliographicCitationAnderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... & Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology letters, 14(1), 19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
dc.source.bibliographicCitationArteaga Cuba, M. N., Tafur Santillán, S. M., Pérez Hurtado, G., Pastor Ordinola, S. A., & Batista Mainegra, A. (2020). Caracterización de la colonización por micorrizas en Retrophyllum rospigliossi Pilger en el bosque Huamantanga, Perú. Revista Cubana de Ciencias Forestales, 8(3), 535-549.
dc.source.bibliographicCitationAskun, T. (2018). Introductory chapter: Fusarium: pathogenicity, infections, diseases, mycotoxins and management. Fusarium: Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers, 1. http://dx.doi.org10.5772/intechopen.76507
dc.source.bibliographicCitationBengtsson‐Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., ... & Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS 2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in ecology and evolution, 4(10), 914-919. https://doi.org/10.1111/2041-210X.12073
dc.source.bibliographicCitationBerendsen, R.L., Pieterse, C.M.J., & Bakker, P.A.H.M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
dc.source.bibliographicCitationBooth, C. (1971). The genus fusarium. Kew, UK, Commonwealth Mycological Institute.
dc.source.bibliographicCitationBothe, H., Turnau, K., & Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 20, 445-457. https://doi.org/10.1007/s00572-010-0332-4
dc.source.bibliographicCitationBusby, P. E., Newcombe, G., Neat, A. S., & Averill, C. (2022). Facilitating reforestation through the plant microbiome: Perspectives from the phyllosphere. Annual Review of Phytopathology, 60, 337-356. https://doi.org/10.1146/annurev-phyto-021320-010717
dc.source.bibliographicCitationCompant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19, 29-37. https://doi.org/10.1016/j.jare.2019.03.004
dc.source.bibliographicCitationCorrales, A. and DiMartino A. (2022, March 13). What we learned about tukti: the endangered Andean Walnut traditionally valued by Kichwa communities. The Tandana Foundation Blog. chttps://blog.tandanafoundation.org/2022/03/13/what-we-learned-about-tukti-the-endangered-andean-walnut-traditionally-valued-by-kichwa-communities/ accessed 27 june 2022
dc.source.bibliographicCitationEdgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011). https://doi.org/10.1093/bioinformatics/btr381
dc.source.bibliographicCitationEdgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013). https://doi.org/10.1038/nmeth.2604
dc.source.bibliographicCitationGenre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649-660.https://doi.org/10.1038/s41579-020-0402-3
dc.source.bibliographicCitationGardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
dc.source.bibliographicCitationHarrison, M. J. (1997). The arbuscular mycorrhizal symbiosis. In Plant-microbe interactions (pp. 1-34). Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6019-7_1
dc.source.bibliographicCitationHejl, A. A., Einhellig, F. A., & Rasmussen, J. A. (1993). Effects of juglone on growth, photosynthesis, and respiration. Journal of Chemical Ecology, 19(3), 559-568. https://doi.org/10.1007/BF00994325
dc.source.bibliographicCitationJeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., & Barea, J. M. (2003). The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and fertility of soils, 37, 1-16. https://doi.org/10.1007/s00374-002-0546-5
dc.source.bibliographicCitationMcMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS one, 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217
dc.source.bibliographicCitationMendes, R., Garbeva, P., & Raaijmakers, J.M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634-663. https://doi.org/10.1111/1574-6976.12028
dc.source.bibliographicCitationMortier, E., Lamotte, O., Martin-Laurent, F., & Recorbet, G. (2020). Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 40, 1-21. https://doi.org/10.1007/s13593-020-00647-y
dc.source.bibliographicCitationNieto, V. M., & Rodríguez, J. (2002). Juglans neotropica Diels. Tropical seeds manual. United States Department of Agriculture Forest Service. USES Öpik, M., Davison, J., Moora, M., & Zobel, M. (2014). DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany, 92(2), 135-147. https://doi.org/10.1139/cjb-2013-0110
dc.source.bibliographicCitationOksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M. H. H., Oksanen, M. J., & Suggests, M. A. S. S. (2008). The vegan package. Community ecology package, 10(631-637), 719.
dc.source.bibliographicCitationOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., & Oksanen, M. J. (2019). Title Community Ecology Package.
dc.source.bibliographicCitationÖzkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for amplicon sequencing analysis. Microbiome 10, 1–14 (2022). https://doi.org/10.1186/s40168-022-01365-1
dc.source.bibliographicCitationPanwar, V., Aggarwal, A., Paul, S., Singh, V., Singh, P. K., Sharma, D., & Saharan, M. S. (2016). Effect of temperature and pH on the growth of Fusarium spp. causing Fusarium head blight (FHB) in wheat. South Asian Journal of Experimental Biology, 6(5).
dc.source.bibliographicCitationPõlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., ... & Tedersoo, L. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal diversity, 105, 1-16. https://doi.org/10.1007/s13225-020-00466-2
dc.source.bibliographicCitationPoorter, H., & Van der Werf, A. D. R. I. E. (1998). Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. Inherent variation in plant growth. Physiological mechanisms and ecological consequences, 309-336.
dc.source.bibliographicCitationQi, Y., Wei, W., Chen, C., & Chen, L. (2019). Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, 18, e00606. https://doi.org/10.1016/j.gecco.2019.e00606
dc.source.bibliographicCitationQu, Q., Zhang, Z., Peijnenburg, W. J. G. M., Liu, W., Lu, T., Hu, B., ... & Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of agricultural and food chemistry, 68(18), 5024-5038. https://doi.org/10.1021/acs.jafc.0c00073
dc.source.bibliographicCitationRietveld, W. J. (1983). Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. Journal of Chemical Ecology, 9, 295-308. https://doi.org/10.1007/BF00988047
dc.source.bibliographicCitationSebastiani, L., Scebba, F., & Tognetti, R. (2004). Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides× maximowiczii) and I-214 (P.× euramericana) exposed to industrial waste. Environmental and Experimental Botany, 52(1), 79-88. https://doi.org/10.1016/j.envexpbot.2004.01.003
dc.source.bibliographicCitationToro Vanegas, E., & Roldán Rojas, I. C. (2018). State of the art, propagation and conservation of Juglans neotropica Diels., in Andean areas. Wood and forests, 24(1).
dc.source.bibliographicCitationVan der Heijden, M.G.A., Bardgett, R.D., & Van Straalen, N.M. (2015). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
dc.source.bibliographicCitationVandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A., & Dufresne, A. (2015). The importance of the microbiome of the plant holobiont. New Phytologist, 206(4), 1196-1206. https://doi.org/10.1111/nph.13312
dc.source.bibliographicCitationWerner, D. (1992). Symbiosis of plants and microbes (No. SB731 W49). London: Chapman & Hall.
dc.source.bibliographicCitationWilliams, G. M., & Ginzel, M. D. (2022). Forest and plantation soil microbiomes differ in their capacity to suppress feedback between Geosmithia morbida and rhizosphere pathogens of Juglans nigra seedlings. Phytobiomes Journal, 6(1), 56-68. https://doi.org/10.1094/PBIOMES-02-21-0014-R
dc.source.bibliographicCitationWeb, A. D. (2022, 17 mayo). [:ES]Sustrato Pindstrup Pluss Orange[:eN]Substrate Pindstrup Plus Orange[:] - Agronegocios Génesis. Agronegocios Génesis. https://agrogenesis.com/en/agricultural-tool/sustrato-pindstrup-pluss-orange/ accessed 14 December 2023
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR
dc.subjectJuglans neotropica
dc.subjectMicorrizas arbusculares
dc.subjectComunidades fúngicas asociadas a las raíces
dc.subjectMicrobioma del suelo
dc.subjectBosque montano tropical
dc.subjectRestauración ecológica
dc.subject.keywordJuglans neotropica
dc.subject.keywordArbuscular mycorrhiza
dc.subject.keywordRoot-associated fungal communities
dc.subject.keywordsoil microbiome
dc.subject.keywordTropical montane forest
dc.subject.keywordEcological restoration
dc.titleUse of native soil as inoculum for the restoration of soil microorganisms in Juglans neotropica
dc.title.TranslatedTitleUso del suelo nativo como inóculo para la restauración de microorganismos del suelo en Juglans neotropica
dc.typebachelorThesis
dc.type.documentTesis
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTesis
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Use_of_native_soil_CarrilloRamirez-Mariana-2024.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format
Descripción: