Ítem
Acceso Abierto

Development of an interface for rehabilitation based on the EMG signal for the control of the ankle exoskeleton T-FLEX

dc.contributor.advisorMúnera Ramirez, Marcela Cristina
dc.contributor.advisorCifuentes García, Carlos Andrés
dc.creatorCastellanos Guarnizo, Camila Andrea
dc.creator.degreeIngeniero Biomédicospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2021-06-04T21:19:30Z
dc.date.available2021-06-04T21:19:30Z
dc.date.created2021-05-27
dc.descriptionEl accidente cerebrovascular es la segunda causa principal de muerte y la tercera de discapacidad, y el 75% de las personas que sufren un accidente cerebrovascular cada año experimentan limitaciones en la movilidad relacionadas con la marcha. Se han considerado estrategias que involucran dispositivos robóticos, como exoesqueletos y órtesis, para mejorar la rehabilitación del accidente cerebrovascular. Algunos de ellos han incluido la implementación de señales de Electromiografía (EMG) ya sea para análisis de activación muscular o detección de intención de movimiento. Este último ha estado involucrado en el proceso de activación de dispositivos robóticos para manejar la asistencia del dispositivo por la intención del sujeto de realizar un movimiento específico. Esto permitiría al sujeto involucrarse en su terapia. Por lo tanto, este proyecto introduce una interfaz EMG para el control del exoesqueleto del tobillo T-FLEX. Se revisaron algunos estudios donde se han incluido señales EMG en los procesos de control y terapia, y se analizaron algoritmos con diferentes métodos de cálculo de umbral. Teniendo en cuenta la información de esos estudios, se desarrolló un algoritmo basado en umbrales para la detección de la intención de movimiento. El algoritmo constaba de dos etapas principales, el cálculo del umbral y la detección de la intención del movimiento. La primera etapa consistió en el establecimiento del umbral a través de la extracción de características estadísticas (MEAN, desviación estándar (STD), varianza (VAR), MEAN + 3 * STD y Root Mean Square value (RMS)) de la señal de EMG. El segundo consistió en comparar la señal con el valor de referencia (umbral). Para probar el algoritmo se planificaron dos sesiones. En la primera sesión participaron diez sujetos sanos y su señal EMG se adquirió del músculo tibial anterior a través de un sensor muscular Myoware. Además, se colocó un sensor de Unidad de Medición Inercial (IMU) en la punta del pie de cada participante para adquirir la velocidad angular cuando se realizó la dorsiflexión del tobillo. Las señales de salida de ambos sensores se registraron y el procesamiento con el algoritmo se realizó off-line. La segunda sesión se realizó con el exoesqueleto de tobillo T-FLEX y un Juego Serio, implementando el algoritmo en tiempo real con una característica estadística seleccionada de la primera sesión como umbral. Se evaluó la detección del algoritmo EMG. También se evaluó el algoritmo que ya tenía T-FLEX para la detección de la intención de movimiento con el sensor IMU. Los resultados de la primera sesión mostraron que la característica de MEAN funcionó para el establecimiento del umbral con el sensor IMU, y para el sensor EMG fue (VAR), presentando un error menor al 10% en la cantidad de Falsos Positivos (FP) y Falsos Negativos (FN). Con esto, se llevó a cabo la segunda sesión, demostrando que había más precisión en el manejo del juego usando el sensor IMU que el sensor EMG. Con el sensor EMG la máxima precisión alcanzada fue del 89,7% y con el sensor IMU fue del 94,1%.spa
dc.description.abstractStroke is the second leading cause of death and third of disability, and 75% of individuals who sustain a stroke each year experience limitations in mobility-related to walking. Strategies involving robotic devices, such as exoskeletons and orthoses, have been considered to improve stroke rehabilitation. Some of them have included the implementation of Electromyography(EMG) signals either for muscle activation analysis or movement intention detection. The latter has been involved in the activation process of robotic devices to handle the device’s assistance by the subject’s intention to perform a specific movement. This would allow the subject to get involved in his/her therapy. Hence, this project introduces an EMG interface for the control of the ankle exoskeleton T-FLEX. Some studies where EMG signals have been included in control and therapy processes were reviewed, and algorithms with different threshold methods calculation were analyzed. Considering the information from those studies, a threshold-based algorithm for movement intention detection was developed. The algorithm consisted in two main stages, the threshold calculation and the movement intention detection. The first stage consisted on the threshold establishment through statistical features extraction (MEAN, standard deviation (STD), variance (VAR), MEAN + 3*STD and Root Mean Square value (RMS)) from the EMG signal. The second consisted of comparing the signal with the reference value (threshold).To test the algorithm, two sessions were planned. In the first session, ten healthy subjects participated and their EMG signal was acquired from the Tibialis Anterior muscle through a Myoware muscle sensor. Additionally, an Inertial Measurement Unit (IMU) sensor was placed on each participant’s foot tip to acquire the angular velocity when the ankle’s dorsiflexion was performed. The output signals from both sensors were recorded and the processing with the algorithm was done offline. The second session was carried out with the ankle exoskeleton T-FLEX and a Serious Game, implementing the algorithm in real-time with a statistical feature selected from the first session as the threshold. The detection from the EMG algorithm was evaluated. The algorithm that T-FLEX already had for the movement intention detection with the IMU sensor also was evaluated. The results from the first session showed that the MEAN feature worked for the threshold establishment with the IMU sensor, and for the EMG sensor was the (VAR), presenting an error of less than 10% in the amount of False Positive (FP) and False Negative (FN) values. With this, the second session was carried out, showing that there was more precision handling the game using the IMU sensor than the EMG sensor. With the EMG sensor the maximum precision achieved was 89,7% and with the IMU sensor was 94.1%.spa
dc.format.extent86spa
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.48713/10336_31583
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/31583
dc.language.isoengspa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programIngeniería Biomédicaspa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationW. Johnson, O. Onuma, M. Owolabi, and S. Sachdev,Stroke: a global response isneeded, 2016.spa
dc.source.bibliographicCitationH. Mamoru Yoshida, J. Barreira, and P. Teixeira Fernandes, “Motor skills, depressivesymptoms and cognitive functions in post-stroke patients,”Fisioter Pesqui, vol. 26,no. 1, pp. 9–14, 2019.spa
dc.source.bibliographicCitationR. Boian, J. E. Deutsch, and J. L. Grigore C. Burdea, “Post-Stroke Rehabilitation withthe Rutgers Ankle System: A Case Study,”PRESENCE, vol. 10, no. 4, pp. 416–430,2001.spa
dc.source.bibliographicCitationF. A. Silva, J. G. Zarruk, C. Quintero, W. Arenas, C. F. Rueda-Clausen, S. Y. Silva,and A. M. Estupiñán, “Cerebrovascular disease in Colombia,”Revista Colombiana deCardiología, vol. 13, no. 2, 2006.spa
dc.source.bibliographicCitationA. A. Duque and D. I. Lucumi,Caracterización del accidente cerebrovascular enColombia, 2019.spa
dc.source.bibliographicCitationC. Camejo, C. Legnani, A. Gaye, B. Arcieri, F. Brumett, L. Castro, A. Peña, F. Gómez,J. R. Higgie, F. Preve, and R. Salamano, “Stroke Unit at the Hospital de Clínicas:clinical-epidemiological behavior in patients with stroke (2007-2012),”Archivos deMedicina Interna, vol. 37, no. 1, 2015.spa
dc.source.bibliographicCitationL. W. Jian and S. N. W. Shamsuddin, “The design of virtual lower limb rehabilitation for post-stroke patients,”Indonesian Journal of Electrical Engineering and ComputerScience, vol. 16, no. 1, pp. 544–552, 2019.spa
dc.source.bibliographicCitationR. Jiménez-Fabián and O. Verlinden, “Review of control algorithms for robotic anklesystems in lower-limb orthoses, prostheses, and exoskeletons,”Medical Engineering &Physics, vol. 34, pp. 397–408, 2012.spa
dc.source.bibliographicCitationJ. Toglia, G. Askin, L. M. Gerber, A. Jaywant, and M. W. O’Dell, “Participationin Younger and Older Adults Post-stroke: Frequency, Importance, and Desirability ofEngagement in Activities,”Frontiers in Neurology, 2019.spa
dc.source.bibliographicCitationV. Demarin, S. Morović, and R. BéNé, “Neuroplasticity,”Periodicum Biologorum,vol. 116, no. 2, pp. 209–211, 2014.spa
dc.source.bibliographicCitationA. V. Zakharov, V. A. Bulanov, E. V. Khivintseva, A. V. Kolsanov, Y. V. Bushkova,and G. E. Ivanova, “Stroke Affected Lower Limbs Rehabilitation Combining VirtualReality With Tactile Feedback,”Frontiers in Robotics and AI, 2020.54spa
dc.source.bibliographicCitationF. M. Lim, R. Foong, K. S. Goh, Q. L. Mok, B. H. J. Tan, S. L. Toh, and H. Yu,“Supine Gait Training Device for Stroke Rehabilitation – Design of a Compliant AnkleOrthosis,”IFMBE Proceedings, vol. 43, pp. 512–513, 2014.spa
dc.source.bibliographicCitationA. Esquenazi, S. Lee, A. Wikoff, A. Packel, T. Toczylowski, and J. Feeley, “A Compar-ison of Locomotor Therapy Interventions: Partial-Body WeightLSupported Treadmill,Lokomat, and G-EO Training in People With Traumatic Brain Injury,”AmericanAcademy of Physical Medicine and Rehabilitation, vol. 9, pp. 839–846,spa
dc.source.bibliographicCitationJ. Fang, A. Vuckovic, S. Galen, C. Cossar, B. A. Conway, and K. J. Hunt, “Design andevaluation of a prototype gait orthosis for early rehabilitation of walking,”Technologyand Health Care, vol. 22, pp. 273–288, 2014.spa
dc.source.bibliographicCitationF. M. Alfieri, C. d. S. Dias, A. C. A. dos Santos, and L. R. Battistella, “Acute Effectof Robotic Therapy (G-EO System) on the Lower Limb Temperature Distribution of aPatient with Stroke Sequelae,”Case Reports in Neurological Medicine, vol. 1, pp. 2–5,2019.spa
dc.source.bibliographicCitationJ. Stein, R. Hughes, S. E. Fasoli, H. I. Krebs, and N. Hogan, “Technological Aids for Motor Recovery,” in Stroke Recovery and Rehabilitation, 2020, pp. 307–321.spa
dc.source.bibliographicCitationY. Lee, J. G. Her, Y. Choi, and H. Kim, “Effect of ankle-foot orthosis on lower limb muscle activities and static balance of stroke patients authors’ names,” Journal of Physical Therapy Science, vol. 26, no. 2, pp. 179–182, 2014, issn: 09155287. doi: 10.1589/jpts.26.179.spa
dc.source.bibliographicCitationM. Sartori, M. Reggiani, C. Mezzato, and E. Pagello, “A Lower Limb EMG-driven Biomechanical Model for Applications in Rehabilitation Robotics,” IEEE, pp. 1–7, 2009.spa
dc.source.bibliographicCitationJ. C. Moreno, J. Figueiredo, and J. L. Pons, “Exoskeletons for lower-limb rehabilita tion,” in Rehabilitation Robotics. 2018, pp. 89–99.spa
dc.source.bibliographicCitationW. Alcocer, L. Vela, A. Blanco, J. Gonzalez, and M. Oliver, “Mayor Trends in the Development of Ankle Rehabilitation Devices,” DYNA, vol. 79, no. 176, 2012.spa
dc.source.bibliographicCitationY. Ganesan, S. Gobee, and V. Durairajah, “Development of an Upper Limb Exoskele ton for Rehabilitation with Feedback from EMG and IMU Sensor,” Procedia Computer Science, vol. 76, no. 1, pp. 53–59, 2015.spa
dc.source.bibliographicCitationC. A. Aguilar Lazcano, O. O. Sandoval Gonzalez, J. A. Diaz Reyes, I. Herrera Aguilar, and A. Martínez Sibaja, Sistema de reconocimiento de gestos utilizando señales EMG para aplicaciones de control de prótesis biónicas y exoesqueletos de mano, 2016.spa
dc.source.bibliographicCitationK. Chen, B. Xiong, Y. Ren, A. Y. Dvorkin, D. Gaebler-Spira, C. E. Sisung, and L.-Q. Zhang, “Ankle Passive and Active Movement Training in Children with Acute Brain Injury Using a Wearable Robot,” J Rehabil Med, vol. 50, pp. 30–36, 2018.spa
dc.source.bibliographicCitationA. Jaume-i-Capó, J. V. Gomez, G. Moyà, and F. Perales, “Motivational Rehabilitation using Serious Games,” VAR., vol. 4, no. 9, pp. 167–173, 2013. 55spa
dc.source.bibliographicCitationA. Pino, D. Gomez-Vargas, M. Munera, and C. A. Cifuentes, “Visual Feedback Strategy based on Serious Games for Therapy with T-FLEX Ankle Exoskeleton,” The Interna tional Symposium on Wearable Robotics (WeRob2020) and WearRAcon Europe,, pp. 1– 2, 2020.spa
dc.source.bibliographicCitationN. R. García, “Diseño y Evaluación Ergonómica de Interfaces Físicas para la Órtesis Robótica de Tobillo (T-FLEX) a través de la Integración de Superficies Blandas,” 2019.spa
dc.source.bibliographicCitationD. Gomez-Vargas, F. Ballen-Moreno, P. Barria, R. Aguilar, J. M. Azorín, M. Munera, and C. A. Cifuentes, “Actuation system of the ankle exoskeleton T-FLEX: first use experimental validation in people with stroke,” Tech. Rep., pp. 1–17.D. Gomez-Vargas, M. J. Pinto-Bernal, F. Ballén-Moreno, M. Múnera, and C. A. Ci fuentes, “Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery:A Case Study with a Stroke Survivor,” in T-FLEX, 2020, pp. 1–6.spa
dc.source.bibliographicCitationM. Manchola, D. Serrano, D. Gómez, F. Ballen, D. Casas, M. Munera, and C. A. Cifuentes, “T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance,” in Wearable Robotics: Challenges and Trends, 2018, pp. 160–164.spa
dc.source.bibliographicCitationC. L. Brockett and G. J. Chapman, “Biomechanics of the ankle,” Orthopaedics and Trauma, vol. 30, no. 3, pp. 232–238, 2016.spa
dc.source.bibliographicCitationJ.-W. Lee, S.-W. Yoon, J.-H. Kim, Y.-P. Kim, and Y.-N. Kim, “The Effect of the Ankle Range of Motion on Balance Performance of Elderly People,” J.Phys. Ther. Sci, vol. 24, pp. 991–994, 2012.spa
dc.source.bibliographicCitationF. Gao, T. Tian, T. Yao, and Q. Zhang, “Human Gait Recognition Based on Mul tiple Feature Combination and Parameter Optimization Algorithms,” Computational Intelligence and Neuroscience, pp. 1–14, 2021.spa
dc.source.bibliographicCitationP. Aleixoa, J. V. Patto, A. Cardoso, H. Moreira, and J. Abrantes, “Ankle kinematics and kinetics during gait in healthy and rheumatoid arthritis post-menopausal women,” Somatosensory & Motor Research, vol. 36, no. 2, pp. 171–178, 2019.spa
dc.source.bibliographicCitationB. M. Logan, “Muscles,” in McMinn’s Color Atlas of Foot and Ankle Anatomy, 2012, pp. 116–121.spa
dc.source.bibliographicCitationS.-W. Yoon, J.-W. Lee, Y.-N. Kim, Y.-S. Kim, W.-S. Cho, and C.-B. Park, “Change in Ankle Dorsiflexion Range of Motion and Ultrasonographic Images of the Tibialis Anterior with Age,” J.Phys. Ther. Sci, vol. 23, pp. 813–815, 2011.spa
dc.source.bibliographicCitationS. Dorsch, L. Ada, C. G. Canning, M. Al-Zharani, and C. Dean, “The Strength of the Ankle Dorsiflexors Has a Significant Contribution to Walking Speed in People Who Can Walk Independently After Stroke: An Observational Study,” Arch Phys Med Rehabil, vol. 93, pp. 1072–2076, 2012.spa
dc.source.bibliographicCitationB. F. Koseoglu, A. Dogan, H. U. Tatli, D. S. Ozcan, and C. S. Polat, “Can kinesio tape be used as an ankle training method in the rehabilitation of the stroke patients?” Complementary Therapies in Clinical Practice, vol. 27, pp. 46–51, 2017. 56spa
dc.source.bibliographicCitationD. H. Richie, “Functional Instability of the Ankle and the Role of Neuromuscular Control: A Comprehensive Review,” The Journal of Foot and Ankle Surgery, vol. 40, no. 4, pp. 240–251, 2001.spa
dc.source.bibliographicCitationP. S. Karakkattil, E. Trudelle-Jackson, A. Medley, and C. Swank, “Effects of two different types of ankle–foot orthoses on gait outcomes in patients with subacute stroke: a randomized crossover trial.,” Clinical Rehabilitation, vol. 34, no. 8, pp. 1094–1102, 2020.spa
dc.source.bibliographicCitationL. W. Forrester, A. Roy, R. N. Goodman, J. Rietschel, J. E. Barton, H. I. Krebs, and R. F. Macko, “Clinical application of a modular ankle robot for stroke rehabilitation,” NeuroRehabilitation, vol. 33, pp. 57–97, 2013.spa
dc.source.bibliographicCitationL. R. Sheffler and J. Chae, “Technological Advances in Interventions to Enhance Post stroke Gait,” Phys Med Rehabil Clin N Am, vol. 24, pp. 305–323, 2013.spa
dc.source.bibliographicCitationE. Zimmerman, G. Carnaby, C. L. Lazarus, and G. A. Malandraki, “Motor Learn ing, Neuroplasticity, and Strength and Skill Training: Moving From Compensation to Retraining in Behavioral Management of Dysphagia,” American Journal of Speech Language Pathology, vol. 29, pp. 1065–1077, 2020.spa
dc.source.bibliographicCitationL. Chen, S. Xiong, Y. Liu, M. Lin, L. Zhu, R. Zhong, J. Zhao, W. Liu, J. Wang, and X. Shang, “Comparison of Motor Relearning Program versus Bobath Approach for Prevention of Poststroke Apathy: A Randomized Controlled Trial,” Journal of Stroke and Cerebrovascular Diseases, vol. 28, no. 3, pp. 655–664, 2019.spa
dc.source.bibliographicCitationP. Péran, F. Nemmi, C. Dutilleul, L. Finamore, C. F. Caravasso, E. Troisi, M. Iosa, U. Sabatini, and M. G. Grasso, “Neuroplasticity and brain reorganization associated with positive outcomes of multidisciplinary rehabilitation in progressive multiple sclerosis: A fMRI study,” Multiple Sclerosis and Related Disorders, vol. 42, pp. 1–7, 2020.spa
dc.source.bibliographicCitationJ. Jiang, K.-M. Lee, and J. Ji, “Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs,” International Journal of Intelligent Robotics and Applications, pp. 1–16, 2018.spa
dc.source.bibliographicCitationD. Park, H.-S. Cynn, C. Yi, W. J. Choi, J. Shim, and D.-W. Oh, “Four-week training involving self-ankle mobilization with movement versus calf muscle stretching in patients with chronic stroke: a randomized controlled study,” Topics in Stroke Rehabilitation, pp. 1–9, 2019.spa
dc.source.bibliographicCitationL.-F. Yeung, C. C. Y. Lau, C. W. K. Lai, Y. O. Y. Soo, M.-L. Chan, and R. K. Y. Tong, “Effects of wearable ankle robotics for stair and over-ground training on sub acute stroke: a randomized controlled trial,” J NeuroEngineering Rehabil, vol. 18, no. 19, pp. 1–10, 2021.spa
dc.source.bibliographicCitationG. Chen, P. Qi, Z. Guo, and H. Yu, “Mechanical design and evaluation of a com pact portable knee–ankle–foot robot for gait rehabilitation,” Mechanism and Machine Theory, vol. 103, pp. 51–64, 2016.spa
dc.source.bibliographicCitationQ. Liu, C. Wang, J. J. Long, T. Sun, L. Duan, X. Zhang, B. Zhang, Y. Shen, W. Shang, Z. Lin, Y. Wang, J. Xia, J. Wei, W. Li, and Z. Wu, “Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke,” Journal of Healthcare Engineering, pp. 1–12, 2018. 57spa
dc.source.bibliographicCitationR. N. Goodman, J. C. Rietschel, A. Roy, B. C. Jung, J. Diaz, R. F. Macko, and L. W. Forrester, “Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke,” JRRD, vol. 51, no. 2, pp. 213–227, 2014.spa
dc.source.bibliographicCitationS. M. S. Hasan, M. R. Siddiquee, R. Atri, R. Ramon, J. S. Marquez, and O. Bai, “Prediction of gait intention from pre-movement EEG signals: a feasibility study,” Journal of NeuroEngineering and Rehabilitation, vol. 17, no. 50, pp. 1–16, 2020.spa
dc.source.bibliographicCitationJ. Lobo-Prat, P. N. Kooren, A. H. Stienen, J. L. Herder, B. F. Koopman, and P. H. Veltink, “Non-invasive control interfaces for intention detection in active movement assistive devices,” Journal of NeuroEngineering and Rehabilitation, vol. 11, no. 168, pp. 1–22, 2014.spa
dc.source.bibliographicCitationJ. de Vries, A. van Ommeren, G. Prange-Lasonder, J. Rietman, and P. Veltink, “De tection of the intention to grasp during reach movements,” Journal of Rehabilitation and Assistive Technologies Engineering, vol. 5, pp. 1–9, 2017.spa
dc.source.bibliographicCitationE. Wentink, S. Beijen, H. Hermens, J. Rietman, and P. Veltink, “Intention detection of gait initiation using EMG and kinematic data,” Gait & Posture, vol. 37, pp. 223–228, 2013.spa
dc.source.bibliographicCitationF. Feuvrier, B. Sijobert, C. Azevedo, K. Griffiths, S. Alonso, A. Dupeyron, I. Laffont, and J. Froger, “Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome,” Annals of Physical and Rehabilitation Medicine, vol. 63, pp. 195–201, 2020.spa
dc.source.bibliographicCitationI.-S. Weon and S.-G. Lee, “Intelligent robotic walker with actively controlled human interaction,” Wiley Etri Journal, vol. 40, no. 4, pp. 522–530, 2018.spa
dc.source.bibliographicCitationD. Novak, P. Rebersek, S. Marco, M. D. Rossi, M. Donati, J. Podobnik, T. Beravs, T. Lenzi, N. Vitiello, M. C. Carrozza, and M. Munih, “Automated detection of gait initiation and termination using wearable sensors,” Medical Engineering & Physics, vol. 35, pp. 1713–1720, 2013.spa
dc.source.bibliographicCitationV. Hernandez, D. Dadkhah, V. Babakeshizadeh, and D. Kulic, “Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach,” Gait & Posture, vol. 83, pp. 185–193, 2021.spa
dc.source.bibliographicCitationE. Wentink, V. Schut, E. Prinsen, J. Rietman, and P. Veltink, “Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees,” Gait & Posture, vol. 39, pp. 391–396, 2014.spa
dc.source.bibliographicCitationS. A. Khomami and S. Shamekhi, “Persian sign language recognition using IMU and surface EMG sensors,” Measurement, vol. 168, pp. 1–9, 2021.spa
dc.source.bibliographicCitationD. Buongiorno, M. Barsotti, F. Barone, V. Bevilacqua, and A. Frisoli, “A Linear Ap proach to Optimize an EMG-Driven Neuromusculoskeletal Model for Movement Inten tion Detection in Myo-Control: A Case Study on Shoulder and Elbow Joints,” Front. Neurorobot, vol. 12, pp. 1–12, 2018. 58spa
dc.source.bibliographicCitationW. Hassani, S. Mohammed, H. Rifaï, and Y. Amirat, “Powered orthosis for lower limb movements assistance and rehabilitation,” Control Engineering Practice, vol. 26, pp. 245–253, 2014.spa
dc.source.bibliographicCitationA. Avila and J.-Y. Chang, “EMG onset detection and upper limb movements identifi cation algorithm,” Microsyst Technol, vol. 20, pp. 1635–1640, 2014.spa
dc.source.bibliographicCitationD.-H. Moon, D. Kim, and Y.-D. Hong, “Intention Detection Using Physical Sensors and Electromyogram for a Single Leg Knee Exoskeleton,” Sensors, vol. 19, no. 4447, pp. 1–15, 2019.spa
dc.source.bibliographicCitationY. Yin, “Estimation of Skeletal Muscle Activation and Contraction Force Based on EMG Signals,” in Biomechanical Principles on Force Generation and Control of Skele tal Muscle and their Applications in Robotic Exoskeleton, 2020, pp. 91–114.spa
dc.source.bibliographicCitationC. A. Quinayás-Burgos and C. A. Gaviria-López, “Movement intention detection sys tem for myoelectric control of a prosthetic robotic hand,” Ing. Univ, vol. 19, no. 1, pp. 27–50, 2015.spa
dc.source.bibliographicCitationF. Astudillo, J. Charry, I. Minchala, and S. Wong, “Lower limbs motion intention detection by using pattern recognition,” in Lower limbs motion intention detection by using pattern recognition, 2019, pp. 1–6.spa
dc.source.bibliographicCitationT. Cao, D. Liu, Q. Wang, O. Bai, and J. Sun, “Surface Electromyography-Based Action Recognition and Manipulator Control,” applied sciences, vol. 10, no. 5823, pp. 1–20, 2020.spa
dc.source.bibliographicCitationG. J. Androwis, R. Pilkar, A. Ramanujam, and K. J. Nolan, “Electromyography As sessment During Gait in a Robotic Exoskeleton for Acute Stroke,” Front. Neurol., vol. 9, no. 630, 2018.spa
dc.source.bibliographicCitationS. Y. Gordleeva, S. A. Lobov, N. A. Grigorev, A. O. Savosenkov, M. O. Shamshin, M. V. Lukoyanov, M. A. Khoruzhko, and V. B. Kazantsev, “Real-Time EEG–EMG Hu man–Machine Interface-Based Control System for a Lower-Limb Exoskeleton,” IEEE ACCESS, vol. 8, pp. 84 070–84 081, 2020.spa
dc.source.bibliographicCitationS. Peters, T. Ivanova, B. Lakhani, L. A. Boyd, and S. J. Garland, “Neuroplasticity of Cortical Planning for Initiating Stepping Poststroke: A Case Series,” Journal of Neurologic Physical Therapy, vol. 44, no. 2, pp. 164–172, 2020.spa
dc.source.bibliographicCitationM. Li, G. Xu, J. Xie, and C. Chen, “A review: Motor rehabilitation after stroke with control based on human intent,” Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, pp. 1–62, 2018.spa
dc.source.bibliographicCitationN. Irastorza-Landa, A. Sarasola-Sanz, E. López-Larraz, C. Bibián, F. Shiman, N. Bir baumer, and A. Ramos-Murguialday, “Design of Continuous EMG Classification ap proaches towards the Control of a Robotic Exoskeleton in Reaching Movements,” IEEE International Conference on Rehabilitation Robotics, 2017.spa
dc.source.bibliographicCitationM. Ozsert, O. Yavuz, and L. Durak-Ata, “Analysis and classification of compressed EMG signals by wavelet transform via alternative neural networks algorithms,” Com puter Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 6, pp. 521– 525, 2011. 59spa
dc.source.bibliographicCitationC. Liu, L. Pan, Z. Gu, J. Wang, Y. Ren, and Z. Wang, “Valid Probabilistic Anomaly Detection Models for System Logs,” Wireless Communications and Mobile Computing, pp. 1–12, 2020.spa
dc.source.bibliographicCitationJ. Mickelborough, M. L. van der Linden, R. C. Tallis, and A. R. Ennos, “Muscle activity during gait initiation in normal elderly people,” Gait & Posture, vol. 19, no. 1, pp. 50– 57, 2004.spa
dc.source.bibliographicCitationL. Hardesty, Explained: Neural networks, 2017.spa
dc.source.bibliographicCitationC. Lersviriyanantakul, A. Booranawong, K. Sengchuai, P. Phukpattaranont, B. Wongkittisuksa, and N. Jindapetch, “Implementation of a Real-Time Automatic Onset Time Detection for Surface Electromyography Measurement Systems Using NI myRio,” Thermal Science, vol. 20, no. 2, S591–S602, 2016.spa
dc.source.bibliographicCitationM. Tabie and E. A. Kirchner, EMG Onset Detection Comparison of different methods for a movement prediction task based on EMG, 2013.spa
dc.source.bibliographicCitationA. Avila and J.-Y. Chang, “EMG onset detection and upper limb movements identifi cation algorithm,” Microsyst Technol, vol. 20, pp. 1635–1640, 2014.spa
dc.source.bibliographicCitationA. Kontunen, V. Rantanen, A. Vehkaoja, M. Ilves, J. Lylykangas, E. Makela, M. Rautiainen, V. Surakka, and J. Lekkala, “Low-latency EMG Onset and Termination Detection for Facial Pacing,” in IFMBE proceedings, 2018, pp. 1016–1019.spa
dc.source.bibliographicCitationJ.-H. Park, H.-S. Moon, H. Kim, and S.-T. Chung, “Detection of Movement Intention for Operating Methods of Serious Games,” Appl. Sci., vol. 11, no. 883, pp. 1–14, 2021.spa
dc.source.bibliographicCitationS.-N. Jeon and J.-H. Choi, “The effects of ankle joint strategy exercises with and without visual feedback on the dynamic balance of stroke patients,” J Phys Ther Sci, vol. 27, no. 8, 2015.spa
dc.source.bibliographicCitationC. Prahm, I. Vujaklija, F. Kayali, P. Purgathofer, and O. C. Aszmann, “Game-Based Rehabilitation for Myoelectric Prosthesis Control,” Jmir Serious Games, vol. 5, no. 1, pp. 1–13, 2017.spa
dc.source.bibliographicCitationR. de la Rosa, A. Alonso, S. de la Rosa, and D. Abásolo, “Myo-Pong: a neuromuscular game for the UVa-Neuromuscular Training System Platform,” IEEE, p. 61, 2008.spa
dc.source.bibliographicCitationÁ. Gutiérrez, D. Sepúlveda-Muñoz, Á. Gil-Agudo, and A. d. l. R. Guzmán, “Serious Game Platform with Haptic Feedback and EMG Monitoring for Upper Limb Reha bilitation and Smoothness Quantification on Spinal Cord Injury Patients,” Appl. Sci., vol. 10, no. 963, pp. 1–17, 2020.spa
dc.source.bibliographicCitationL. van Dijk, C. K. van der Sluis, H. W. van Dijk, and R. M. Bongers, “Learning an EMG Controlled Game: TaskSpecific Adaptations and Transfer,” Plos One, vol. 11, no. 8, pp. 1–14, 2016.spa
dc.source.bibliographicCitationR. Labruyére, C. N. Gerber, K. Birrer-Brutsch, A. Meyer-Heim, and H. J. van Hedel, “Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training,” Hubertus J.A. van Hedel, vol. 34, pp. 3906–3915, 2013.spa
dc.source.bibliographicCitationJ. C. Pérez-Ibarra and A. A. G. Siqueira, “Comparison of Kinematic and EMG parame ters between unassisted, fixed- and adaptive-stiffness robotic-assisted ankle movements in post-stroke subjects,” IEEE, pp. 461–466, 2017. 60spa
dc.source.bibliographicCitationG. Serrano, Electromiografia, 2020.spa
dc.source.bibliographicCitationA. P. Laquidara, L. M. Zerbino, C. Lagraña, and E. Yedinak, “Automioestimulador: Biofeedback Aplicado a la Rehabilitación,” Segundas Jornadas de Investigación y Transferencia, pp. 293–298, 2013.spa
dc.source.bibliographicCitationY. Lan, J. Yao, and J. Dewald P.A., “The Impact of Shoulder Abduction Loading on EMG-based Intention Detection of Hand Opening and Closing After Stroke,” Conf Proc IEEE Eng Med Biol Soc., p. 1, 2011.spa
dc.source.bibliographicCitationA. Technologies, MyoWare™ Muscle Sensor (AT-04-001), 2015.spa
dc.source.bibliographicCitationB. Sensortec, BNO005 Intelligent 9-axis absolute orientation sensor, 2020.spa
dc.source.bibliographicCitationB. E. . Kaminski, Emg Circuit, 2015.spa
dc.source.bibliographicCitationD. A. G. Vargas, “Development of control strategies for a variable stiffness ankle exoskeleton for gait rehabilitation,” Ph.D. dissertation, 2020, pp. 1–136.spa
dc.source.bibliographicCitationA. D. P. López, “Development of a Serious Game for Ankle Rehabilitation with T FLEX,” Ph.D. dissertation, 2020, pp. 1–67.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectSensor EMGspa
dc.subjectSensor IMUspa
dc.subjectUmbralspa
dc.subjectIntención de movimientospa
dc.subjectExtracción de características estadísticasspa
dc.subject.ddcCiencias médicas, Medicinaspa
dc.subject.ddcIngeniería & operaciones afinesspa
dc.subject.keywordEMG sensorspa
dc.subject.keywordIMU sensorspa
dc.subject.keywordThresholdspa
dc.subject.keywordMovement intentionspa
dc.subject.keywordStatistical features extractionspa
dc.subject.lembDiseño en ingenieríaspa
dc.subject.lembElectromiografíaspa
dc.subject.lembRehabilitación médicaspa
dc.subject.lembTrastornos del movimientospa
dc.subject.lembBiosensoresspa
dc.titleDevelopment of an interface for rehabilitation based on the EMG signal for the control of the ankle exoskeleton T-FLEXspa
dc.title.TranslatedTitleDesarrollo de una interfaz para la rehabilitación basada en la señal de EMG para el control del exoesqueleto de tobillo T-FLEXspa
dc.typebachelorThesiseng
dc.type.documentTrabajo de gradospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
CastellanosGuarnizo-CamilaAndrea-2021.pdf
Tamaño:
27.84 MB
Formato:
Adobe Portable Document Format
Descripción: